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Abstract—The Fourier spectrum of a periodic signal may be ob-
tained by fast Fourier transform algorithms, but, as is well known,
special care must be taken to avoid severe distortions introduced
by the sampling process. The main problem is the leakage gener-
ated by the truncation required to obtain a finite length sampled
data.

The usual procedure to reduce leakage is to multiply the sampled
signal by a weighting window. Several kinds of windows have been
proposed in the literature, and today they are also included in many
commercial instruments.

A simple alternative procedure is proposed in this paper. It is
implemented with a PC compatible data acquisition board (DAQ)
and consists of an algorithm that uses decimation and interpola-
tion techniques. This algorithm is equivalent to the use of an ad-
justable sampling frequency and correspondingly an adjustable
window size.

Results obtained by this method on both harmonic and polyhar-
monic signals are empirically analyzed and compared with those
given by an instrument with built-in FFT capabilities.

Index Terms—Decimation, FFT, IFFT, interpolation, leakage.

I. INTRODUCTION

SPECTRAL analysis of sampled signals is a basic technique
used in many scientific disciplines. The signals are usu-

ally transformed from the time domain to the frequency domain
with the discrete Fourier transform (DFT), which can be very
efficiently calculated using a fast Fourier transform algorithm
(FFT) [1]. As is well known, aliasing and leakage are introduced
in the calculated spectrum if both the sampling frequency and
the truncation time are not selected with special care.

Aliasing is produced when the sampling frequency is not high
enough, and it is simply reduced by increasing the sampling
frequency. Leakage is produced by the unavoidable truncation
required to convert the sampled signal into a finite length
sequence. To deal with this drawback, special methods, known
as interpolated fast Fourier transform (IFFT) techniques, were
developed. They calculate the frequency, amplitude, and phase
of the original spectral lines from the spectrum disturbed by
leakage, and they can be listed along the window that was used
to calculate the FFT. The comparison between the different
IFFT methods with respect to both their systematic errors and
noise sensitivity is presented in [2].
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The approach presented in this paper may also be considered
as an IFFT technique. The main difference is that it only uses
a rectangular window and an algorithm developed in the C lan-
guage. In spite of its simplicity, the method proves to be very
efficient for correcting the leakage drawback.

The main idea of the algorithm is to evaluate the fundamental
frequency of the input signal and then to modify the sampling
frequency by software, using decimation and interpolation tech-
niques, in order to obtain a rectangular window with a specially
suited size. The algorithm is developed for harmonic signals, but
the experimental results reported here show a drastic reduction
in leakage also in the case of polyharmonic signals.

Today, several laboratory instruments have built-in FFT al-
gorithm and leakage reduction capabilities; the HP5420A oscil-
loscope, used in this work, is capable of showing “on line” the
FFT. It includes three windows: Hanning, Flattop, and Rectan-
gular [3]. A comparison with measurements accomplished with
this instrument is also presented.

The organization of this paper is as follows: in Section II, the
algorithm is described; in Section III, the experimental setup is
presented as well as an empirical analysis of errors for the har-
monic case. In Section IV, results obtained with polyharmonic
signals are shown; Section V deals with the conclusions.

II. THE ALGORITHM

Let be a periodic signal with unknown period. In the
following discussion, the case of the harmonic signal

is considered. Let be a rectangular
window of width

or
(1)

and let . The corresponding Fourier transforms
are

(2)

In order to apply the FFT technique the signal is sampled with
a sampling period, and samples are stored. The window
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Fig. 1. Standard FFT outcome in the case of a harmonic signal withT =

T =2:5.

represents a constraint in the number of samples up to a
value . The discrete spectrum given by

(3)

will not have artificial spectral components (i.e., leakage) only if
is an integer, but this is not generally the case because

is not knowna priori. In Fig. 1, the special case of a sinusoidal
waveform with amplitude 1 Vpp and period is
considered; the spectrum is drawn with dotted lines. The
typical FFT outcome is a set of samples of this spectrum at fre-
quency intervals [1]. Solid lines (bins) in this Fig. 1 rep-
resent them. It becomes clear from this graphic that the signal
spectrum has been strongly modified: the actual spectral com-
ponent has been lost, and many spurious spectral components
have appeared.

The proposed algorithm consists of the following steps.

1) Let be the amplitude of the highest bin of the discrete
spectrum and its order (i.e., bin 2 in Fig. 1).

2) Let whichever corresponds to the largest
amplitude (i.e., bin 3 in Fig. 1).

3) Assume is high enough to disregard the spectra cen-
tered in multiples of . Then, it results that

(4)

(5)

with . Dividing (4) by (5), one obtains

(6)

Fig. 2. Experimental setup used in this paper.

4) Solve (6) for and define a new window size that
fits exactly a multiple of

(7)

where int( )meansthe integerpartof.Note that thisnew
window size would be obtained by resampling the signal
with a different number of samples and/or a different sam-
plingperiod,but inpracticeit isnotstraightforwardtomake
any of these changes.Thenumberof samples is limited toa
power of two by any FFT efficient algorithm, and the sam-
plingperiodischangedbyhardware.Consequently, it isnot
easy to modify it in a continuous way.

To obtain , we modify the sampling frequency by
software to a new value given by

(8)

Two basic sampling-rate-alteration devices are used to ac-
complish this task: anup-samplerand adown-sampler
[4].

5) Let be the number of samples inserted by the
up-samplerbetween two consecutive samples of the orig-
inal sequence. Let be the number of samples re-
moved by thedown-samplerin between samples. Then

(9)

From (8) and (9)

(10)

Additionally, both and must be integer numbers.
Throughout this work, we use to obtain at
least three exact digits in the quotient of (10); the corre-
sponding value derives from this equation.

6) The last step is to apply the FFT algorithm to the new
sequence.

III. EXPERIMENTAL SETUP AND EVALUATION OF THE

HARMONIC CASE

The experimental arrangement is shown in Fig. 2. The Pro-
grammable Function Generator (HP33120A) is used to generate
the signals to be measured. samples at Ks/s
are acquired, corresponding to a window size ms and
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(a)

(b)

Fig. 3. Evaluation of systematic errors for different methods in the case of
a harmonic signal with variable frequency: (a) amplitude errors; (b) frequency
errors.

a theoretical frequency resolution of 48.828 Hz. In all cases, we
adjust the setup of the scope to measure with its maximum pos-
sible resolution (1 dB/div). The HPIB interface is used to control
both the measurement and setup procedures.

First, we measure a sinusoidal waveform with 1 Vpp
( 3.9794 dBm) whose frequency is swept in the range 100
Hz to 5 kHz, approximately. The window size originally used
must be greater than the period of the signal in order to obtain
good results. In all the measurements reported here, we select
a window size at least twice the period of the signal inside
the window (this constrains the lowest frequency of 100 Hz).
Furthermore, the sampling frequency must be at least ten
times the fundamental frequency of the input signal in order to
have more than ten samples/period (this constrains our highest
frequency to 5 kHz). In fact, these are not unusual restrictions,
and they are also a requirement of any FFT technique.

(a)

(b)

Fig. 4. Enlargement of Fig. 3 for the low frequency range: (a) amplitude errors;
(b) frequency errors.

The differences between measured values and the theoretical
spectra are shown in Figs. 3–6. In Fig. 3, the complete frequency
range is shown. The generator frequency changes in steps of
48.828 Hz/4 12.207 Hz. Figs. 4–6 are the enlargements of
Fig. 3 in low, medium and high frequency ranges, respectively,
and correspondingly, the generator frequency step is reduced to
48.828 Hz/40 1.2207 Hz.

These figures show that the errors in our algorithm increase
when the original window size is close to a multiple of the signal
period, because for those particular values, the correction in the
window size is not really required. Note that this adverse effect
diminishes for high frequencies because the number of cycles
inside the window increases. On the other side, for these same
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(a)

(b)

Fig. 5. Enlargement of Fig. 3 for the medium frequency range: (a) amplitude
errors; (b) frequency errors.

values of frequency, the errors produced by the weighting win-
dows of the scope are minimum. The error obtained with our al-
gorithm is considerably lower than that produced by the scope
even in these cases. Only in the very low frequency range, the
flattop window gives the spectrum with a lower amplitude error
[see Fig. 4(a)].

The error curves labeled “algorithm” are the mean value of
100 measurements in order to take into account the window
starting time influence. The corresponding frequency and am-
plitude dispersions have upper limits and , respectively,
with the following values: in Fig. 3 Hz and

dB; in Fig. 4 Hz and dB; in
Fig. 5 Hz and dB; finally in Fig. 6

Hz and dB.

(a)

(b)

Fig. 6. Enlargement of Fig. 3 for the high frequency range: (a) amplitude
errors; (b) frequency errors.

In the case of scope measurements, the data acquisition
process always started at the same trigger level (0 V), and then
an average was not required.

IV. POLYHARMONIC CASES

The second set of measurements is made on a square wave
with period . This is an especially difficult measurement
for the scope, but our algorithm works well, as it is reported in
Table I. The column labeledExactcorresponds to the theoretical
Fourier transform. The columnAlgorithmcorresponds to our re-
sults. The remaining three columns labeled, respectively,Rect-
angular, Hanning, andFlattop, report the measurements per-
formed by the HP5420A.
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TABLE I
FREQUENCY ANDAMPLITUDE ERRORS IN THEFFT OF A SQUARE WAVEFORM USING A COMMERCIAL INSTRUMENT AND THEALGORITHM HEREPRESENTED

Fig. 7. Case of a signal consisting of two sinusoidal waveforms, one with 2077 Hz and 0.66 Vpp and the other with 2167 Hz and 0.17 Vpp. (a) Spectra obtained
by our algorithm; (b)-(d) are the spectra measured by the HP54520A with its different built-in windows.

Using our algorithm, the errors in both amplitude and fre-
quency determinations are greatly reduced, and in the case of
frequency determinations, it is always the best choice. This
is a consequence of the automatic adjustment of the window
size.

The last case we study is a compound signal consisting of two
sinusoidal waves of 2077 Hz, 0.66 Vpp and 2167 Hz, 0.17 Vpp,
respectively. The FFT is shown in Fig. 7(a)–(d), and the mea-
sured values are reported in Table II. This signal is especially in-

teresting because its theoretical spectrum has two spectral com-
ponents so close to each other, that a very sensitive frequency
resolution is required to single out any of them. The spectra ob-
tained with the HP scope and its different windows are shown
in Fig. 7(b)–(d). Note that the scope is not capable of solving
each spectral component and gives us only one peak. On the
other hand, in Fig. 7(a) the spectrum obtained with our algo-
rithm is shown: both spectral components are clearly identified.
This ability is confirmed in Table II.
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TABLE II
FREQUENCY AND AMPLITUDE ERRORS IN THEFFT OF A SIGNAL CONSISTING OFTWO CLOSESINUSOIDAL COMPONENTSUSING A COMMERCIAL INSTRUMENT

AND THE ALGORITHM HERE PRESENTED

V. CONCLUSIONS

The simple strategy presented in this paper may be imple-
mented on any PC with a DAQ. Leakage is greatly reduced when
compared with traditional windowing methods.

The worst values are obtained when the size of the rectangular
window is close to a multiple of the signal period, i.e., when

is very close to an integer. In these cases, it would
be better to eliminate the adaptive mechanism. In spite of this
drawback, the method is more efficient than the use of weighting
windows even in these cases.

It is remarkable that, in order to obtain frequency errors of the
same order as that produced by the algorithm (i.e., lower than 1
Hz),awindowlength fifty times largerwouldneedtobeusedwith
the corresponding increase in both processing time and memory
capabilities. Note that, in the case of frequency determinations,
theusualnotionof frequencyresolutionas isnolongervalid
in evaluating the capabilities of the measuring system. In fact, the
algorithm changes dynamically the sampling frequency, dimin-
ishing the error well over the original frequency resolution.

It is also possible to combine our algorithm with modern in-
struments including built-in data acquisition and FFT capabili-
ties, to improve the spectral analysis in a very simple and inex-
pensive way.
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