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Abstract— We propose a simple accurate method for generat-
ing autocorrelated Nakagami-m envelope sequences. The method
allows for arbitrary values of fading parameter and nonisotropic
fading scenarios. In essence, Nakagami-m samples are first drawn
and then rearranged to match the Nakagami-m autocorrelation.
The rearrangement is made in accordance with the rank statistics
of an underlying Rayleigh reference sequence with the desired
autocorrelation. Examples illustrate the excellent performance of
the new method.

Index Terms— Nakagami-m fading channels, simulation.

I. INTRODUCTION

MUCH attention has been given to the Nakagami-m
distribution for its flexibility, mathematical ease, and

good fit to measured fading data. However, few published
works address the issue of the Nakagami-m simulation. This is
partly due to the lack of a well-established dynamic model for
Nakagami-m fading channels. Such a model was not specified
when the Nakagami-m distribution was proposed [1]. As a
result, most simulators lay hold of particular assumptions
to accomplish the temporal correlation of the Nakagami-m
channel (cf. [2] and references therein).

The Nakagami-m envelope autocorrelation has been recently
derived on a physical basis in [3] and [4]. Both deriva-
tions are rooted in the well-accepted model of the squared
Nakagami-m envelope as the sum of i.i.d. squared Rayleigh
envelopes [1], [5]. Indeed, a general envelope crosscorrela-
tion between Nakagami-m fading processes with time-space-
frequency diversity is given in [3], whereas the special case of
nil space-frequency diversity, corresponding to the Nakagami-
m envelope autocorrelation, is addressed in [4].

In this Letter, we present a simple accurate method for
generating autocorrelated Nakagami-m envelope sequences,
allowing for arbitrary values of fading parameter and non-
isotropic fading scenarios. In essence, samples matching the
Nakagami-m distribution are first drawn and then rearranged
to match the Nakagami-m autocorrelation. The rearrangement
is made in accordance with the rank statistics of an underlying
Rayleigh reference sequence with the desired autocorrelation.
Motivation to this approach is given along the text. More
importantly, several examples are shown that illustrate the
strikingly excellent performance of the new method.
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We have compared our method to the “approximation
method” in [2] and empirically found that the simulation
results of both methods are indeed very close to each other,
although in [2] only the isotropic scenario has been consid-
ered. As for the approaches used, in [2], for each desired
value of the fading parameter m, a non-linear optimization
algorithm must first be run in order to obtain the coefficients of
an approximate inverse Nakagami-m distribution. Our method
inherently complies with the exact Nakagami-m distribution,
and no numerical fitting is required. Comparisons to other
existing methods have been discarded for their inherent limi-
tations (cf. [2] for a complete discussion).

II. THE NAKAGAMI-m MODEL REVISITED

The probability density function (PDF) of the Nakagami-m
envelope R is given by [1]
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and, based on the model of the squared Nakagami-m envelope
as the sum of m i.i.d. squared Rayleigh envelopes [1], [5], the
Nakagami-m envelope autocorrelation function (ACF) is found
as [3, Eq. (1)] or [4, Eq. (25)]
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where Ω = E[R2] is the mean power, m = Ω2/V [R2] is the
Nakagami-m fading parameter, Γ(·) is the gamma function,
2F1(·, ·; ·; ·) is the hypergeometric function, and ρ2(τ) is the
autocorrelation coefficient (ACC) of each underlying squared
Rayleigh envelope. (E[·] denotes mean, V [·] variance.)

In this work, we address the general case of nonisotropic
fading scenarios, for which the distribution of the angle
of arrival (AOA) of the multipath waves is nonuniform. A
plausible model for the directional AOA is the parametric Von
Mises/Tikhonov distribution [6]. For this model, the squared
Rayleigh ACC is obtained as [6]

ρ2(τ) =
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)
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2

(3)

where I0(·) is the modified Bessel function of the first kind and
zeroth order, fD is the maximum Doppler frequency in Hz,
µ represents the mean direction of the AOA, and κ controls
the beamwidth. In particular, for κ = 0, we have the isotropic
scenario with uniform AOA, for which ρ2(τ) = J2

0 (2πfDτ).
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Fig. 1. The Nakagami-m envelope simulator.

III. THE NAKAGAMI-m SIMULATOR

Our aim is to generate an N -sample sequence matching
the Nakagami-m PDF (1) and ACF (2), for an arbitrary value
of fading parameter m. In principle, the standard approach
of decomposing the Nakagami-m signal into m Rayleigh
elements could be used [5], but this approach clearly applies
to m integer only. In this section, we present a simple, general,
accurate method for generating autocorrelated Nakagami-m
sequences with m arbitrary. (Although in [1] the fading
parameter is restricted to m > 1/2, the method proposed here
indeed applies to any m > 0.)

Due to the lack of a dynamic Nakagami-m model for m
arbitrary, our approach is to circumvent the traditional simu-
lation paradigm, in which the output samples are generated in
a single-shot manner, already fulfilling both the static (PDF)
and the dynamic (ACF) requirements of the process. Instead,
we propose i) first to draw N samples matching the Nakagami-
m PDF and ii) then to rearrange these samples to match
the Nakagami-m ACF. Of course, this approach inherently
complies with the PDF requirements, since any rearrangement
does not affect the distribution of the samples.

The first task—to draw Nakagami-m samples—is simple
and can be accomplished by well-established methods of
random generation, such as the percentile transformation
method or the rejection method. Indeed, most commercial
software packages have built-in routines for the generation
of gamma distributed samples (e.g., the gamrnd(·) Matlab
function), whose square root yields the desired Nakagami-m
samples. On the other hand, the second task—to rearrange the
Nakagami-m samples appropriately—is rather complex. One
out of N ! possible sample arrangements must be found that
fits the analytical ACF accurately. In principle, an exhaustive
comparison between all of the arrangements could be used to
find the best-fitted one, but, for practical purposes (large N ),
such a brute-force approach has a prohibitive computational
cost. Alternatively, a simple solution is derived next.

To gain inspiration, note that, for a given set of N samples,
each one of the N ! possible sample arrangements can be
uniquely specified by an N -length statistical rank vector,
whose ith element gives the statistical rank of the ith sample in
the arrangement1. Thus, our second task can be reformulated
as to find an appropriate N -length statistical rank vector to
define the ordering of the N Nakagami-m samples drawn. In
doing this, we need to investigate how each parameter of the
Nakagami-m fading model affects the statistical rank vector
of the sequences.

1Statistical rank is the ordinal number of a value in a list arranged in a
specified (decreasing or increasing) order.

The mean power Ω has no effect on the rank statistics,
for it is simply a scaling factor of the samples. On the other
hand, it seems to be very difficult (if not impossible) to
establish an exact analytical relationship between the fading
parameter m—the number of underlying Rayleigh clusters
composing the Nakagami-m signal [5]—and the rank statistics
of the Nakagami-m envelope. In fact, we shall not answer
this question here. Instead, in order to support the simulation
scheme to be proposed, we argue that the influence of m on
the Nakagami-m rank statistics is negligible, as follows.

Several rank metrics can be used to investigate the impact of
m on the Nakagami-m rank statistics. In particular, the Spear-
man rank autocorrelation coefficient is a very representative,
widely-used rank metric [7], and shall be considered here.
The Spearman rank autocorrelation coefficient, say ρS(τ),
measures the strength of association between samples at
different time instances, and is known to be well approximated
by the usual ACC, say ρ(τ), i.e., [7]

ρS(τ) ≈ ρ(τ) (4)

On the other hand, for Nakagami-m fading, it is known that
the ACC ρ(τ) of the envelope is closely approximated by the
ACC of the squared envelope2, and that the latter equals the
ACC ρ2(τ) of each underlying squared Rayleigh envelope, so
that [1, Eq. (139)]

ρ(τ) ≈ ρ2(τ) (5)

for any m. Then, for Nakagami-m fading, it follows from (4)
and (5) that

ρS(τ) ≈ ρ2(τ) (6)

irrespective of m. This is a paramount result: the fading
parameter m has a negligible impact on the Spearman rank
autocorrelation coefficient of the envelope. Therefore, the rank
statistics of the Nakagami-m process are expected to be loosely
dependent on m as well.

The above suggests that the Nakagami-m rank statistics
for m arbitrary can be well approximated by those for a
given reference value of m. For convenience, we choose
the reference m = 1 (Rayleigh). More specifically, in or-
der to match the Nakagami-m ACF, we propose to rear-
range the N Nakagami-m envelope samples in accordance
with the statistical rank vector of an underlying N -sample
Rayleigh envelope reference sequence with the desired ACC
ρ2(τ), generated by existing methods. In other words, each
Nakagami-m sample must be placed in the same position
occupied by the Rayleigh sample with the same statistical
rank of that Nakagami-m sample. We call this approach rank
matching, and its implementation is indeed straightforward in
most commercial software packages. In Matlab, for instance,
having first obtained the N Nakagami-m samples, say the
vector nakagami, by using the gamrnd(·) function, and
the N -sample autocorrelated Rayleigh reference sequence, say
the vector rayleigh, by means of any existing Rayleigh
simulator, the commands

[rayleigh,index]=sort(rayleigh);
nakagami=sort(nakagami);

2Indeed, this is true for the ACC of any integer power of the Nakagami-m
envelope [1, Eq. (139)].
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Fig. 2. Analytical and simulated normalized Nakagami-m envelope autocor-
relations for isotropic scenario, κ = 0 (analytical: solid; simulated: dot).

nakagami(index)=nakagami;

produce the desired N -sample rank-matched autocorrelated
Nakagami-m sequence nakagami.

The proposed Nakagami-m simulation scheme is summa-
rized in Fig. 1. The new scheme is simple, general, and
provides excellent results, as shall be seen from sample
simulation results.

IV. SIMULATION RESULTS

The analytical and simulated normalized Nakagami-m enve-
lope ACFs are shown in Figs. 2, 3, and 4, for isotropic (κ = 0),
slightly nonisotropic (κ = 1), and nonisotropic (κ = 2)
fading scenarios, respectively, and for several different values
of fading parameter. In the examples, N = 220 and µ = 0. The
required Rayleigh reference sequences satisfying (3) have been
generated using the method in [8]. Note the excellent match
in all of the cases. The slightly poorer results for m < 1
are expected, for (5) deteriorates in this range. Since the
proposed simulator inherently complies with the Nakagami-
m distribution, PDF comparisons have been omitted.

V. CONCLUSIONS

A new simulation paradigm was introduced to derive a
simple, general, accurate method for generating autocorre-
lated Nakagami-m envelope sequences with correct statistical
properties. The method applies to arbitrary values of fading
parameter and nonisotropic fading scenarios.
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Fig. 3. Analytical and simulated normalized Nakagami-m envelope au-
tocorrelations for slightly nonisotropic scenario, κ = 1 (analytical: solid;
simulated: dot).
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Fig. 4. Analytical and simulated normalized Nakagami-m envelope auto-
correlations for nonisotropic scenario, κ = 2 (analytical: solid; simulated:
dot).
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