
Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and

Applications 2013, 2:5

http://www.journalofcloudcomputing.com/content/2/1/5

RESEARCH Open Access

A simple, adaptable and efficient
heterogeneous multi-tenant database
architecture for ad hoc cloud
Sanjeev Kumar Pippal* and Dharmender Singh Kushwaha

Abstract

Data management and sharing is the challenge being faced by all the IT majors today. Adds over it, is the challenge

faced by the cloud service providers in terms of multi-tenancy of data and its efficient retrieval. It becomes more

complex in a heterogeneous computing environment to provide cloud services. A simple, robust, query efficient,

scalable and space saving multi-tenant database architecture is proposed along with an ad hoc cloud architecture

where organizations can collaborate to create a cloud, that doesnt harm their existence or profitability. An ad hoc

cloud fits very well to the scenario where one wants to venture into remote areas for providing education services

using a cloud. The results of the proposed multi-tenant database show 20% to 230% improvement for insertion,

deletion and updation-queries. The response of the proposed approach is stable as compared to other system which

degrades in terms of response time by 384% for increased number of attributes up to 50. The proposed approach is

also space efficient by almost 86%. Dynamically changing cloud configurations requires adaptable database and

mechanism to persist and manage data and exploit heterogeneous resources. The proposed ad hoc cloud handles

heterogeneity of the involved nodes and deals with node specific granularity while decomposing workloads for

efficient utilization of resources.

Keywords: Ad hoc Cloud, Heterogeneity, Multi-Tenant database

Introduction
Cloud computing is a computing paradigmwhere services

and data reside in common space in scalable data cen-

ters, which are accessible via authentication. Cloud has

three deliverymodels namely IaaS (Infrastructure as a Ser-

vice), PaaS (Platform as a Service) and SaaS (Software as a

service). Cloud computing [1] services can form a strong

infrastructural and service foundation framework to pro-

vide any kind of service oriented computing environment.

Ad hoc clouds [2,3] enable existing infrastructure as cloud

compliant and the available resources in the system are

utilized non-intrusively. An Ad hoc cloud is very efficient

solution to problems faced by organizations to venture

into remote areas for their IT infrastructure and support

needs. Ad hoc cloud proliferate stakeholders to provide

competitive services in a collaborative way.

*Correspondence: sanpippalin@gmail.com

Department of Computer Science and Engineering, MNNIT Allahabad,

Allahabad, India

Most existing business entities refrain from spread-

ing their reach to remote geographical regions because

of concern of huge upfront investment and profitability.

The same is true for establishing institutes in these areas

where the admission seekers exist but the location is so

remote or hostile that many of the professionals would

be reluctant to work. For these scenarios, Ad hoc cloud

holds huge potential and promise in starting these ven-

tures. The resources of parent or fixed education cloud

initially act as a feeder for this new establishment. Once

the system is working and matures with time, this ad hoc

infrastructure gradually translates into persistent setup.

Ad hoc education-cloud, where a cloud computing frame-

work is harnessed to manage information system of an

educational institution would be highly efficient in terms

of accessibility, manageability, scalability and availability.

An ad hoc cloud would enable us to harness services

offered by fixed education-cloud[4] and services created

and composed within an ad hoc cloud.

© 2013 Pippal and Kushwaha; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 2 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Multi-tenancy implies that a single instance of applica-

tion satisfies the requests of multiple clients. Each individ-

ual educational organization is considered as a tenant and

all such organizations collaborate to create and participate

in data-store building process. We propose a multi-tenant

database for such a scenario where more than one ten-

ants (Educational Institutions) collaborate to build the

distributed database and use it by authorization [5]. In

this scenario the tenants are free to join or leave. Pro-

viding dynamically adaptable multi-tenant database [6]

with transactional level guarantee for the distributed data

base to be used as a data store in the cloud formed with

heterogeneous resources is our concern.

The major goal of this work is to implement multi-

tenant database for an ad hoc cloud at remote location and

provide the following sub goals to:

1. Provide an architecture that supports multi-tenancy

in shared database shared schema scenario.

2. Find the best granularity level at which the work

decomposition is to be done for heterogeneous

environment.

3. Manage heterogeneity in terms of varying attributes,

database technology and resources.

4. Optimize scheduling criteria and also provide load

balancing.

5. Manage scalability and performance.

In order to meet the above goals we have developed

a simple architecture that supports multi-tenancy and

which work at optimum granularity with support for scal-

ability and data management.

The rest of the paper is organized as follows. Section

‘Related work’ explains the related work done earlier. The

details about the proposed architecture are elaborated in

Section ‘Proposed approach’. Section ‘Results’ presents the

results obtained for the proposed architecture and section

‘Conclusion & future work’ provides the future scope of

the work and concluding remarks.

Related work
Heterogeneity related work

Heterogeneity in terms of the cloud resources implies dif-

ferences or variations in computing power of resources

that could create further issues of performance and reli-

ability. Some of the significant related work concerning

Heterogeneity, Granularity, Replication, Load balancing

and Scalability are:

A significant amount of work on load-balancing has

emphasized on cluster based distributed systems. Condor

[7] and Mosix [8] depend on check pointing and pro-

cess migration to do load balancing in a cluster based

distributed system. The heterogeneity of the cluster of

workstations is managed by dynamically collecting load

information and migrating active processes between clus-

ter nodes to balance the load. This kind of load balancing

techniques can be complementary to our work allocation

techniques that focus on initial allocation of tasks accord-

ing to capabilities of a node. Clusters of workstations have

also been employed to host Web and Internet servers.

A large amount of work on such cluster-based network

servers has focused on request distribution as a means

for handling the load imbalance in the cluster. Load-aware

request distribution [9,10] use content-based request dis-

tribution which considers the locality of data and the

load on the cluster nodes. Aron et al. [11] emphasizes

on request isolation and resource management on clus-

ter based distributed systems while [12] proposes cluster

load balancing policies for fine grain network services.

Load sharing in heterogeneous systems has been widely

researched. [13] Evaluates and compare different load

sharing algorithms for heterogeneous multicomputer sys-

tems. Goswami et al. [14] propose dynamic load sharing

heuristics which manage workload in a distributed system

by judging the resource requirements of processes. The

author in [15] uses a proactive load sharing scheme for

distributed systems which prevents the occurrence of load

imbalance by collecting load and task execution behavior

information in advance.

Karatza et al. [16] analyze load sharing policies for het-

erogeneous distributed systems to study the effect of load

sharing on different classes of jobs. Berman et al. [17]

explain an application specific scheduling approach for

scheduling data parallel applications on a heterogeneous

distributed system. Nieuwpoort et al. [18] elaborates load

balancing strategies specifically for divide and conquer

applications on a hierarchically organized distributed sys-

tem. Kondo et al. [19] take into consideration a similar

systemmodel as ours and propose techniques for resource

selection for short-lived applications on enterprise desk-

topGrids with the aim ofminimizing the overall execution

elapsed time of a single application. We consider a similar

scenario but propose algorithms and heuristics for decid-

ing the decomposition of tasks in order to load balance

in a heterogeneous set of computation resources. Such

scheduling algorithms have also been an active area of

research in the field of divisible load scheduling. [20] Pro-

vides an overview of the research done in this field for

master/worker architectures. Many approaches for scala-

bility and data management services have been proposed

like big table [21] and dynamo [22], but lacks in providing

transactional level guaranty.

Multi-tenancy related work

Various approaches for multi-tenancy have been pro-

posed depending on the degree of isolation. Three broad

approaches are:

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 3 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

1. Separate database: In this approach, a separate

database is used to store the data of an individual

tenant.

2. Shared database, separate schema: This approach

requires multiple tenants to be accommodated into a

single database.

3. Shared database, shared schema: This approach

involves same database and schema to be shared by

all tenants.

Some of significant related work for providing multi-

tenancy is as follows:

Universal table layout

A universal table [23] contains pre-specified number of

fields. It consists of a Tenant id column, a table column

and all the data columns. Tenant id is used to uniquely

identify the data of a tenant whereas the table column

refers to the id of the table for that tenant. This approach

has been originated from Universal Relation where a table

holds all the columns from all the tables. This approach

is relatively easy to implement and queries are applied

directly to the table.

Chunk folding

Chunk folding is a technique discussed in [24]. It vertically

divides the logical tables into chunks and those are folded

together into various physical tenants and are joined as

needed. One table is used to store the base account infor-

mation and other table is used to hold the extensions. This

approachworks by containing the heavily used parts of the

schema into base tables and the rest part is mapped into

the extensions.

Extension tables

The concept of extension tables came into picture after

the development of decomposed storage model described

in [24]. It divides a table of n-columns into n 2-column

tables that are merged together. One problem with this

approach is how to partition the table so that after joining

these tables no extra information is generated.

Pivot tables

In this approach, a pivot table is created for a single col-

umn [25]. This table is shared by various tenant’s tables.

Each pivot table consists of a tenant column, Table col-

umn, a col column and a row column. Tenant column

refers to the particular tenant. Table refers to the particu-

lar table for that tenant.

Multi-tenant shared table

In this approach, common contents from tenant informa-

tion are separated as in [25]. This technique introduces

the concept of tenants at database layer so that database

engine can select an appropriate area for storage of data

for that tenant.

An approach that deals with scalability issue is discussed

in [26]. Two main problems are resolved; one is to resolve

the sparseness of the universal table approach and sec-

ond is to provide an indexing scheme for multi-tenant

database. Three different approaches shared machine,

shared process and shared table are discussed by Jacobs

in [27]. In [28], a simulation study is done which analyzes

the performance of different approaches to implement

the multi-tenant databases. An approach for multi-tenant

architecture supporting the SaaS model is discussed in

[29]. The authors have proposed a cloudio software plat-

form that is concerned with the flexibility of data model

and managing the large data sets in the database.
Different challenges in multi-tenant applications are

discussed in [27] such as scalability, security, performance,

zero downtime and replication in [30].

Proposed approach
An ad hoc cloud is proposed with data persistence model

along with task allocation and load balancing system,

which works at best granularity. An efficient multi-tenant

data base is also proposed. The load allocation system sup-

ports node specific granularity calculation for optimum

allocation of resources in the environment. Ad hoc cloud

architecture scenario is shown in Figure 1 along with its

data centermodel which includes an efficientmulti-tenant

database.

An Ad hoc cloud derives data and cloud services from

fixed cloud, further they are connected using an ad hoc

link (V-SAT). The S, P and V nodes in the ad hoc data

center represents Super-node (Permanent node at remote

location with ad hoc connectivity with the fixed cloud

to facilitate cloud formation at remote site), Persistent-

node (organizations hosting cloud and data services) and

Volunteer-nodes (other participating nodes within an

organization). The S nodes promote the stake holders to

establish their own collaborative dispersed data center.

The P nodes within a data center provide reliability and

availability through replication of services and data. The

V nodes can voluntarily cache data and provide availabil-

ity and performance in the absence of persistent node

and large number of requests. The nodes participating in

data center can be heterogeneous in terms of computing

resources, database technology. All nodes participating

in the data center are logically hierarchically organized

and communication between them is encrypted with key

shared and provided by hierarchically common parent

node.

Data persistency

An ad hoc Data-center is proposed having some Super

(S) nodes, some Persistent (P) nodes and other Volun-

teer (V) nodes. S nodes are permanent; P nodes are

persistent node that store data on ad hoc basis and V

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 4 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Primergy

Primergy

Primergy

Primergy

Primergy

Primergy

USER 1 USER 2 USER 3 USER 4 USER n

USER 1 USER 2 USER 3 USER 4 USER n

S S

P P

P

VV V V

REPLICATION

MIRRORING

AD HOC DATA CENTRE

WEB−APP SERVER

AD HOC LOAD BALANCER PROXY

LOAD BALANCER PROXY
FIXED CLOUD

WEB−APP SERVER

AD HOC LINK

AD HOC CLOUD

DATA

CENTRE

Figure 1 Ad hoc cloud architecture.

nodes voluntarily participate in Data-center. Mirroring is

performed between S nodes to provide reliability, replica-

tion is performed between P nodes to increase availabil-

ity and improve reliability further V nodes acts as new

data sources or cache data for performance as shown

in Figure 2. Data consistency is maintained for replicas

using eager update protocol for frequent updates and lazy

protocol is used for infrequent updates.

As shown in Figure 2 the OLTMs (Organizational Level

Transaction Managers) are resource manager application

pertaining to specific organizations. OLTMmanage trans-

action within organizations whereas cross organization

transactions aremanagedwith help of HLTMs (High Level

Transaction Managers). Each and every node participat-

ing in the data center is logically hierarchically organized

with S node taking the root of the tree position with mir-

ror support, P nodes as intermediate nodes in the tree

and V nodes taking the leaf levels. Various issues arising

out in data persistency like replication, granularity, failure

handling and data domain are explained in the following

sections.

Replication strategy, schema and data usage

The replication approach vary with the types of nodes

and their characteristics as shown in Table 1. A nonvolun-

teer user does not replicate or store anything, it just uses

the system whereas a volunteer node always replicate on

demand and while quiting submits all at site updations to

the hierarchical parent node or nearest neighbor node.

The persistent nodes always replicate to increase avail-

ability maintaining data consistency. The super nodes

between themselves implement mirroring periodically so

as to provide reliability. The S, P, V, nodes always down-

loads the schema in first use. The data population if V

node is done on demand basis, whereas P and S nodes

always update their data as consistency requirements.

Data domain and replication granularity

The data semantics of every type of user is bounded by

boundaries as shown in the Table 2.

The V nodes data requirements are user need specific,

P nodes data requirements are organizational specific

whereas the S node data requirements are administration,

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 5 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Figure 2 Ad hoc dispersed data center.

system support and management specific. The replication

granularity for V node is record level dump task specific,

for P node first complete dump is copied and further dif-

ferential dump is used based on check pointing and for S

nodes complete copy of the database dump is used among

them.

We propose a simple application level check pointing

approach for finding the differential dump that is records

modified after a time stamp.

Tables 3 and 4 are used to manage the process of finding

record level modifications. Table 3 is shown having R id as

primary key in all related tables along with other attributes

and CKP F being a flag field to denote the modification of

records. Initially the field is set to F (false) indicating no

modification, it is set to T (true) when there is a modifi-

cation by itself or a replication update from some other

node is received. Table 4 stores modified record ids and

time stamp of recording the checkpoint in a table called

checkpoint table.

Table 1 Replication approach, schema and data use

Type of user User characteristics Schema & data
population

Non Volunteer User have no contribution
in data center

No & never

Volunteer User allows sharing but
can exit anytime

Yes & when in use

Persistent User are stake holders Yes & always

Super Super users Yes & always

Failure handling strategy

For the various classification of nodes the specific failure

handling strategy in case of node failure is given. A proac-

tive approach is used by the failed nodes, after recovering

from failure the V nodes and S nodes populate themselves

using a differential dump.

Application level Check-pointing is used to calculate

difference. Further as shown in Table 5. S nodes use

complete dump from mirror sites.

Load balancing

At primary level load balancing is done by the DNS using a

round robin scheduling among the p nodes available in the

working set. For load balancing in a heterogeneous envi-

ronment the important decision parameters are granu-

larity of sub-task, application requirements, computation,

communication resources available and task dependency.

In our solution to this problem we develop a heuristic

Table 2 Data domain and replication granularity

Type of user Data domain Replication
granularity

Non Volunteer Only surfing Not required

Volunteer Need Specific Difference dump
(record level)

Persistent Organizational specific First Complete then
Difference dump

Super Administration specific Complete dump
(database dump)

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 6 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Table 3 Tenant table with check-pointing

R id CKP F

1 —– F

2 —– T

3 —– T

4 —– F

5 —– F

that works upon the abovementioned parameters and also

takes into account the total number of nodes available in

the working set and the total size of the task. Generic

granularity for a task (participation in data center) can be

calculated as follows.

GenericGranularity = TotalTasksize/TotalNumberofnodes

(1)

We improve the granularity calculation by inculcat-

ing computation and communication resources available

respectively. We redefine this generic granularity to be as

specific heuristic granularity w.r.t. specific nodes. We take

into account the last successful subtask execution and also

history of such executions to calculate granularity.

For the entire network,Min granularity is defined as per

Min bandwidth , Min memory and Min CPU available.

Similarly Max granularity is defined.

Algorithm 1WORKLOAD DECOMPOSITION(Tasksize,

Historydecomp)

Require: Tasksize and Historydecomp.

Ensure: Optimal granularity selection.

1: Currentdecomp ← Historydecomp

2: Oldgranularity ← Tasksize/Historydecomp

3: while TRUE do

4: Currentdecomp ← (Currentdecomp + Hidecomp)/2

5: Currentdecomp ← (Currentdecomp + Hidecomp)/2

6: if Task executed at Newgranularity then

7: Historydecomp ← Currentdecomp

8: Bestsize ← Newgranularity

9: returnWORKLOADDECOMPOSITION

(Bestsize,Historydecomp)

10: else

11: return Bestsize
12: end if

13: end while

Table 4 Checkpoint table

CKP id TS (Time Stamp) R id

1 1.0 2,3

2 1.1 1,3

3 1.2 0

Table 5 Failure handling approach

Type of user Replication
approach

Failure handling

Non Volunteer Not required Not required

Volunteer Submits before it
switches off

Populate from
previous timestamp

Persistent Replicate always Copy nearest replica
(record level)

Super Mirror always Copy attached mirror
(database dump)

The execution capability of a system is subjective and

depends upon factors like CPUavailable, Memoryavailable,

Networkbandwidth, Diskavailable. Therefore to objectively

decide the specific node for execution for specific task, a

heuristic is needed to assign task to a specific node. To do

this the resources like CPU, Memory and Network band-

width are graded from 0 to 1. Any request for execution

is mapped to best fit node as per required resources for

execution. The nearest match to request is allocated and

the task is scheduled to execute on the matched node. The

normalized node profile table for 10 nodes is shown in

Table 6. Where each resources is graded between 0 to 1.

The grades are decided as per the min and max unit of the

resource present in the environment and, min is assigned

0 and max is assigned 1 and all intermediate nodes are

graded accordingly.

The Table 6 shows resource statistics for a partial work-

ing set among the nodes, Table 7 grades and normalizes

them between 0 to 1 for all resource instances.

Further Table 8 is calculated from Table 7 to provide

a grid that enables us to take decision regarding task

scheduling linked with execution node id. The task is allo-

cated to a node which is just almost capable for execution.

The Assign Exec. flag in the table indicates the node being

assigned for task execution of size equal to or less than its

RAM size.

Table 6 Node resource profile

NODE ID RAM (MB) CPU (MHz) N/W (Kbps) HDD (MB)

N1 400 600 60 6000

N2 700 1800 70 5000

N3 100 600 50 4000

N4 1000 400 70 1000

N5 100 1600 90 5000

N6 700 2000 50 4000

N7 100 1400 40 2000

N8 100 1800 30 2000

N9 200 1400 40 2000

N10 600 1800 40 3000

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 7 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Table 7 Node profile normalized data

NODE ID RAM CPU N/W HDD

N1 0.4 0.6 0.6 0.6

N2 0.7 0.9 0.7 0.5

N3 0.1 0.3 0.5 0.4

N4 1.0 0.2 0.7 0.1

N5 0.1 0.8 0.9 0.5

N6 0.7 1.0 0.5 0.4

N7 0.1 0.7 0.4 0.2

N8 0.1 0.9 0.3 0.2

N9 0.2 0.7 0.4 0.2

N10 0.6 0.9 0.4 0.3

The following rules are used while making decision:

1. JOBsize is equal to RAMsize.

2. Free Diskspace is ten times of RAMsize.

3. If RAMsize vs Diskspace ratio is less than 1 : 10. THEN

alter RAMsize by DISKsize/10 in the Table 6.

4. If N/Wbandwidth < (1/6) of RAMsize implies discard

node for participation in data center.

5. If CPUavailable <2 times of RAMsize implies discard

node for participation in data center.

6. If cumulative sum of the normalized grades is less

that 1 unit discard the node for participation in data

center.

Following rules are used to assign values in Table 8 and

decide about task assignment:

NODE ID: Node id of nodes involved.

RAM vs HDD: if Ratio of RAMsizeVsHDDsize more

than 1:10 then TRUE else FALSE.

N/W:Thresh hold >: Tasksize/6 kbps implies TRUE.

CPU: If available CPU is greater than equal to

2∗Tasksize implies TRUE.

TOTAL: Total sum of grades < 1 implies no

assignment.

ASSIGN EXEC.: ∗ implies RAMsize Altered.

The heuristics were developed after many iterations of

execution with different values of the proportion factor

and finally these values were experimentally determined

and found to produce reasonable results.

Scalability and data management

We propose a light weight data store capable of provid-

ing transactional level guaranty. Our data store would

have Organizational level transaction manager (OLTM)

and Higher level transaction manager (HLTM) as shown

in Figure 3. The transactions within an organization would

be handled by OLTM and between organizations would

be handled by HLTM. Elasticity at data store level is

important as it would not limit upper layers for scalability.

The Meta-data Manager (MM) implementation provides

decoupling of database and transaction manager and it

also provides mapping of distributed database partitions

into OLTM. Synchronous replication of MM is required

for fault tolerance. Storage layer takes care of replication

of data and fault tolerance. Slower nodes can use meta

data caching for improved performance. Since HTLM are

stateless therefore to improve performance during scala-

bility spawning a new HTLM is easy. Further data base

migration between data-store or in cloud can be done as

discussed in Albatross [31].

Maintaining a working set

In ad hoc cloud nodes can be joining and leaving ran-

domly, so it is important to formulate a mechanism to

find out live donation based or volunteer resources, which

can be exploited for task execution. To solve this issue

we maintain a working or live set of processors. Table 9.

below show different scenarios which different types of

node may exhibit. The hierarchically parent node always

keeps track of live and volunteering to donate resources

and keeps propagating this information up in the hierar-

chy. As soon as a node quits it is immediately removed

from the working set of processors. A node may also be

removed due to node or communication failure. The node

resuming after failure initiates for updating of its local

database. When a (P) persistent node joins the working

set for the first time it downloads the schema, and data

is replicated in entirety within domain, only if a threshold

number of requests are received. If a node rejoins it cal-

culates difference using check-pointing and does a record

level differential replication.

Before quitting it either submits to hierarchical node

or replicates to nearest neighbor. In case of a (S) super

node, complete backup of database is replicated to the

new node. A super node never shuts down randomly or

Table 8 Decision grid for task assignment

NODE ID RAM vs HDD N/W CPU TOTAL ASSIGN EXEC.

N1 T T T 1.9 TRUE

N2 F T T 2.8 *

N3 T T T 1.3

N4 T T F 2.0 FALSE

N5 T T T 2.3 TRUE

N6 F T T 2.6 *

N7 T T T 1.4 TRUE

N8 T F T 1.5 FALSE

N9 T T T 1.5

N10 F T T 2.2 *TRUE

* in Table 8 implies representation of RAMsize is altered.

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 8 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

HLTM HLTM HLTM

OLTM OLTM OLTMOLTMOLTM

ODM ODM ODM ODM ODM

Meta−data
Manager

HLTM

Figure 3 Decoupling of database and transaction managers.

frequently, for maintenance related shut down, differential

backups may be used for consistency requirements. The

(V) Volunteer node rarely gets a replicated copy, if there

are no persistent node nearby and for temporal require-

ment a volunteer node may also act as a replica, but as

soon as the requirements are satisfied it submits back, or

if the persistent nodes are up, the persistent nodes bully

the volunteer nodes and all further requests are served by

the persistent node after handover.

Multi-tenant architecture

The Proposed approach for multi-tenant database is

designed over the shared database shared schema tech-

nique.We decided for shared database and shared schema

approach as it is suitable for Large number of tenants

with lesser data and hence entries (as required by our

application) and thus minimizing cost and leverage ben-

efit of using same h/w, s/w, database, schema and table

for all tenants and at the same time guaranteeing them

isolation and security. In case we go for shared database

approach we would be limited by the number of instances

of database supported by the DB server. So adding more

tenants will add more cost. In case, if we go for separate

schema approach then in case of failure, schema restore

from backup will be forced on other users also with dif-

ferent schema on the same data base (if no replica for the

Table 9 Events and associated actions of a participating

user

Events Action

New user joins Schema download

User re-joins If require schema update (schema populated with

exported XML) check pointing used to find difference

Daemon user Regularly schema and data exports updated

User quits Submit, replicate, mirror as applicable

same schema is present), also (which is a time consuming

task). Our proposed approach makes use of extension

table.

Extension table approach

In the universal table model it is a big challenge to decide

the number of custom fields (columns in table). Provid-

ing less number of columnsmight restrict the tenants who

wish to use a large number of custom fields. A large num-

ber of such fields may result in large number of NULL

values in the database table. Second problem is of differing

data types of these columns [32].

In recent times, the use of multi-tenant database sys-

tems increased multi-fold. In multi-tenant database a data

center is hosted by a service provider and the tenants sub-

scribe to the services provided by the service provider

[26,33]. Figure 4 shows three tables used in the basic

approach that makes use of extension table. The primary

table keeps the Tenant id and record id and some other

fields. record id field uniquely identifies the transaction

made by a particular tenant. By extracting the value of

record id field, one can extract the values from the exten-

sion table. For a single record id, there are number of rows

in the extension table.

The number of rows for a particular record id is the

number of columns in the logical table of that tenant. The

Meta Data table tells about the data types of these fields.

Whenever a tenant inserts data into its table, Meta Data

table is accessed to match the given values against the

data types of the Meta data table. An Extn ID in exten-

sion table is associated with an Extn ID field of Meta Data

table. This extension-id is unique for each column and is

used to know the data type and external label of that field

in the logical table for that tenant. An extension table con-

tains the actual data for all the tenants. In case of universal

table structure, columns, which are not used by a particu-

lar tenant, contain the NULL value, this results in wastage

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 9 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Name Record_ID

Tenant_ID Ext_lbl Data type

Value

546123

124

125

123

Ted

Kay

Mary

Ned

546

547

548

549

546

548

548

6732

5124

2431

7654

Gold

4/26/2012

Yes

62

123

123

125

125

6732

5124

2431

7654

Status

Expire

Accepted

Amount

string

date

bool

int

Primary Table Extension Table

Meta Data table

Tenant_ID Record_ID Extn_ID

Extn_ID

Figure 4 Use of extension table.

of space. Extension table concept overcomes this problem.

Figures 4 and 5 shows an extension table and a Meta Data

table.

In the basic approach of extension table discussed

above, following drawbacks can be observed:

1. Extension table contains a lot of information for

Meta Data i.e. for a single row of table of a tenant

that consists of four columns, The Record ID and

Extn ID are repeated four times this information

introduces a kind of redundancy.

2. Whenever a query for insertion, deletion or update is

performed three tables are accessed which increases

the query processing time. In our proposed approach

following concepts are introduced and implemented:

Tenant_ID XML_Ext Table_ID

123

123

125

125

546

546

548

548

5

Record_ID

1

2

4

<Expire>2012−04−25</Expire>
<Status>Gold</Status>

Figure 5Modified extension table.

3. Concept of XML object into a database is used that

helps to reduce the size of extension table as well as

eliminates the need of a primary table.

4. An approach that achieves multiple table creation for

a tenant is proposed and successfully implemented.

Figure 5 shows the proposed approach where

extension table consists of a Tenant id, a Record id,

an XML attribute and a Table id. Tenant id and

Record id uniquely identify a particular record. A

Record id is used to associate each transaction with a

unique record number. XML object contains the data

for an entire row of a Tenants logical table. Tags in a

single XML object refers to the name of a particular

field in the corresponding table. Table id field

represents the id of the table in which a particular

record is inserted for the specified tenant. The tenant

specifies the name of the table and our proposed

system generates unique id for that table for that

tenant.

A table that maintains the information about all the

tables of all tenants is created. This tablemaps the Table id

field of the extension table to the name of the table which

a tenant is referring to.

Creation of Table

A tenant is free to use any number of custom fields assum-

ing that service provider has created sufficient number

of fields in the main database schema. A tenant is free

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 10 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Table 10 Ametadata table

TenantID TblName TableID

123 Employee 1

123 Purchase 2

125 Customer 5

125 Funds 4

to create any number of tables and use any data type

(supported by that DBMS) for its fields.

Whenever a tenant specifies a new table name, this

name is stored in the table meta data table. Table 10

shows the structure of table meta data table.

Insertion in the Table

A tenant specifies the name of the table and supplies the

values. Our proposed architecture follows a sequence of

steps to insert the values in the main extension table as

follows:

1. The table id of a particular table for that tenant is

extracted from the table meta data table.

2. Meta data table is accessed to know the data types of

the fields.

3. A Record id, identifying this particular transaction, is

generated and is inserted into the Record ID column.

4. An XML document with inserted values is created

whose tags are the column names in the table.

5. This XML document is inserted into XML Ext

column of the extension table.

6. Table Id extracted from the table meta data is

inserted into the Table Id column of extension

table.

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NODE ID

N
o

rm
a

liz
e

d
 G

ra
d

e
s

RAM

CPU

N/W

DISK

Figure 6 Sample testbed configuration.

Updating the information in the database

The table name and the name of the field is specified, and

following steps are followed:

1. It accesses the table meta data table from where it

retrieves the id of the table for that tenant

2. In extension table, it finds out the rows

corresponding to that table id and tenant.

3. From the XML documents, which are related to the

Table ID, it makes a Xquery that gives field names.

4. It modifies the value in the XML document and stores

it back in the extension table with the same record id.

Deleting records The name of the table along with

indicative key is for a specific record is provided. Simi-

lar to the update process, the table meta data is accessed

to know the Table ID of the table. Later extension table

is accessed to know the rows corresponding to that

Table ID. The entire row, containing The XML document

in which the specified value for the given field is found, is

deleted.

Results
To implement the proposed approach,MySQL database in

Ubuntu has been used. Ubuntu is installed over VMware

and all involved nodes (computers) are configured with

heterogeneity. Factors of heterogeneity are allocated CPU

power, allocated RAM and disk space and network band-

width. To test and generate report python is used as

scripting language. The test bed comprise of 90 nodes

for the distributed multi-tenant data base. The processing

capability ranges from 500 MHz to 2.4 GHz for processor,

500MB to 1500MB for RAM and 10-30 GB of free disk

space as shown in Table 4.

The proposed approach has been successfully imple-

mented and queries like selection, insertion and deletion

have been experimented. For more added attributes in a

table the performance is slightly better, and saves a lot of

space as compared to the extension table approach. This

benefit comes from the use of XML in the attributes.

Test bed Configurations: A sampled 10 nodes configura-

tion is shown in the Table 4. and depicted in the following

graph in Figure 6. The graph for test bed configuration

shows heterogeneity among processors in terms of speed,

among RAM in terms of size of primary memory, among

HDD in terms of size and space available for secondary

Table 11 No. of Queries executed per sec

Type of query Proposed approach Extension table approach

Insertion 804 665

Deletion 804 238

Updation 662 197

Selection 747 1026

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 11 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Insertion Deletion Updation Selection
0

200

400

600

800

1000

1200

Type of Query

N
u

m
b

e
r

o
f

q
u

e
ry

 e
x
e

c
u

te
d

 p
e

r
s
e

c
.

Proposed Approach)

Extn. Table Approach

Figure 7 Showing no. of queries executed per second.

storage, among network bandwidth in terms of data rate

available.

Comparison with extension table approach

The number of rows in the original extension table

depends upon the number of fields in a tenants table. But

in our approach it contains only a single entry for a row.

Therefore a lot of space savings and also solves the NULL

value problem with the extension table approach.

In Table 11 and Figure 7 it can be seen that except

for select query all other query outperform the exten-

sion table approach. As shown in Figure 7 Statistically for

10 20 30 40 50

2

4

6

8

10

12

14

16

18

20

Number of Added Attributes

A
v
e
ra

g
e
 o

f
q
u
e
ry

 e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Proposed Approach

Extn. Table Approach

Figure 8 Average performance for added attributes.

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 12 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Table 12 Avg. performance (time taken) for added

attributes

Number of added
attributes

Proposed
approach (ms)

Extension table
approach (ms)

10 3.427 3.345

20 3.532 4.435

30 3.712 6.874

40 3.804 10.932

50 3.884 18.809

insertion, deletion and updation query there is a gain in

number of query execution per second of 20%, 230% and

236% respectively and there is drop by 27% for selection

query, which is slow due to parsing of XML file. The gain

is due to less number of joins involved in the schema.

The average response time for query execution for

added attributes is almost constant for our approach as

shown in Figure 8 and Table 12, but for extension table

approach it increases exponentially. Figure 8 shows there

is exponential rise in the response time with increase

in number of attributes in the extension table approach

where as our approach yields a constant response time

approximately. The response time in the extension table

approach degrades varying from 2.45% to 384.5% in five

consecutive increases in step size of 10 attributes. The

increase in attributes involves creation of new tables

therefore more number of joins are required to satisfy

a query. Therefore in the extension table approach the

Table 13 Comparison for space requirements (bytes) for

added attributes

Number of added
attributes

Proposed approach
(ms)

Extension table
approach (ms)

0 2048 15360

2 2048 16384

4 2560 17408

8 3072 19456

16 4096 23552

response time increases with added attributes. Since in the

proposed approach due to the use of XML attribute the

number of tables created would be less therefore resulting

in lesser number of joins required for query execution.

The better performance in response time in our

approach is due to the use of XML filed, which accommo-

dates and adjusts extra added attributes in the XML filed.

Figure 9 show the increase in space requirements in the

extension table approach, with the increase in number of

attributes, whereas in our approach the space requirement

increases linearly. This is again due to the adjustment of

group of attributes into one field in for of XML file.

In Table 13 we consider in the implementation model

that a total of 10 common attributes are present in the

multi-tenant database along with this 20 tenant specific

attributes are there. The size of a field is 512 bytes. Maxi-

mum allowed attributes in an XML file is 4. The efficiency

gained in space on an average is 86%. It could be greater

0 2 4 8 16
0

0.5

1

1.5

2

2.5
x 10

4

Number of Added Attributes

S
p
a
c
e
 r

e
q
u
ir
e
m

e
n
ts

 i
n
 b

y
te

s

Extn. Table apptoach

Proposed Approach

Figure 9 Space requirements with increase in attributes.

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 13 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

Table 14 Comparison for concurrent queries

No. of concurrent
queries

Proposed approach
(time in ms)

Extension table
approach (time
in ms)

10 11.44 11.05

20 24.55 23.04

50 66.98 62.98

100 140.86 132.45

200 292.37 262.34

500 604.42 535.67

if more than 4 attributes could be allowed in a field. In

our approach we are only limited by the size of XML file

that can fit in field as constraint by the native database

technology used.

Table 14 lists the response time for concurrent queries

as the number of concurrent queries increases the graph

in Figure 10 depicts that after the number of concur-

rent queries crosses the 200 mark the performance of

our approach slightly degrades but does not affect the

applications response substantially. The response time for

concurrent query execution is within comparable range

with the extension table approach.

Conclusion & future work
In this paper, an attempt has been made to implement

the Multi-tenant database for an ad hoc cloud that offers

operational advantages over the existing ones. It fits very

well in scenarios where SaaS cloud services are to be

delivered between multiple clients (institutions). The pro-

posed multi-tenant database accommodates larger num-

ber of tenants because a single database instance is used

to store the data of multiple tenants. Another advan-

tage of the proposed work is that the tenants are allowed

to create multiple tables which add flexibility in terms

of having varied set of attributes as specifically required

for its application. It is evident from the result that our

approach performs much better in terms of space saving

in terms of solving the NULL value problem as com-

pared to othermulti-tenant approaches.With increase the

number of attribute in the table the query performance

drops with the extension table approach as compared to

our approach, which is due to more number of attribute

and more number of joins required to execute query. The

multi-tenant database architecture proposed is highly effi-

cient in terms of query execution, space saving and change

in number of attributes. The performance is moderate and

comparable with extension table approach for concurrent

requests. The results of the proposed work show 20% to

230% improvement for insertion, deletion and updation-

queries. The response of the proposed approach is stable

as compared to other system which degrades in terms of

response time by 384% for increased number of attributes

up to 50. The proposed approach is also space efficient by

average of 86% for 2 to 16 more added attributes. Further

the work decomposition algorithm proposed optimally

calculates the node specific granularity, which helps in

performance and better resource utilization by optimizing

10 20 50 100 200 500
0

200

400

600

700

Number of Concurrent Requests

R
e

s
p

o
n

s
e

 T
im

e
 i
n

 (
m

s
)

Proposed Approach

Extn. Table approach

Figure 10 Performance comparison for concurrent.

Pippal and Kushwaha Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:5 Page 14 of 14

http://www.journalofcloudcomputing.com/content/2/1/5

the resource allocation policy. The data management and

scalability approach discussed is simple to implement and

proves to be practically efficient due to the concept used

for decoupling the database manager and the transaction

manager. The replication scheme discussed uses a simple

approach to calculate change in database state. It further

improves availability and strengthens reliability and uses a

simple application level check-pointing to find differential

updates. Further work can be done to remove the limita-

tion imposed by database attribute field so as to include a

sufficiently large XML file.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SKP and DSK designed the research (project conception, development of

overall research plan and study oversight). SKP conducted research (hands-on

conduct of the experiments and data collection). SKP and DSK analyzed data or

performed statistical analysis and wrote paper. SKP had primary responsibility

for final content. Both authors read and approved the final manuscript.

Acknowledgements

A special thank you goes to those who contributed to this paper: Mr. Manu

Vardhan for his valuable comments and sharing his knowledge. Prof. Saurabh

Raina for proof reading the paper. The Lab staff, JRE Group of Institution and

MNNIT Allahabad for hosting the research.

Received: 14 May 2012 Accepted: 22 January 2013

Published: 4 March 2013

References

1. Mell P, Grance T (2009) The NIST definition of cloud computing, version

15, NIST. Retrieved January 2010. http://www.nist.gov/itl/csd/cloud-

102511.cfm

2. Kirby G, Dearle A, Macdonald A, Fernandes A (2010) An approach to ad

hoc cloud computing. In: DBLP: CoRR, Volume abs 1002.4738

3. Chandra A, Weissman J (2009) Nebulas: Using distributed voluntary

resources to build clouds. In: Proceedings of the 2009 conference on Hot

topics in cloud computing. ACM id 1855535, USENIX Association

4. Pippal S, Kushwaha DS (2012) Architectural design of education cloud

framework extendible to ad hoc clouds. In: IEEE 2nd International

Conference on Recent Advances in Information Technology (RAIT)

5. Chapin PC, Skalka C, SeanWang X (2008) Authorization in trust

management: features and foundations. Comput Surv 40(3): 1–48

6. Das S, Agrawal D, El Abbadi A (2009) ElasTraS: An elastic transactional data

store in the cloud. In: Proceedings of the conference on Hot topics in

cloud computing (HotCloud’09)

7. Litzkow MJ, Livny M, Mutka MW (1988) Condor : A hunter of idle

workstations. In: 8th International Conference on Distributed Computing

Systems. IEEE Computer Society Press, Washington, pp 104–111

8. Barak A, Guday S, Wheeler RG (1993) The MOSIX Distributed Operating

System, Load Balancing for UNIX. In: Lecture Notes in Computer Science,

vol 672. Springer-Verlag, Berlin; New York

9. Pai VS, Aron M, Banga G, Svendsen M, Druschel P, Zwaenepoel W, Nahum

E (1998) Locality-aware request distribution in cluster-based network

servers. SIGOPS Oper Syst Rev 32(5): 205–216

10. Aron M, Sanders D, Druschel P, Zwaenepoel W (2000) Scalable content

aware request distribution in cluster-based network servers. In:

Proceedings of the USENIX 2000 Annual Technical Conference, San Diego

11. Aron M, Druschel P, Zwaenepoel W (2000) Cluster reserves: a mechanism

for resource management in cluster-based network servers. In:

Proceedings of the ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems

12. Shen K, Yang T, Chu L (2002) Cluster load balancing for fine-grain network

services. In: Proceedings of the 16th International Parallel and Distributed

Processing Symposium, (IPDPS’02), Fort Lauderdale FL

13. Banawan SA, Zeidat NM (1992) A comparative study of load sharing in

heterogeneous multicomputer systems. In: Proceedings of the 25th

Annual symposium on Simulation
14. Goswami KK, Devarakonda M, Iyer RK (1993) Prediction based Dynamic

Load-Sharing Heuristics. In: IEEE Transactions on Parallel and Distributed

Systems
15. Anane R, Anthony RJ (2003) Implementation of a Proactive Load Sharing

Scheme. In: Proceedings of the 2003 ACM symposium on Applied

computing
16. Berman F, Wolski R, Figueira S, Schopf J, Shao G (1996) Application Level

Scheduling on Distributed Heterogeneous Networks. In: Proceedings of

the 1996 ACM/IEEE conference on Supercomputing
17. Karatza HD, Hilzer RC (2002) Load Sharing in Heterogeneous Distributed

Systems. In: Proceedings of the 2002 Winter Simulation Conference
18. van Nieuwpoort RV, Kielmann T, Bal HE (2001) Efficient load balancing for

wide-area divide and conquer applications. In: Proceedings of the eighth

ACM SIGPLAN symposium on Principles and practices of parallel

programming
19. Kondo D, Chien AA, Casanova H (2004) Resource Management for Rapid

Application Turnaround on Enterprise Desktop Grids. In: Proceedings of

the 2004 ACM/IEEE conference in Supercomputing
20. Beaumont O, Casanova H, Legrand A, Robert Y, Yang Y (2005) Scheduling

Divisible Loads on Star and Tree Networks:Results and Open Problems.

IEEE Trans Parallel Distributed Syst (TPDS) 16(3): 207–218
21. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M,

Chandra T, Fikes A, Gruber RE (2006) Bigtable: a distributed storage

system for structured data. In: OSDI. pp 205–218
22. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A,

Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly

available key-value store. In: SOSP. pp 205–220
23. Maier D, Ullman JD (1983) Maximal objects and the semantics of universal

relation databases. In: ACM Trans. Database System. p 114
24. Copeland GP, Khoshafian SN (1985) A decomposition storage model. In:

The Proc. of 1985 ACM SIGMOD International conference on

Management of Data. ACM Press, pp 268–279
25. Grund M, Schapranow M, Kruege J, Schaffner J, Bog A (2008) IEEE

Symposium on Advanced Management of Information for Globalized

Enterprises. pp 1–5
26. Hui M, Jiang D, Li G, Zhou Y (2009) Supporting Database Applications as a

service. In: IEEE 25thInternational Conference on Data Engineering. pp

832–843
27. Jacobs D, Aulbach S (2007) Ruminations on Multi-Tenant Databases,

Datenbanksysteme. In: Bro, Technik undWissenschaft (German Database

Conference) BTW. pp 514–521
28. Wang ZH, Guo CJ, Gao B, Sun W, Zhang Z, Hao W (2008) Study and

Performance Evaluation of the Multi-Tenant Data Tier Design Patterns for

Service Oriented Computing. In: IEEE International Conference on

e-Business Engineering. pp 94–101
29. Domingo EJ, Nino JT, Lemos AL, Lemos ML, Palacios RC, Berbis JMG (2010)

A cloud computing-oriented multi-tenant architecture for business

information systems. In: IEEE 3rd International Conference on Cloud

Computing. pp 532–533
30. VardhanM, Verma S, Bhatnagar P, Kushwaha DS (2012) Eager computation

and lazy propagation of modifications for reducing synchronization

overhead in file replication system. In: IEEE 3rd International Conference

on Computer and Communication Technology (ICCCT-2012)
31. Das S, Nishimura S, Agrawal D, El Abbadi A (2011) Albatross: Lightweight

Elasticity in Shared Storage Databases for the Cloud using Live Data

Migration. In: 37th International Conference on Very Large Data Bases

(VLDB)
32. Aulbach S, Grust T, Jacobs D, Kemper A, Rittinger J (2008) Multi-tenant

databases for software as a service:schema-mapping techniques. In: The

proc. of International Conference on Management of Data - SIGMOD. pp

1195–1206
33. Hacigumus H, Iyer B, Mehrotra S (2002) Providing database as a service. In:

18th International Conference on Data Engineering. pp 29–38

doi:10.1186/2192-113X-2-5
Cite this article as: Pippal and Kushwaha: A simple, adaptable and effi-
cient heterogeneous multi-tenant database architecture for ad hoc cloud.
Journal of Cloud Computing: Advances, Systems and
Applications 2013 2:5.

http://www.nist.gov/itl/csd/cloud-102511.cfm
http://www.nist.gov/itl/csd/cloud-102511.cfm

	Abstract
	Keywords

	Introduction
	Related work
	Heterogeneity related work
	Multi-tenancy related work
	Universal table layout
	Chunk folding
	Extension tables
	Pivot tables
	Multi-tenant shared table

	Proposed approach
	Data persistency
	Replication strategy, schema and data usage
	Data domain and replication granularity
	Failure handling strategy

	Load balancing
	Algorithm 1 Workload Decomposition(Tasksize, Historydecomp)
	Scalability and data management
	Maintaining a working set
	Multi-tenant architecture
	Extension table approach
	Creation of Table
	Insertion in the Table
	Updating the information in the database
	Deleting records

	Results
	Comparison with extension table approach

	Conclusion & future work
	Competing interests
	Authors' contributions
	Acknowledgements
	References

