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Abstract

This article proposes a novel similarity measure between

vector sequences. Recently, a model-based approach was

introduced to address this issue. It consists in modeling

each sequence with a continuousHidden Markov Model (C-

HMM) and computing a probabilistic measure of similar-

ity between C-HMMs. In this paper we propose to model

sequences with semi-continuous HMMs (SC-HMMs): the

Gaussians of the SC-HMMs are constrained to belong to

a shared pool of Gaussians. This constraint provides two

major benefits. First, the a priori information contained

in the common set of Gaussians leads to a more accurate

estimate of the HMM parameters. Second, the computa-

tion of a probabilistic similarity between two SC-HMMs

can be simplified to a Dynamic Time Warping (DTW) be-

tween their mixture weight vectors, which reduces signifi-

cantly the computational cost. Experimental results on a

handwritten word retrieval task show that the proposed sim-

ilarity outperforms the traditional DTW between the origi-

nal sequences, and the model-based approach which uses

C-HMMs. We also show that this increase in accuracy can

be traded against a significant reduction of the computa-

tional cost (up to 100 times).

1. Introduction

There exist many pattern recognition problems where

the objects of interest can be represented with ordered se-

quences of vectors, also referred to as multi-dimensional

time series. This includes speech recognition, biological

sequence processing, on-line and offline handwriting recog-

nition, etc. Defining good measures of similarity between

∗J.A. Rodrı́guez-Serrano was a visitor at XRCE and a Ph.D. candidate

at the CVC while this work was conducted.

vector sequences is fundamental for applications such as re-

trieval, density estimation, clustering, K-NN or kernel clas-

sification.

The application of interest in this work is offline hand-

written word image retrieval which has attracted a lot of

interest from the computer vision community [4, 13, 18,

22, 16, 24]. More precisely we will focus on the query-by-

example problem which consists in retrieving candidate im-

ages which are similar to a given query image. While early

works used holistic image descriptors [13], recent state-of-

the-art approaches describe a word image as a sequence of

feature vectors. Typically, a sliding window traverses the

image from left to right and a feature vector is extracted at

each position [18]. Themost common distance between two

time series, also adopted in the word image retrieval litera-

ture [17], is dynamic time warping (DTW) [20]. It consists

in finding the optimal alignment (warping path) between the

vectors of the two sequences and then accumulating the in-

dividual vector-to-vector distances along the warping path.

In the field of pattern recognition, model-based similari-

ties were shown to be powerful tools to measure the similar-

ity of vector sets. Computing these distances consist of two

steps: (i) mapping each vector set to a probability distribu-

tion, and (ii) computing a probabilistic similarity in the dis-

tribution space. This framework has been successfully ap-

plied to image classification and retrieval where images can

be described by unordered vector sets (i.e. bag-of-patches).

Images can thus be described by discrete distributions, i.e.

histograms (e.g. [23]), or continuous distributions, typically

Gaussian mixture models (GMMs) (e.g. [5]). Although

such orderless approaches have been used in the past for

printed and handwritten matching [1], we found them to be

insufficient for our problem as the order of vectors contains

highly discriminative information.

Recently, Jebara et al. [11] proposed to apply a simi-

lar framework for time series. The probability distribution
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for a sequence is obtained by training a continuous hidden

Markovmodel (C-HMM). Then the probability product ker-

nel (PPK) [10] is employed to compute a similarity between

HMMs. For simple clustering tasks (one of them, interest-

ingly, of word images) the authors report better results than

other kernels and HMM-based clustering methods.

One advantage of model-based distances is that they pro-

vide a principled way to compute a distance between in-

dividual vector sequences as well as between sets of se-

quences. In the latter case, the probabilistic model can be

trained with all the sequences contained in the set. One of

the major issues with model-based distances is the training

of the probabilistic model for a single sequence. Because

the number of C-HMM parameters grows linearly with the

number of states, it is important to keep the number of states

small to avoid over-fitting when considering a single se-

quence (or few sequences). For the simple 2-class clustering

experiments reported in [10] a very small number of states

(from 2 to 4) was sufficient for good performance. This is

an unrealistic setting in several applications and especially

in our word retrieval scenario. Usually, word models are

left-to-right C-HMMs with several states per character (typ-

ically on the order of 10), meaning that a word is modeled

with several tens of states [14, 25]. In section 5 we confirm

this limitation experimentally and show that a model-based

approach can actually perform worse than a standard DTW.

We believe that a crucial but unexploited advantage of

model-based similarities for vector sequences is the pos-

sibility to incorporate a priori information in the model.

The main contribution of this work is to model vector se-

quences with a semi-continuous HMM: the Gaussians of

the SC-HMMs are constrained to belong to a shared pool

of Gaussians, i.e. a “universal” GMM. This provides two

major benefits:

1. The shared GMM may be learned offline from a

large set of sequences. When training a SC-HMM

with a single sequence, we combine the sequence-

independent a priori information contained in the

GMM and the sequence-dependent information con-

tained in the vectors. Thanks to the prior information,

the SC-HMM is more resilient to over-fitting.

2. Because all the states of the SC-HMMs share the same

set of Gaussians, only the mixture weights contain

sequence-specific information (the information con-

tained in transition probabilities is disregarded). We

will show that we can simplify the distance between

two SC-HMMs as the DTW between two sequences

of weight vectors. This results in a huge reduction of

the computational cost.

The remainder of the paper is structured as follows. In

section 2 we describe the training of the word-dependent

SC-HMMs. In section 3, we consider the computation of

distances between SC-HMMs. In section 4, we summa-

rize the full similarity computation process. In section 5

we show experimentally the effectiveness of our approach

on a word image retrieval task. We show that the proposed

approach outperforms a simple DTW baseline as well as the

model-based approach proposed in [11]. We also show that

this increase in retrieval accuracy can be traded against a

significant decrease of the retrieval speed (up to 100 times).

Finally, in section 6 conclusions are drawn.

In the remainder of this text, we will use the terms sim-

ilarity / dissimilarity interchangeably as one can be con-

verted into the other in a trivial way.

2. SC-HMM Training

We want to train a HMM with a single sequence X of

T vectors: X = {x1 . . . xT }. At each time t the system is

assumed to be in a (hidden) state, which can be represented

with a discrete latent variable qt. A HMM is described by

three types of parameters:

• Initial occupancy probabilities: πi = p(q1 = i),

• Transition probabilities: aij = p(qt = j|qt−1 = i).
In the following, we will focus on a particular case

of HMM commonly used in handwriting and speech

recognition, the left-to-right HMM with no skip-state

jump, which has the following properties: aij = 0 if

j 6= i or j 6= i + 1.

• Emission probabilities: p(xt|qt = i). In the case of

continuous observations, the emission probabilities are

generally assumed to be GMMs. We will also assume

diagonal covariancematrices since their computational

cost is reduced and any distribution can be approxi-

mated with arbitrary precision by a mixture of Gaus-

sians with diagonal covariances.

The number of states N of the model is chosen as a fac-

tor ν (with 0 ≤ ν ≤ 1) times the length of the sequence

T : N = νT . The parameter ν will later be referred to

as “compression” factor because intuitively the SC-HMM

compresses in νT states the information contained in T ob-

servations.

In a SC-HMM [8] all the Gaussians of the emission prob-

abilities are constrained to belong a shared set of K Gaus-

sians: a “universal” GMM. Let pk be the k-th Gaussian of

the universal GMM with mean vector µk and covariance

matrix Σk. The emission probabilities can thus be written

as:

p(xt|qt = i) =
K

∑

k=1

wikpk(xt) (1)

Hence, the SC-HMM parameters can be separated into

sequence-independent, i.e. shared, parameters (µk and Σk)

and sequence-dependent parameters (aij , wik).
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We now briefly describe the two separate steps of

the SC-HMM training: (i) the training of the sequence-

independent GMM parameters (ii) the training of the

sequence-dependent parameters.

2.1. Sequence­independent parameters

We first train offline a GMM which describes the distri-

bution of feature vectors in any sequence. We use the Max-

imum Likelihood (ML) criterion. At this point, the order

of the feature vectors extracted from a sequence is disre-

garded. In our word image retrieval problem, the training

material should consist of a large set of word images cor-

responding to a wide variety of words and writing styles.

This GMM models typical writing primitives such as let-

ters, parts of letters or connectors between letters. This

is reminiscent of the “visual vocabularies” which are used

in the computer vision literature for the object detection

problem [23]. The algorithm of choice to train GMMs is

Expectation-Maximization (EM) [3].

2.2. Sequence­dependent parameters

Again, we use the ML criterion to train the SC-HMM

for a particular sequence. The mean and covariance param-

eters are left unchanged and only the transition probabilities

and mixture weights are modified. The estimation may be

performed with the EM algorithm. For completeness, we

provide the re-estimation formulae:

âij =

∑T−1

t=1
ξij(t)

∑T−1

t=1
γi(t)

, (2)

ŵik =

∑T
t=1

γik(t)
∑T

t=1

∑N
n=1

γin(t)
, (3)

where γi(t) is the probability that xt was generated by state

i, γik(t) is the probability that xt was generated by state i
and mixture component k, and ξij(t) is the probability that
xt was generated by state i and xt+1 by state j. All these
posteriors can be computed with the forward-backward al-

gorithm (e.g. see [15]).

3. Distances Between HMMs

There is an abundant literature on the computation of

similarities / dissimilarities between C-HMMs (see for in-

stance [2, 6, 7, 9, 11]). In the case of left-to-right HMMs

all these algorithms are based on the same principle: they

consist in considering the possible alignments between the

state sequences of two HMMs. The main difference be-

tween these methods is in the choice of the local measure

of similarity between states: Bayes probability of error [2],

Kullback-Leibler (KL) divergence [7, 9] or Bhattacharyya

similarity [6, 11]. Another difference is whether one con-

siders the best path [2, 9] or a sum over all paths [6, 7, 11].

We follow [2, 9] and consider only the best path. As

suggested in [9], we also disregard the transition probabili-

ties as it is widely acknowledged in handwriting and speech

recognition that they contain little discriminant information.

Under these two approximations, the distance computation

between two HMMs simplifies to a DTW between state se-

quences. In the following, we briefly review the DTW al-

gorithm and then explain how to define a distance between

states (i.e. between GMMs).

3.1. Dynamic time warping

DTW is an elastic distance between vector sequences.

Let us consider two sequences of vectorsX and Y of length

TX and TY respectively. DTW considers all possible align-

ments between the sequences, where an alignment is a set

of correspondences between vectors such that certain con-

ditions are satisfied. For each alignment, we determine the

sum of the vector-to-vector distances and define the DTW

distance as the minimum of these distances or, in other

words, the distance along the best alignment, also referred

to as warping path.

The direct evaluation of all possible alignments is pro-

hibitively expensive, and in practice a dynamic program-

ming algorithm is used to compute a distance in quadratic

time. It takes into account that the partial distance

DTW (m, n) (where m = 1 . . . TX and n = 1 . . . TY ) be-

tween the prefixes {x1 . . . xm} and {y1 . . . yn} can be de-

termined as

DTW (m, n) = min







DTW (m− 1, n)
DTW (m − 1, n − 1)

DTW (m, n− 1)







+d(m, n),

(4)

where d(m, n) is the vector-to-vector distance between xm

and yn, usually the Euclidean distance. In practice, dividing

the DTW distance by the length of the warping path leads

to an increase in performance. The distance d(., .) may be

replaced by a similarity. This simply requires changing the

min into a max in Eq. (4). Because one can apply Eq. 4 to

fill the matrix DTW(m,n) in a row-by-row manner, the cost

of the algorithm is in O(TXTY D) where D is the dimen-

sionality of the feature vectors.

To extend DTW to state sequences, it is sufficient to re-

place the vector-to-vector distance d(., .) by a state-to-state

distance. This is the object of the next section.

3.2. Distances between states

We now have to address the problem of defining a dis-

tance between states, i.e. between GMMs. In the case of

SC-HMMs, the only sequence-dependent state parameters

are the mixture weights. Hence, the distance between two

states may be defined as the distance between two vectors

of mixture weights.
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We will now show that in the case of the Bhattacharyya

similarity this corresponds to an approximation of the true

Bhattacharyya similarity between the GMMs. In the fol-

lowing, f =
∑M

i=1
αifi and g =

∑N
j=1

βjgj denote two

GMMs. We denote α = [α1 . . . αM ] and β = [β1 . . . βN ]
the two weight vectors.

The Probability Product Kernel (PPK) [10] is defined as:

Kρ
ppk(f, g) =

∫

x

(f(x)g(x))ρ dx. (5)

The Bhattacharyya similarity corresponds to the special

case B(f, g) = K
1/2

ppk(f, g). There is no closed-form for-

mula for B in the case where f and g are Gaussian mixture

models and we have to resort to approximations. We can

however use the following upper-bound to approximateB:

B(f, g) ≤

M
∑

i=1

N
∑

j=1

(αiβj)
1/2B(fi, gj) (6)

The values B(fi, gj) correspond to the Bhattacharyya simi-

larities between pairs of Gaussians for which a closed form

formula exists (see for instance [10]). In the case of SC-

HMMs, we recall that the GMM emission probabilities are

defined over the same set of Gaussians, i.e.M = N , fi = gi

and the values B(fi, gj) may be pre-computed. In such a

case, the similarity between two states is just a similarity

between two weight vectors.

We note however that the computational cost remains

quadratic in the number of Gaussians (typically, from a few

tens to a few hundreds). This cost might be too large for

most applications of practical value. Therefore, we do the

following additional approximation on the bound. We as-

sume that the Gaussians are well-separated, i.e.B(fi, gj) =
0 if i 6= j. This approximation is all the more likely to be

good as the dimensionality of the feature space increases.

As we have by definition B(fi, fi) = 1, this leads to the

following approximation:

B(f, g) ≈ B(α, β) =

M
∑

i=1

(αiβi)
1/2 (7)

which is the discrete Bhattacharyya distance between the

weight vectors α and β. If one stores the square roots of the
weight vectors, this quantity is extremely efficient to com-

pute (dot product).

4. Summary

For completeness, we provide a summary of the steps re-

quired to compute the proposed similarity measure between

two sequences X and Y of length TX and TY respectively.

1. Train offline a universal Gaussian mixture model from

a large number of samples (c.f. section 2.1).

2. Estimate the parameters of a left-to-right SC-HMM

(i.e. mixture weights and transition probabilities) us-

ing X as unique training sample, where the Gaussian

parameters of the SC-HMM are taken from the univer-

sal GMM computed at step 1. (c.f. section 2.2). We

call NX = νTx the number of states of this HMM.We

do the same for Y .

3. Let us call wX
ik the mixture weight for the Gaussian k

at state i of the SC-HMM obtained from X . Let us

use the vector notation wX
i = [wX

i1 . . . wX
iK ] to express

compactly all the weights of state i. Since in a left-to-

right HMM the states are ordered, the weights of the

SC-HMMs can be viewed as a sequence of vectors. Let

WX and WY be respectively the sequences of vector

weights for sequences X and Y :

WX = {wX
1 . . . wX

NX
}

WY = {wY
1 . . . wY

NY
}

(8)

The distance between X and Y is defined as the DTW

between WX and WY . If K is the number of Gaus-

sians in the shared pool, then the cost of the DTW be-

tween WX and WY is inO(ν2TXTY K). In our exper-
iments, we used for the vector-to-vector similarity the

Bhattacharyya similarity (Eq. 7).

Hence, there is a single parameter to tune in our distance

measure: the value of the compression factor ν.

5. Experimental results

First, we describe the experimental setup. We then report

results for a handwritten word image retrieval task.

5.1. Experimental setup

The proposed similarity measure is evaluated in the con-

text of a handwritten word image retrieval task. The prob-

lem consists in querying a dataset of handwritten documents

with a query word image and in returning word images that

belong to the same word class. This task is very popular

in the domain of digital libraries, where documents can be

represented as sets of word images [13]. Because obtaining

a transcription is costly and OCR systems for handwritten

text do not yet show satisfying accuracy, word image re-

trieval can be used to enable searches or indexing, among

others. In this evaluation, we use the proposed similarity

measure for image matching purposes. We compare it to a

classical DTW and to the PPK of Jebara et al. [11]. In the

rest of this section, we detail the experimental conditions.

Dataset: Our dataset contains 630 scanned handwritten

letters (in French) mailed to the customer department of a

corporation. Therefore, this is real data and as such is chal-

lenging for a retrieval task because of the variety of writing

1725



styles and other difficulties such as artifacts, spontaneous

writing, spelling mistakes, etc. The dataset is split into two

subsets: D1 (approx. 100 documents) is used to train the

GMM while D2 (approx. 500 documents) is used to evalu-

ate retrieval accuracy.

Pre-processing: A segmentation process extracts word

image hypotheses from the documents. This generates ap-

proximately 150K word hypotheses for D2. The word im-

ages are normalized with respect to skew, slant and size

[14].

Feature extraction: Features are obtained for all the im-

ages by sliding a window from left to right and computing

for each window a set of features. To assess the general-

ity of the proposed approach, the evaluation is carried out

on three state-of-the-art feature types, namely: (i) the col-

umn features by Marti and Bunke [14], (ii) the zoning fea-

tures by Vinciarelli et al. [25] and (iii) the LGH features by

Rodrı́guez and Perronnin [19] which are very similar to the

SIFT features used for object detection [12].

Retrieval: From the labeled set of word classes, we se-

lect a subset of 10 classes which are relevant to the type

of documents considered (e.g. “contrat”, “abonnement”,

“résilier” which can be translated as contract, subscrip-

tion and cancel, respectively). The number of sample per

class varies from 170 to 625 in D2. These numbers should

be compared to the 150K segmented word-hypotheses: the

probability that these samples appear by chance among the

top retrieved results is very small. For each of the 10

classes, we randomly select 50 samples and use them as

individual queries against the database. This makes a total

of 500 queries. For each word, the retrieval performance is

evaluated using average precision (AP). Overall results are

reported by computing the mean over the 10 words (mean

AP or shortly mAP).

Comparison: The proposed similarity measure is com-

pared to DTW and PPK between C-HMMs:

• For DTW we adopt the most common option in the

word retrieval literature [18] of using the Euclidean

distance as a vector-to-vector distance, and then divid-

ing the final distance by the length of the warping path.

• In PPK experiments, the number of states is chosen as

a constant times the width of the word (as is the case

of our method). We tuned this value to optimize the

performance. It was found that the best factor for the

Marti and Bunke and Vinciarelli features was 0.2 while

it was 0.05 for the LGH features. This confirms the fact

that a small number of states is required to avoid over-

fitting, as stated in the introduction. To make the PPK

results more comparable to ours, we choose the ρ pa-

rameter of PPK to be 1/2 (Bhattacharyya similarity).

The C-HMMs were trained with a single Gaussian per

mixture as this led to the best performance and is con-

sistent with the setting of [11].

5.2. Word image retrieval evaluation

In this first set of experiments, our goal is to show that

the proposed similarity measure is resilient to over-fitting.

Hence we chose as “compression” factor for the proposed

algorithm the value ν = 1 (i.e. no compression). In this

degenerate case, we train an HMM with T states with a

sequence of T vectors. Fig. 1 shows the mAP (in %) for

the Marti and Bunke features, Vinciarelli features and LGH

features respectively. For the proposed method, we vary

the number of Gaussians in the SC-HMM. We can observe

on the three figures that the proposed similarity performs

significantly better than DTW and PPK even for a fairly

small number of Gaussians. This proves that using a priori

information can greatly reduce over-fitting and significantly

improve the retrieval accuracy.

5.3. Compression properties

In the previous section, we showed that our system out-

performed DTW or PPK when using a number of states

equal to the length of the sequence. However, in some ap-

plications where speed is more important, one might accept

to trade retrieval accuracy against speed. In this section,

we focus the comparison with DTW as it was shown in the

previous section that PPK performed worse.

We recall that the cost of the original DTW is in

O(TXTY D) (c.f. section 3.1) while the cost of the pro-

posed algorithm is in O(ν2TXTY K) (c.f. section 4) , with

0 ≤ ν ≤ 1. Let us analyze the behavior of the proposed

measure with respect to the value of the compression factor.

Fig. 2 shows the performance of the proposed method com-

pared to the DTW performance line, for a varying length

factor, for the three types of features. We chose a number

of Gaussians K similar or identical to the dimensionality

of the features D: K = 8 and D = 9 for the Marti and

Bunke features K = D = 16 for the Vinciarelli features

and K = D = 128 for the LGH features. If K = D, then

a compression factor ν leads to a reduction of the computa-

tional cost by a factor 1/ν2.

In all three figures we basically observe a decrease in

performance as ν goes down. This suggests a simple way of

tuning this parameter: higher values for improved accuracy

and smaller values for improved speed (note however how

robust is the accuracy with respect to a decrease of ν for the

LGH features). Quantitatively, for the Marti and Bunke and

LGH features, even for ν = 0.1 our method still performs

(slightly) better than DTW. This corresponds to a reduction

of the computational cost by a factor of 100. In the case of

the Vinciarelli features, we still outperform DTW for a fac-

tor of 0.2, so in this case the computational cost is divided

by 25.
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Figure 1. Comparison of the proposed measure of similarity with

DTW and PPK.We study the influence of the number of Gaussians

in the SC-HMM on the retrieval accuracy. From top to bottom:

Marti & Bunke, Vinciarelli and LGH features.

Note that this does not take into account the time that our

algorithm takes to train the sequence-dependent parameters

of the SC-HMMs. However, in a retrieval scenario, word

models would generally be precomputed.

5.4. Models trained with typed text samples

In the previous subsections we showed the superiority of

the proposed similarity measure when compared to DTW

and PPK. We explained that this improvement was mainly

due to the a priori information incorporated in the SC-HMM
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Figure 2. Influence of the compression factor ν on the retrieval

accuracy. From top to bottom: Marti & Bunke, Vinciarelli and

LGH features.

which alleviates over-fitting. We will now show that a pri-

ori information is also important when there is a mismatch

between the query and candidate images.

Imagine we would like to retrieve handwritten word im-

ages, not by querying the system with a handwritten image

but with a typed text image instead. The advantage of typed

text samples is that queries can be automatically generated

on-line for any query string by rendering from typographic

fonts. While using typed queries has been used in the past to

retrieve printed material [21], this approach is never used in

practice to retrieve handwritten word images. Indeed, it is
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Figure 3. The typed text queries for the word Madame. Font

names, from top to bottom and from left to right: French Script,

Kunstler Script, Papyrus, Lucida handwriting, Rage Italic, Lu-

cida Calligraphy, Harlow Solid, Freestyle Script, Comic Sans, and

Viner Hand.

widely acknowledged that it would normally lead to a poor

performance because typed text shapes are not necessarily

representative of handwritten ones. Especially, the variabil-

ity in handwritten images is much higher than in typed text

images.

We use the proposed similarity measure to break this

limitation and more effectively retrieve handwritten word

images by using typed text images. The crucial point in

our method is to train the GMM from a set of handwrit-

ten text images. We thus include prior information about

the handwritten universal vocabulary. When the sequence-

dependent parameters of the SC-HMM are trained with a

typed text sample, the Gaussians are actually constrained

to the handwritten vocabulary and impose a link between

typed and handwritten via the prior information.

We carried out experiments in which words are retrieved

by presenting automatically generated queries as input, by

rendering the images using computer fonts. Because the

performance using a single sample/font is very low, we se-

lect 10 fonts that look handwritten-like. As an example, Fig.

3 shows the 10 typed text queries for the word “Madame”.

We performed retrieval experiments using DTW and the

proposed similarity measure. Preliminary experiments with

PPK led to very poor results and therefore we do not report

PPK results in the following. Also, we report only results

for the LGH features as they led to the best retrieval accu-

racy.

In DTW experiments, we evaluate the distance of the

candidate image to all the typed text queries and chose the

smallest one. In experiments with the proposed similarity

measure, we train a query SC-HMM with the 10 images

and a SC-HMM with the candidate image and compute the

DTW distance between the mixture weights. We do not ap-

Figure 4. Top 25 retrieved samples for the query ”Madame” when

querying with typed text samples. Correct results are surrounded

in green. Top: scoring with DTW (10 relevant). Bottom: scoring

with the proposed similarity measure (16 relevant). Recall that no

pruning is used here to fully appreciate the effect of the similarity

computation.

ply any kind of pruning (e.g. based on width/aspect ratio, as

in [13]) in this experiment, to fully appreciate the influence

of the similarity measures.

The AP averaged over the 10 words is 0.146 for DTW

and 0.275 for the proposed similarity measure. Hence, the

mAP of the proposedmethod is almost twice as large as that

of DTW. We would like to outline that this is comparable to

the best performance obtained when querying with a single

handwritten word image (c.f. Fig. 1 bottom).

In Fig. 4 we show the top 25 retrieved samples when we

query for the word ”Madame” using typed text examples

for DTW and the proposed similarity measure. It can be ap-

preciated that there are significantly more correct instances

of Madame with the proposed measure. To visualize results

for all the queries, Fig. 5 shows the precision (percentage

of correctly retrieved), averaged over all 10 words, for the

top N retrieved word images, with N = 1, 10, 25, 50, 100.
These results confirm the superiority of the proposed simi-

larity, showing that it can partially compensate for the mis-

match thanks to the a priori information embedded in the

universal vocabulary.

6. Conclusion

We proposed a novel similarity between feature vector

sequences. It follows the model-based approach in which

sequences are first mapped to parametric models and then

a similarity is computed in the model space. Our main

contribution was to model sequences with semi-continuous

HMMs. SC-HMMs offer two benefits. First, they are more
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trieved samples.

resilient to over-fitting than traditional continuous HMMs

and therefore lead to a higher retrieval accuracy. Second,

the distance between two HMMs can be reduced to a DTW

between sequences of weight vectors which can be com-

puted very efficiently.

Experimental results on a word image retrieval task

showed a significant improvement in retrieval accuracy over

both the non-parametric DTW and the model-based PPK.

We studied the effect of prior information in two cases: (i)

when the model is likely to over-fit because it is estimated

from only one sample, and (ii) when there is a mismatch

between the query and the candidate samples. We also ex-

plained that this improvement in accuracy could be traded

against a significant reduction of the computational cost.

The challenge is now to exploit this measure of simi-

larity in higher-level tasks such as clustering. While early

experiments have shown that this method works reasonably

well to cluster a small number of classes, further studies are

needed if we want to perform more complex tasks such as

mode detection or pattern discovery in large datasets.
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