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Abstract—In this paper, we describe an approach to content-
based retrieval of medical images from a database, and provide a
preliminary demonstration of our approach as applied to retrieval
of digital mammograms. Content-based image retrieval (CBIR)
refers to the retrieval of images from a database using informa-
tion derived from the images themselves, rather than solely from
accompanying text indices. In the medical-imaging context, the ul-
timate aim of CBIR is to provide radiologists with a diagnostic aid
in the form of a display of relevant past cases, along with proven
pathology and other suitable information. CBIR may also be useful
as a training tool for medical students and residents.

The goal of information retrieval is to recall from a database
information that is relevant to the user’s query. The most chal-
lenging aspect of CBIR is the definition of relevance (similarity),
which is used to guide the retrieval machine. In this paper, we
pursue a new approach, in which similarity is learned from
training examples provided by human observers. Specifically, we
explore the use of neural networks and support vector machines
to predict the user’s notion of similarity. Within this framework
we propose using a hierarchal learning approach, which consists
of a cascade of a binary classifier and a regression module to
optimize retrieval effectiveness and efficiency. We also explore
how to incorporate online human interaction to achieve relevance
feedback in this learning framework. Our experiments are based
on a database consisting of 76 mammograms, all of which contain
clustered microcalcifications (MCs). Our goal is to retrieve mam-
mogram images containing similar MC clusters to that in a query.
The performance of the retrieval system is evaluated using preci-
sion-recall curves computed using a cross-validation procedure.
Our experimental results demonstrate that: 1) the learning frame-
work can accurately predict the perceptual similarity reported
by human observers, thereby serving as a basis for CBIR; 2) the
learning-based framework can significantly outperform a simple
distance-based similarity metric; 3) the use of the hierarchical
two-stage network can improve retrieval performance; and 4) rel-
evance feedback can be effectively incorporated into this learning
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framework to achieve improvement in retrieval precision based
on online interaction with users; and 5) the retrieved images by
the network can have predicting value for the disease condition of
the query.

Index Terms—Computer-aided diagnosis, content-based image
retrieval, digital radiography, kernel methods, mammogram, rele-
vance feedback.

I. INTRODUCTION

C
ONTENT-BASED IMAGE RETRIEVAL (CBIR) refers

to the recall of images from a database that are relevant to

a query, using information derived from the images themselves,

rather than relying on accompanying text indices or other an-

notation. CBIR has received increasing attention as a result of

the availability of large image databases in medicine, science,

commerce, and the military [1], [2]. CBIR has been proposed to

overcome the difficulties encountered in textual annotation for

large image databases. Like a text-based search engine, a CBIR

system aims to retrieve information that is relevant (or similar)

to the user’s query. In document retrieval, the query is usually a

word or phrase; in CBIR, it is an image. The key to successful

CBIR lies in the development of appropriate similarity metrics

for ranking the relevance to the query image of images in a data-

base. In CBIR, quantitative image features, computed automati-

cally, are used to characterize image content. The image features

may be extracted at either a low level (such as local edges [3])

or at a high level (such as a color histogram [4]), or both. The

query image is then compared to the images in the database on

the basis of the measured features. Those images in the database

having the highest similarity to the query image are retrieved

and displayed for the user.

The general application of image retrieval to broad image

databases has experienced limited success, principally due to

the difficulty of quantifying image similarity for unconstrained

image classes (e.g., all images on the Internet). We expect that

medical imaging will be an ideal application of CBIR, because

of the more-limited definition of image classes (e.g., digital

mammograms), and because the meaning and interpretation of

medical images is better understood and characterized. In spite

of this, the application of CBIR in medical imaging thus far has

been somewhat limited [5]. In [6], a rule-based expert system

was developed to display chest radiographs from a library

of images as illustrative examples for helping radiologists’

diagnosis. In [7], a retrieval method based on texture and shape
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analysis was applied for search and retrieval of a database

containing pulmonary computed tomography (CT) images. In

[8], an algorithm was described for retrieval of three-dimen-

sional (3-D) magnetic resonance images based on anatomical

structure matching. In [9], a similarity metric based on Bayes

decision theory was developed for retrieval of neuroradiological

CT images. In [10] and [11], a technique was developed that

reduces high-dimensional data to a two-dimensional feature

space in which images that are close to each other are selected

for purposes of visualizing relationships in the data. In [12], a

retrieval method was developed using correlation coefficients

in a database of pulmonary nodules represented by the joint

histogram of the pattern CT density and 3-D curvature shape

index.

A. A Learning Approach to Quantify Image Similarity

Unlike the existing approaches to CBIR, which are typically

based on some simple distance measures for image similarity,

we propose an approach in which machine-learning algorithms

[neural networks and support vector machines (SVMs)] are

trained to predict the measures of image similarity reported by

human observers. We treat the learning of the similarity func-

tion as a nonlinear regression of the similarity coefficient on the

features of the images. The method is developed using a set of

76 mammograms, all containing clustered microcalcifications

(MCs). Our goal is to retrieve mammograms containing similar

MC clusters to that in a query mammogram. The proposed

retrieval framework is evaluated statistically using a cross-vali-

dation procedure.

The feasibility of a learning-based approach for modeling

perceptual similarity was first demonstrated in our previous

work in [13] using simulated image data. In this paper, we

expand this approach in two major aspects. First, we develop

a hierarchal two-stage learning network for improved perfor-

mance. Second, we explore how to utilize user interaction,

known as relevance feedback, in the learning framework so as

to achieve online adaptation to the user.

B. Application to Mammography

Mammography has been by far the most effective means for

early detection of breast cancer, a leading cause of death in

women in many developed countries. The sensitivity of mam-

mography is approximately 90% [14]. In spite of the techno-

logical advances in recent years, mammogram reading still re-

mains a difficult clinical task. Some breast cancers may produce

changes in mammograms that are subtle and difficult to recog-

nize. It has been reported that 10%–30% of lesions are misin-

terpreted during routine screening of mammograms [15]. Fur-

thermore, it is very difficult to distinguish benign lesions from

malignant ones in mammograms. As a result, between 2 and 10

women are biopsied for every cancer detected, causing needless

fear and pain to women who are biopsied [16], [17]. This low

specificity results in a relatively large interobserver variability

that can lead to failure to biopsy malignant lesions and poten-

tially avoidable biopsy of benign lesions [18].

We conjecture that by presenting images with known

pathology that are “visually similar” to the image being eval-

uated, the use of a mammogram retrieval system may provide

a more intuitive aid to radiologists, potentially leading to

improvement in their diagnostic accuracy. Furthermore, it is

expected that the proposed technique would be a useful aid in

the training of students and residents, since it would allow them

to view images of lesions that appear similar, but may have

differing pathology.

An alternative approach to computer-aided diagnosis (CAD),

in which the likelihood of malignancy is computed (e.g., [19]),

has been studied to a large extent in the literature. The proposed

retrieval system is in principle very different, and may helpfully

complement existing diagnostic aids. Our retrieval system fol-

lows a “critiquing” approach [20]: instead of proposing a di-

agnosis, it aims to assist the radiologist by providing relevant

supporting evidence from prior known cases. If we view the

human observer as a classifier, then the aim of the CBIR system

is to provide the observer with training-set examples that are

close to his decision boundary, along with the correct class la-

bels (proven pathology) for these examples. The hypothesis that

we ultimately hope to demonstrate is that this approach will

improve the classification (diagnostic) performance of the ob-

server.

In developing a CBIR system for digital mammography, we

argue that the similarity metric must conform closely to the

user’s notions of similarity, and that simple, mathematical dis-

tance metrics may not be adequate for describing perceived sim-

ilarity. Therefore, we aim to show that a learned concept of sim-

ilarity can outperform simple distance metrics in modeling the

user’s similarity concept.

The remainder of the paper is organized as follows. First, an

overview of the proposed learning-based retrieval framework is

provided in Section II. In Section III, the hierarchical learning

network is described, and relevance-feedback techniques are de-

veloped in Section IV. An evaluation study, including data-set

acquisition, training, and testing procedures is described in Sec-

tion V. Experimental results are presented in Section VI. Finally,

conclusions are drawn in Section VII.

II. OVERVIEW OF THE PROPOSED IMAGE-RETRIEVAL

FRAMEWORK

We assume that the user’s notion of similarity between a pair

of images is a function of the relevant features in the images.

We then use machine learning to model this notion of similarity

for the purpose of CBIR. Our goal is to find, among the many

images in the database, those that are visually most similar to

the query as judged by the user.

The proposed framework is illustrated with a functional dia-

gram in Fig. 1. For a given query image, we first characterize

its content by an -dimensional vector , quantifying the key

relevant features of the image. This feature vector is then com-

pared to the corresponding feature vector of a database entry

by way of a learning machine, denoted by a nonlinear mapping

, to produce a similarity coefficient . The images

with the highest s (say, those above a prescribed threshold

value ) are then retrieved from the database.
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Fig. 1. Proposed image retrieval framework with relevance feedback.

Clearly, the key to this framework lies in the learning machine

. Of course, an equally important issue, if not more im-

portant, is the selection of feature vector so that its compo-

nents are relevant to perceptual similarity. In this paper, we will

make use of existing features already in use for CAD in the lit-

erature (Section V-C).

Ideally, the learning machine should have the following prop-

erties: 1) must closely conform to the user’s notion

of similarity; 2) the learning machine should involve reason-

able computational complexity so that it can be applied to a

large-scale database; and 3) should provide the user

with the ability to refine the search in a process called relevance

feedback (indicated by the dashed path in Fig. 1).

We adopt a supervised learning approach for . For this

purpose we first collect a set of sample image pairs, each having

a labeled (e.g., obtained from observer studies). We then

train a learning machine with these samples. Specifi-

cally, letting denote the similarity coefficient between

an image pair and , we model as

(1)

where is the modeling error of the learning machine. Our aim

is to determine a functional that will generalize well to

images outside the training set.

Since our aim is always the comparison of pairs of images, we

will view the similarity metric as a functional of a single argu-

ment , which is a concatenation of the feature vectors

and of two images to be compared; thus, we redefine the

similarity functional as .

III. HIERARCHICAL LEARNING NETWORK

We propose to use a two-stage hierarchical learning network

to model the perceptual similarity for retrieval. This network

consists of a cascade of a binary classifier stage and a regres-

sion stage for predicting the s between a query image and

the images in the database, as illustrated in Fig. 2. In the first

stage, images that are very different from the query image are

eliminated from further consideration by a binary classifier. Im-

ages surviving this stage are then compared to the query in the

second stage to obtain a numerical for retrieval.

The learning network in Fig. 2 is hierarchical in the following

sense: during the training phase, the first-stage classifier func-

tions as a coarse, binary learner, the purpose of which is for

triage; i.e., the first stage identifies simply whether a database

Fig. 2. The two-stage hierarchical learnig framework.

entry is sufficiently similar to the query for further considera-

tion. The second stage functions as a more-refined learner, the

purpose of which is to measure quantitatively the similarity be-

tween a surviving database entry and the query.

The reasons for this approach are as follows. First, the triage

classifier avoids the computational cost of carefully measuring

the s of those database entries that are not at all similar

to the query, and thus will certainly not be determined to

be relevant. Second, by training the second stage using only

reasonably similar pairs, the learning machine can be better

fine-tuned to predict s for those image pairs that are of

genuine interest.

Of course, the use of a triage stage can also have adverse ef-

fect, i.e., it may eliminate some truly similar images from fur-

ther consideration. To ameliorate this effect, in the following

we will modify the cost function of the SVM classifier such that

it will impose a greater penalty on missed similar images than

on misclassified nonsimilar images. As demonstrated by our ex-

perimental results (Section VI), this approach can lead to signif-

icant improvement in retrieval performance. Below we discuss

the details of the two-stage network.

A. First-Stage Classifier

Consider a query image and a database entry with feature vec-

tors and , respectively. The task of the first-stage classifier

is to determine whether the two images are sufficiently similar

for further consideration. This is treated as a two-class pattern

classification problem, i.e., the mammogram image pair is ei-

ther reasonably similar (designated as “class 1”) or not similar

(designated as “class 2”). For reasons of computational speed,

we employ a linear classifier for this task, i.e., we use a decision

function of the form

(2)

such that if the image pair is sufficiently similar,

and otherwise. In other words, image pairs from the

two different classes are separated by the hyperplane

.

The decision function is to be determined from training

samples. Let denote a given set of

training examples, where each sample pair has a known class

label (i.e., for class 1, and for class 2). The

problem then is how to determine and in so that it that

can correctly classify an input pattern (not necessarily from the

training set).
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We consider two types of pattern classifiers for this task: 1) a

Fisher discriminant and 2) an SVM. To distinguish between the

two classifiers, below we use and to denote the parameters

and in for the Fisher discriminant, and use and for

the SVM.

1) Fisher Discriminant Classifier: The Fisher discriminant

is based on the principle of projecting the data onto a one-di-

mensional space so that the two classes are well separated [21].

The discriminant vector in the decision function is deter-

mined by

(3)

where and are the mean vectors of the two classes, and

is the total within-class covariance matrix, all estimated from

the training samples. The constant is computed as

(4)

2) SVM Classifier: SVMisaconstructive learningprocedure

basedonstatistical learningtheory[22]. It isbasedontheprinciple

of structural risk minimization, which aims at minimizing the

bound on the generalization error (i.e., error made by the

learning machine on data unseen during training) rather than

minimizing the mean square error over the data set. As a result,

an SVM tends to perform well when applied to data outside

the training set. In recent years, SVM learning has found

a wide range of real-world applications (see, for example,

[23]–[27]). In many of these applications it has been reported

that SVM-based approaches are able to outperform competing

methods. In our own work [28], we developed an SVM-based

approach for detection of microcalcifications in mammograms,

and demonstrated using clinical mammogram data that such

an approach could outperform several well-known methods

in the literature.

Using the training data set , a linear

SVM classifier in its original form is formulated as minimiza-

tion of the following cost function:

(5)

where is a user-specified, positive parameter, and are slack

variables.

The cost function in (5) constitutes the so-called structural

risk. It consists of both the empirical risk (i.e., the training errors

reflected by the second term) and the model complexity measure

(the first term). The regularization parameter in (5) is used

to define the tradeoff between these two factors. In particular,

when the two classes are separable, the SVM classifier amounts

to maximize the separating margin between the two classes [as

illustrated in Fig. 3(a)].

Fig. 3. Illustration of SVMs: (a) classification with a linear hyperplane that
maximizes the margin between the two classes; and (b) "-insensitive SVM for
regression, where the loss function does not penalize errors below the parameter
". The support vectors are indicated by filled squares.

For our task at hand, we propose to modify the SVM cost

function in (5) as

(6)

where , and , are the index sets of the training

samples belonging to class 1 (i.e., ) and class 2 (i.e,

), respectively. This imposes a greater penalty on

missed similar images than on misclassified nonsimilar images

. The rationale is that the first-stage classifier is for pre-

screening only and should be designed to pass marginal cases

to the second stage for further consideration.

Using the technique of Lagrange multipliers, one can show

that a necessary condition for minimizing in (6) is that

the vector is formed by a linear combination of the vectors

, i.e.,

(7)

where , are the Lagrange multipliers

associated with the constraints in (5).

The Lagrange multipliers , , are solved

from the dual form of (6), which is expressed as

(8)
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subject to the constraints

(9)

The cost function is convex and quadratic

in terms of the unknown parameters . In practice, the max-

imization in (8) is solved numerically through quadratic pro-

gramming [22].

Analytic solutions of (8) are not readily available, but it is

still informative to examine the conditions under which an op-

timal solution is achieved. The Karush–Kuhn–Tucker (KKT)

optimality conditions for (8) lead to the following three cases

for each .

1) . This corresponds to . In this

case, the data element is outside the decision margin of

the function and is correctly classified.

2) for ; or for

. In this case, . The data element

is strictly located on the decision margin of . Hence,

is called a margin support vector of .

3) for ; or for . In this

case, . The data element is inside

the decision margin (though it may still be correctly clas-

sified). Accordingly, is called an error support vector

of .

It is typical that most of the training examples are correctly

classified by the trained classifier (case 1), i.e., only a few

training examples will be support vectors. For simplicity, let

, , , denote these support vectors and their

corresponding nonzero Lagrange multipliers, respectively, and

let denote their class labels. The SVM decision function can

thus be simplified as

(10)

Note that the decision function is now determined directly

by support vectors , , which are determined

by solving the optimization problem in (8) during the training

phase.

B. Regression Stage

The regression stage is used to provide quantitative s be-

tween the query and those images deemed sufficiently similar

by the classification stage. Consequently, only a subset of the

training data will be qualified for the training of the learning

machine in this stage. In this paper, we consider the following

two approaches for learning the similarity function : 1) an

SVM and 2) a general regression neural network (GRNN) [29].

1) SVM Regression: SVM learning can also be applied for

regression. An SVM formulation in such a case maintains many

of the characteristics of the classification case. For nonlinear re-

gression, an SVM in concept first maps the input data vector

into a higher dimensional space through an underlying

nonlinear mapping ; then applies a linear regression in this

mapped space. That is, a nonlinear SVM regression function can

be written in the following form:

(11)

Let denote a set of training sam-

ples surviving the first stage, where is the human-observer

for the image pair denoted by . The parameters and

in the regression function in (11) are determined through mini-

mization of the following structural risk:

(12)

where is the so-called -insensitive loss function which is

defined as

if

otherwise.
(13)

The function has the property that it does not penalize

errors below the parameter , as illustrated in Fig. 3(b). The

constant in (12) determines the tradeoff between the model

complexity and the training error.

As with the case of classification, the regression function

in (11) is also characterized by the support vectors. It can

be written as follows:

(14)

where , , denote the support vectors, and

which is called a kernel func-

tion. A training sample is a margin support vector

when , and an error support vector when

.

From (14), we can directly evaluate the regression function

through the kernel function without the need to specif-

ically addressing the underlying mapping . In this paper,

we consider two kernel types: polynomial kernels and Gaussian

radial basis functions (RBF). These are among the most com-

monly used kernels in SVM research, and are known to satisfy

Mercer’s condition [22]. They are defined as follows.

1) Polynomial kernel

(15)

where is a constant that defines the kernel order.

2) RBF kernel

(16)
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Fig. 4. Examples of mammogram regions containing clustered microcalcifications (indicated by circles).

where is a constant that defines the kernel width.

2) GRNN Regression: The GRNN computes an estimate of

the conditional mean of the for an image pair from the

human-observer data [29]. It is based on an estimate of the

joint probability density of the input and the output obtained

by the Parzen method [29]. With training data

, the output of the GRNN can be represented as

(17)

where defines the kernel width.

Note that the GRNN estimate in (17) has a similar form

to the SVM estimate in (14) when the RBF kernel is used. The

major difference between the two, however, is that only the sup-

port vector samples are used in the SVM in (14), while all the

training samples are used in the GRNN in (17). Thus, the SVM

estimate can be computationally advantageous over the GRNN.

IV. RELEVANCE FEEDBACK

In this section, we explore how to incorporate relevance feed-

back into our proposed learning-based retrieval approach. Rel-

evance feedback is a post-query process to refine the search by

using positive and/or negative indications from the user of the

relevance of retrieved images. It has been applied successfully

in traditional text-retrieval systems for improving the results of

a retrieval strategy [30]. In particular, we consider the following

scenario: for a query image a user selects a relevant image

amongst the retrieved images to confirm that the retrieved is

indeed similar to the query ; we want to incorporate this in-

formation to further refine the search, hoping that more relevant

images could be found for the same query .

In this paper, we consider the following simple approach for

relevance feedback: we explicitly incorporate the impact of the

feedback image in the measure of similarity between the query

image and a database entry . Specifically, we use the fol-

lowing weighted :

(18)

where is a weighting parameter used to adjust the relative

impact of the feedback image . The images with the highest

weighted s are then retrieved.

An alternative to the above weighting approach is to adapt the

learning machine based on the feedback information. We will

consider this in a separate study [31], as the main goal of this

paper is to demonstrate the feasibility of a learning framework

for similarity modeling.

V. PERFORMANCE EVALUATION STUDY

A. Mammogram Data Set

The proposed retrieval framework was developed and tested

using a data set collected by the Department of Radiology at

The University of Chicago. This data set consists of 76 clin-

ical mammograms, all containing multiple MCs. These mam-

mograms are of dimension 1000 700 pixels, with a spatial

resolution of 0.1 mm/pixel and 10-bit grayscale. Collectively,

there are a total of 1120 MCs in these mammograms, which

were identified by a group of experienced mammographers.

MCs are tiny calcium deposits that appear as small bright

spots (typically 0.05–1 mm in diameter) in a mammogram. MC

clusters (MCCs) in a mammogram provide valuable information

to radiologists in diagnosis of cancer. For example, linearly dis-

tributed MCCs are typically malignant, while round clusters are

typically benign [32]. In Fig. 4, we show a number of different

regions of interest (ROIs) extracted from the mammograms in

the data set, all of which contain MCCs.

Our objective is to apply the proposed framework to retrieve

mammograms containing similar MCCs to that in a query mam-

mogram.
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B. Observer Similarity Data

For the training and testing of the algorithms, ROIs containing

the identified MCCs were first extracted from all the mammo-

grams in the data set (as shown in Fig. 4). Among the 76 mam-

mograms, 74 contain only a single ROI, while the other two have

two ROIs. These MCC ROIs were then used in a subsequent ob-

server study to obtain s for different ROI pairs, which were

then used to form training and testing samples.

The observer study was carried out by a panel of six human

observers, who scored the similarity between each pair of ROIs

based on their geometric distributions on a scale from 0 (most

dissimilar) to 10 (most similar). It consisted of the following

different sessions: 1) a “precalibration” session; 2) individual

scoring sessions; and 3) a statistical analysis session for both

intraobserver and interobserver consistencies.

The panel of observers first participated in a “precalibration”

session ( 1 h), the goal of which was to establish a consensus

among the observers on a uniform measure of the perceptual

similarity and to identify tentative “anchor pairs” (prototype ex-

amples) along the scale (from very different to very similar, all

chosen randomly from the mammogram set).

For the individual scoring sessions, we randomly selected 30

ROIs from the mammogram set, each of which corresponds to a

different patient. The observers then scored the similarity for all

the possible pairs (a total of 435) formed by these ROIs, assisted

by a software user interface. In each session, a query ROI was

displayed along with up to 15 other ROIs simultaneously on the

same computer screen (presented in a random order). The ob-

server then assigned a continuous value between the query

and each of the other ROIs by mouse-clicking on a thermometer

bar on the computer screen. Each of the 30 ROIs in the dataset

was used in turn as the query, yielding a total of 870 s from

each observer (each MCC pair was scored twice).

The collected s were then analyzed for both intraobserver

and interobserver consistencies. Specifically, the Kendall’s rank

correlation method [33] was first applied to test the consistency

between the two scores reported by each observer for each of

the 435 MCC pairs. The two scores were then averaged for each

pair. Afterward, the Kendall’s rank correlation method was ap-

plied to analyze the interobserver consistency among the six ob-

servers. The scores reported by the six observers were then av-

eraged for each of the 435 pairs to obtain the s.

Specifically, for intraobserver consistency, Spearman’s rank

correlation statistic was computed to be 0.7551, 0.7241,

0.6675, 0.7156, 0.7827, and 0.6850, respectively for the six

observers; we also computed, using Fisher’s transformation

[34], the corresponding 95% confidence intervals of these

coefficients to be [0.7102, 0.7938], [0.6746, 0.7671], [0.6101,

0.7179], [0.6648, 0.7598], [0.7421, 0.8176], and [0.6300,

0.7332], respectively. For the interobserver consistency,

Kendall’s coefficient of concordance was computed to be

0.25. The coefficient was computed by tabulating together

all the ranking scores from all the six observers. As explained

by Kendall [33], is a measure of “the communality of the

judgments for the (6 in our case) observers”. Specifically,

is calculated in the following two steps: 1) for each MCC

pair, the sum of the ranking scores given by all the observers is

Fig. 5. Histogram plot of the observers’ similarity scores (SCs) for the 465
MCC pairs in the dataset.

computed, and the deviation by this sum from its mean value

(assuming completely independent judgments by the observers)

is computed; 2) the sum of squares of all these deviations is then

computed (and adjusted by a constant factor) to yield . A

test of significance (the null hypothesis being that all observers

are independent in their judgments) indicates that this result is

statistically significant with its -value below 0.0001; that is,

under the null hypothesis, the probability of obtaining a value

as great as or greater than 0.25 for is less than 0.0001.

Finally, we introduced 30 “ideal” pairs, formed by each query

ROI with itself. These pairs were all assigned a perfect (10).

In summary, a total of 465 MCC pairs were scored and

recorded. In Fig. 5, we show a histogram plot of the obtained

observers’ similarity scores for the 465 pairs.

All the six observers have backgrounds in medical image

analysis, with one of them also having a background in med-

ical physics. To facilitate the observer study, all the individual

MCs were clearly marked out in all the ROIs involved (based

on the experts’ readings). While there are other potentially im-

portant image features one might consider, we elected in this

preliminary demonstration to retrieve images based on the spa-

tial characteristics of the clusters alone. This will enable us to

demonstrate the feasibility of the proposed framework using an

observer-data set of reasonable size.

C. Extraction of MCC Features

To describe the geometric features of MCCs, we started with

a total of 25 shape descriptors, most of which were used in the

literature for shape analysis of MCCs [35]–[37]. We then ap-

plied a so-called sequential backward selection procedure [38]

to reduce the set of salient features down to nine, which we de-

scribe below in detail. We point out that features 1, 4, and 5 were

used in [35], [36], and features 8 and 9 were used in [37]. Fur-

thermore, we note that the above feature-selection process was

performed using an observer-dataset obtained using simulated

distributions of clustered microcalcifications [13], used in our

early development of the learning-based similarity framework.

As demonstrated in this paper, these features can also lead to
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good predictability in the observer s using clinical mammo-

grams.

1) Cross sectional area : the area occupied by the cluster.

It is computed in the following steps: 1) a binary image is

first created in which the pixels corresponding to the cen-

ters of the MCs are set to 1 and all the rest of the pixels set

to 0. 2) a Delaunay triangulation is next applied to connect

the centers of the MCs in this binary image; the average

interdistance between neighboring MCs, denoted by , is

then computed based on this triangulation. 3) a morpho-

logical closing operation with a circular structuring ele-

ment having a radius of is then performed on the binary

image to fill the gaps among the MCs. The area of the re-

sulting region is then computed.

2) Compactness: a measure of roundness of the region occu-

pied by the cluster. It is computed as

(19)

, are the area and perimeter of the solid region oc-

cupied by the cluster (i.e., holes are filled when neces-

sary), respectively. Note that will differ from the cross

sectional area when the occupied region contains any

holes.

3) Eccentricity: the eccentricity of the smallest enclosing el-

lipse of the region, computed as the ratio of the distance

between the foci and the length of the major axis of the

ellipse.

4) Density: the spatial density of the MCs in the cluster, com-

puted as the number of MCs per unit area .

5) Scatteredness: represented by the mean and the standard

deviation of the interdistances between neighboring MCs;

the neighbors are determined based on the Delaunay tri-

angulation of the MCs as described above.

6) Solidity: computed as the ratio between cross sectional

area and the area of the convex hull formed by the MCs.

7) Invariant moment : a regional descriptor that is in-

variant to translation, rotation, or scaling [39].

8) Moment signature, as defined in [37]: a measure of

boundary roughness, computed based on the distance

deviation of a point on the boundary from the center of

the region.

9) Normalized Fourier descriptor, also as defined in [37]: a

frequency-domain characterization of the smoothness of

the boundary.

These feature components (a total of 10, with 2 for scattered-

ness) were first computed for each MCC in the mammograms.

All these feature components were then normalized to have the

same dynamic range (0,1). Each MCC was then labeled with

a feature vector formed by these components. These feature

vectors were paired with the observer similarity data to form the

training and testing samples.

In summary, we have the following data set:

(20)

where denotes the computed feature vector for the -th MCC

pair, and is the observer of the pair. This set was used for

the subsequent training and testing of the proposed framework.

D. Machine Training and Performance Evaluation

1) Preparation of Data Sets: For the first stage, the MCC

pairs in set in (20) were first divided into two classes: class 1

representing sufficiently similar pairs, and class 2 representing

dissimilar pairs. We chose a threshold so that samples

in were labeled as class 1 if their s were larger than ;

otherwise they were labeled as class 2. In short, we denote this

set as

(21)

where . There were in total 229 samples in

class 1, and 236 samples in class 2. This set was used subse-

quently to train and test the first-stage classifier.

For the regression stage, we chose only those pairs in with

s larger than , i.e., those belonging to class 1 in set . We

denote this set as

(22)

2) Performance Evaluation: For training and testing of the

learning machines (both the classification stage and the regres-

sion stage), we applied the following cross-validation procedure

[40]: 1) the images were selected in turn so that during each run

only one image was chosen (as a query), based on which the data

samples ( or ) were divided into the following two sets: one

for training, which consisted of all the samples not involving the

chosen image, and the other for testing, which consisted of only

those samples involving the chosen image; 2) in each run the

learning machine (either classification or regression) was then

trained using the resulting training set, and tested for perfor-

mance using the testing set; 3) the test results were then aver-

aged over all the different runs to obtain the generalization per-

formance (e.g., classification error, retrieval precision, etc.).

To evaluate the performance of the retrieval network, we used

the so-called precision-recall curves [1]. The retrieval precision

is defined as the proportion of the images among all the retrieved

that are truly relevant to a given query; the term recall is mea-

sured by the proportion of the images that are actually retrieved

among all the relevant images to a query. The precision-recall

curve is a plot of the retrieval precision vs the recall over a con-

tinuum of the operating threshold (Fig. 1).

As the ground truth in calculation of the precision-recall

curves, we considered an image to be truly relevant to a query

if its corresponding observer is larger than a preselected

threshold . In our experiments, was used.

3) Relevance Feedback: To demonstrate the effect of rele-

vance feedback, we performed the following experiments: for

each query, the trained retrieval network was first applied to re-

trieve images from the database; among the images retrieved,

the one with the highest (based on the pre-existing observer

data) was chosen as the relevant feedback image (in case there

was a tie, random selection was used to break the tie). The pro-

posed relevance feedback procedure was then applied to retrieve

a new set of images. The precision-recall curves were then com-

puted based on this new set of images.

4) Impact of Parameters: To demonstrate the impact of var-

ious parameters involved in the training and testing of the pro-

posed network on the overall performance, we also evaluated
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Fig. 6. Plot of precision-recall curves obtained from various network
structures.

the precision-recall curves when these parameters were varied,

including the thresholds and , and the internal parameters

of the trained learning machine.

VI. EXPERIMENTAL RESULTS

The proposed two-stage learning approach was thoroughly

tested and evaluated for retrieval under various learning-ma-

chine settings. We summarize the results in Fig. 6 using the pre-

cision-recall curves for the following different network struc-

tures:

1) a linear Fisher discriminant for the first stage and an SVM

for the second stage (Fisher-SVM);

2) a linear SVM for the first stage and an SVM for the second

stage (SVM-SVM);

3) a linear SVM with the modified objective function in

(6) for the first stage and an SVM for the second stage

(MSVM-SVM);

4) a linear SVM with the modified objective function in

(6) for the first stage and a GRNN for the second stage

(MSVM-GRNN).

In the first three structures a Gaussian kernel was used in the

SVM for the second stage. We note that similar performance

was also achieved when a polynomial kernel was used, of which

the results are omitted for clarity of the plots.

For comparison, we also show in Fig. 6 the precision-recall

curve obtained when a single stage SVM regression network

was used for retrieval (SVM). In this case, the SVM with a

Gaussian kernel was trained and tested directly using the sam-

ples formed from the entire set of observer s.

Moreover, we show in Fig. 6 the precision-recall curve ob-

tained when a naïve Euclidian metric was used as the similarity

measure. In this case, the images with features vectors closest

to a query were retrieved.

From these results we see that the two-stage network

(MSVM-SVM) achieves the best performance; and all the

learning-based networks outperform that based on the Euclidian

distance. Note that the precision-recall curves corresponding

to both Fisher-SVM and SVM-SVM drop below that of the

TABLE I
PARAMETRIC SETTINGS OF THE TRAINED RETRIEVAL NETWORKS

Fig. 7. Precision-recall curves obtained by the MSVM-SVM network when
the parameters in the regression stage are varied from their tuned values of � =

1:5, C = 100 in Table I to: (i) � = 1:5, C = 1000, (ii) � = 2:0, C = 100,
and (iii) � = 2:0, C = 1000.

single-stage network (SVM) as the recall ratio is increased

toward unity. This can be explained as follows: at a fixed

operating threshold the first stage Fisher or SVM classifier

discards some of the relevant images for a query with a nonzero

probability, preventing the recall ratio from reaching 1 (as the

retrieval threshold gets decreased). The use of a modified

SVM classifier in the first stage avoids this pitfall.

Finally, the parametric settings for the learning machines cor-

responding to each of the network structures above are listed in

Table I. In our experiments each network structure was studied

over a wide range of parametric settings; the precision-recall

curves in Fig. 6 represent the best results for each case. The

performance of the learning networks was found to be consid-

erably robust and insensitive to changes in the parameters (such

as regularization parameter , insensitive bound , kernel width

, etc.). To demonstrate this, we show in Fig. 7 the resulting

precision-recall curves for the case of MSVM-SVM when the

parameters and of the regression stage are varied from their

tuned values listed in Table I.

In Figs. 8 and 9, we show some retrieval examples for two

given query images. These results demonstrate that the two-

stage network can indeed improve retrieval performance.

In Fig. 10, we show the precision-recall curves obtained using

the weighted method for the two-stage MSVM-GRNN.

Similar results were also obtained for SVM and MSVM-SVM

(but not shown for brevity). As can be seen, the proposed feed-

back procedures can further improve the retrieval performance.
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Fig. 8. Top three images retrieved by the single-stage SVM (b) and the two-stage MSVM-SVM (c), respectively, for a given query MCC (a). Numbers in brackets
on top of each cluster are the user SCs.

In addition, we show in Fig. 11 the precision-recall curves ob-

tained for MSVM-SVM when different values for the thresholds

and were used. We note that varying the threshold leads

tovariationsinthetrainingdatasets in(21)and in(22)forthe

two-stagenetwork,andvaryingthe threshold leads tovariation

inthegroundtruthforproducingtheprecision-recallcurves.These

results demonstrate that the retrieval performance by the network

is somewhat robust to these variations.

Finally, in Fig. 12 we show the average fraction of images

among the top retrieved images ( , 2, 3, and 4) by

MSVM-SVM for each query that actually match the disease

condition of the query, obtained using the leave-one-out pro-

cedure. For comparison, we also show in Fig. 12 the matching

fractions when the observer score (ground truth) is used. It can

be seen that when the observer s were used, the average

matching fraction was around 70%; the two-stage network could

achieve a matching fraction above 60%. In particular, the most

similar image (when ) retrieved by the two-stage network

can have a matching fraction as high as 76.7%, which is even

higher than that of the observer s (66.7%). While this might

seem surprising, such a results is possible because the regression

network was trained based on similarity data from a wide range

of s, and the resulting regression function has an inherent

noise-smoothing effect (which can reduce the uncertainty in the

observer data). We also conducted a binomial test [41] to estab-

lish the statistical significance of these results, as compared to

what would have been achieved by random pairing (of which

the expected matching fraction is 51.95%, determined by the

distribution of the cases in the dataset); the p-value is 0.0034 for

76.7%, and 0.053 for 66.7%. Note that the disease information

of the clusters had been kept unavailable during the observer

study so that the observers were not influenced by the disease

condition when scoring the similarity between MCCs.

In our experiments, the two-stage networks (MSVM-SVM

and MSVM-GRNN) can provide 4 5-fold reduction in com-

putation time as compared to that of a single-stage network

(SVM).

VII. CONCLUSION

In this paper, we have proposed a learning machine-based

framework for modeling human perceptual similarity for

content-based image retrieval. The proposed approach was

developed and evaluated for retrieval of clinical mammograms

containing clustered microcalcifications. The results demon-

strated that a learning framework can be used effectively to



EL-NAQA et al.: SIMILARITY LEARNING APPROACH TO CONTENT-BASED IMAGE RETRIEVAL 1243

Fig. 9. Top three images retrieved by the single-stage SVM (b) and the two-stage MSVM-SVM (c), respectively, for a given query MCC (a). Numbers in brackets
on top of each cluster are the user SCs.

Fig. 10. Precision-recall curves using relevance feedback (RFB) for the
two-stage network MSVM-GRNN.

model the perceptual similarity, thereby serving as basis for re-

trieving visually similar mammograms from a database. It was

demonstrated that a hierarchical two-stage learning network

can offer several advantages over a single-stage one, including

faster speed and retrieval accuracy. Furthermore, the use of

Fig. 11. Precision-recall curves obtained by the MSVM-SVM network when
different values were used for the thresholds T and T : i) T = 4, T = 6:5;
ii) T = 4, T = 5:5; and iii) T = 3, T = 6.

relevance feedback in such a framework can be used to further

improve the retrieval performance. In our future work we will

explore the use of incremental learning to adapt the learning

network online to a user’s feedback; we will also investigate
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Fig. 12. Average fraction of images among the top k retrieved images
(k = 1, 2, 3, and 4) that actually match the disease condition of the query.
For comparison, the matching fraction is also shown when the observer score
(ground truth) is used.

the clinical benefit of using the developed retrieval framework

for computer-aided diagnosis.
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