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The generalized inverse of a matrix is important in analysis 
because it provides an extension of the concept of an inverse 
which applies to all matrices. It also has many applications in 
numerical analysis, but it is not widely used because the exist- 
ing algorithms are fairly complicated and require consider- 
able storage space. A simple extension has been found to 
the conventional orthogonalization method for inverting non- 
singular matrices, which gives the generalized inverse with 
little extra effort and with no additional storage requirements. 
The algorithm gives the generalized inverse for any m by n 
matrix A, including the special case when m = n and A is 
nonsingular and the case when m > n and rank ( A ) =  n. 
In the first case the algorithm gives the ordinary inverse of A. 
In the second case the algorithm yields the ordinary least 
squares transformation matrix (ATA)-IA T and has the ad- 
vantage of avoiding the loss of significance which results 
in forming the product ATA explicitly. 

The generalized inverse is an important concept in 
matrix theory because it provdes an extension of the con- 
cept of an inverse which applies to all matrices. Penrose 
[1] showed that  for any m X n complex matrix A there 
exists a unique n X m matrix X which satisfies the follow- 
ing relations: 

A X A  = A (1) 

X A X  = z (2) 

( A X )  H = A X  (3) 

( X A  ) g = X A .  (4) 

These four relations are often called Penrose's Lernmas, 
and the anatrix X is said to be the generalized inverse of A 
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and is often denoted by A t. In  the special case where 
m = n and A is nonsingular, this generalized inverse is 
simply the ordinary inverse of A. Also, in the special case 
where m > n and the columns of A are linearly independ- 
ent, we can write 

A ' =  ( A ' A ) - I A  H. (5) 

I t  is an easy matter to see that  this matrix satisfies all of 
Penrose's Lemmas. I t  is important in numerical analysis 
because it solves the problem of minimizing the distance 

p(x) = [ b - -  A x [ ,  

where b is a given vector in m-space and A is a given m X n 
matrix with m > n and linearly independent columns. 

More generally, if A is any m X n matrix and b is any 
vector in m-space, there may exist many vectors x which 
minimize the distance p(x), but the vector defined by 

x = A~b (6) 

is the shortest of all such vectors. The problem of finding 
the vector x of shortest length Ix t which minimizes the 
distance p(x) may be referred to as the generalized least 
squares problem. I t  is solved by the generalized inverse. 

Suppose that  the matrix A can be partitioned in the fol- 
lowing manner: 

A = (R, S) (7) 

where R is an (m X k)-matrix (k < n) with linearly inde- 
pendent columns and S is an (m X (n - k))-matrix 
whose columns are linear combinations of the columns 
of R. 

TEEOR.EM I. RrR = I. (8) 
PROOF. The columns of R are linearly independent. 

Therefore, by (5), R ~ = (RHR)- iR H. Hence R~R = 
(RHR)-IRHR = I. 

THEOREM II.  The matrix S has a unique factorization 
in the form 

s = R U  (9) 

and the matrix U is given by 

U = R 'S .  (10) 

Proof that the factorization exists. Suppose 

S = ( s ~ + l ,  s ~ + ~ ,  . . -  , s , ) .  

Each column of S is a linear combination of the columns 
of R. Therefore s~ = Ru~ from some vector u~, i = k + l ,  
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S = (Ruk+~, Ruk+2, . . .  , Run) 

= R(uk+l , uk+2, • . .  , un),  

i.e., S = R U  where U = (uk+l, uk+2, . . -  , Un). 

Proof  that the faclorization is unique. I t  has just been 
shown tha t  S = R U  for some U. Therefore R I S  = R r R U  
= U since by (8), R~R = I .  Thus U = R~S. 

We now show tha t  the problem of computing the gen- 
eralized inverse of any matrix A can be reduced to the 
problem of computing the generalized inverse of a matrix 
of the form A'  = (R, S),  where R and S are matrices of 
the same form as the R and S of eq. (7). 

THEOREM I I I .  I f  P i j  is any nlh order elementary per- 
mutation matrix  then ( A P i j )  ~ = P~iA r. 

The t ru th  of this theorem can easily be demonstrated 
p i by showing tha t  the matrix ~jA does actually satisfy 

Penrose's  Lemmas.  Furthermore it is easy to see tha t  if 
P~, P2, • "" , P~ is any finite set of elementary permuta-  
tion matrices, then 

( A P ~ P 2 " "  P~)~ = P ~ " .  P2P~A'. (11) 

Thus if A is any m X n matrix it can be reduced to the 
form A '  = AP~P2 . . .  P~ = (R, S) with all the linearly 
dependent columns (if any)  occurring last. Then by  eq. 
(11), P~ . . .  P2P1A I = (R,  S )  ~ and hence 

A ~ = PiP2 "'" P~(R,  S ) ' .  (12) 

Thus it is now necessary oMy to consider the problem 
of computing the generalized inverse of matrices of the 
f o r m A  = (R, S).  

To obtain an expression for the generMized inverse in 
terms of the matrices R and U, we appeal to the least 
squares property of A '. Let us confine ourselves for the 
t ime being to real matrices A. The results which we shall 
obtain can easily be generalized to the complex case. 
Consider the system 

A s  = b, (13) 

where b is any vector in the column space of A; i.e., the 
system will have exact solutions. In  this case all the least 
squares solutions will have the property p(s)  = ] b -- A s  ] 
= 0, and the shortest such s is given by s = A~b. 

Consider for a moment  the problem of minimizing the 
length s with the restriction A s  = b. This is equivalent to 
minimizing ] s [ 2 = srs with the restriction A s  = b. As- 
sume tha t  A has a partitioning (R, S) with M1 the linearly 
dependent colunms last and parti t ion S as follows: 

=(;) 
where x is a vector of order k and y is a vector  of order 
n - k .  Then the problem is to minimize the quant i ty  

(xr, yr)  ( ~ ) = X T X  + y r y ,  

with the restriction tha t  

or simply 

b = O ,  

R x  + S y  - b = O. 

Let us apply the method of Lagrange multipliers. Set 

L = x r x  + yTy + zr[Rx + S y  --  b], 

where z is the vector  of parameters  to be eliminated. Since 
by  eqs. (9) and (10), S = R U  where U = R~S, we can 
write 

L = x r x  + y ry  + zr[Rx + R U y  - b]. 

Differentiating L with respect to each element of the 
vectors x and y and setting these derivatives equal to zero 
gives 

OL 
- 2x + Rrz  = 0 (14) 

Ox 

OL 
- 2y + UrRrz  = 0 (15) 

Oy 

where OL/Ox is the vector  whose elements are the deriva- 
tives of L with respect to the corresponding elements of x 
and OL/Oy has a similar interpretation. Adding the re- 
striction 

R x  + R U y  - b = 0, (16) 

enables us to eliminate the vector z and solve for x and y. 
Premultiplying eq. (14) by U r gives 

2UTx + uTRTz = O. 

Combining this result with eq. (15) gives 2y = 2 U r x  or 

y = Urx .  (17) 

If  we now substitute the expression for y into eq. (16), 
we have 

R x  + R U U T x  = b, 

R ( I  + U U r ) x  = b. 

Now, by Theorem I, R~R = I .  Therefore 

( I  + U U r ) x  = Rrb. 

The matrix ( I  + U U  T) is a symmetric  positive definite 
matrix and hence is nonsingular. Therefore 

x = ( I  + U U r ) - I R ' b .  (18) 

Substituting this value for x into eq. (17) gives 

y = u T ( I  + V U r ) - I R ' b .  (19) 

Now eqs. (18) and (19) lead to the conjecture tha t  of 
all the vectors s satisfying the restriction 

p(s)  = [ A s - -  b I = O, 
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the s of minimal length is given by 

(;) ( s = = u T ( i  + u u T ) _ i R ~ b ]  

( I  + u u r ) - ~ R r ~  

= U r ( i  + u u T ) _ ~ R  , ]  b. 

Furthermore,  since the required s is given by 

s = AIb ,  

it can be conjectured tha t  the generalized inverse is given 
by 

A ( UU )-iR ' 
= (20) 

I t  is a simple mat te r  to verify that  this matrix actually 
satisfies Penrose's Lemmas and is actually the generalized 
inverse of A. In  fact, if A is any complex matrix with a 
partitioning of the form (R, S) then A ~ is given by 

A' = ( (i + vvH)-'R'  
U " ( I  + UU~I ) -~R ' ]  " (21) 

Thus we have an expression for A r in terms of R I and 
U. The remaining problem is to compute R r and U. For 
this purpose, let us briefly review the Gramm-Schmidt  
orthogonMization process. 

If  {at, a2, . . . ,  a~} is any set of linearly independent 
vectors in m-space (m > n),  then this set can be replaced 
by an orthonormal set {qt, q2, " "  , q~} in the following 
manner:  

a~ 

(i) qt = 1al I 

(ii) c2 = a2 -- (a2"q~)q~ 

C2 

Ic l 

H H (iii) ca a3 (a3 ql)ql = - -  -- (a3 q~)q2 

C3 
q3 = 

Continue in this manner, at each step (i) forming c~ from 
al and the previous q's and then normalizing c~ to length 
i to get q~. After n such steps the result is a set ql, q2, 
• - . ,  q~ of orthonormal vectors, i.e., 

0, i ~ j ,  
qi"qi = 1, i = j .  

In  particular, if the vectors a~ are the columns of an 
m N n matrix A, then the above process replaces A with 
a matrix Q satisfying 

QHQ = I .  (22) 

Since each q~ depends only on a~ and the previous qi ,  the 
columns of A can be replaced one column at a t ime as il- 

lustrat.ed in the following schematic diagram: 

A = ( a l ,  a 2 ,  a 3 ,  " "  , ~ )  

(1) . . . 
(q l  , a2 , aa , , a n )  

('~ (q, ,  q2, a3, " "  , a ~ )  

. . . ,  q,). 

Furthermore,  in this scheme each new column qi is ob- 
tained from a linear combination of the vector ai and the 
previous q's. Hence the columns of A are orthogonalized 
by a series of elementary column operations. I f  when 
carrying out this process on the columns of A we begin 
with the nth  order identity matrix and perform the same 
elementary column operations on it, a matrix Z is ob- 
tained such that  

A Z  = Q. (23) 

If  m = n, then the matrix A is nonsingular and this process 
provides a method for computing the inverse of A. Be- 
ginning with A and the nth  order identity, we apply the 
Gramm-Schmidt  process to obtain the matrices Z and Q. 
This process is illustrated schematically by the diagram: 

Now by eq. (22) QUQ = I or Q-1 = QH and by eq. (23) 
Z is a matrix satisfying A Z  = Q. Hence 

A -1 = Z Q  H. (24) 

Thus if A is nonsingular its inverse can be computed by 
the Gramm-Schmidt  orthogonalization process. 

We now extend this method to compute the generalized 
inverse of an arbi trary complex matrix A. 

In  general, the columns of A will not be linearly inde- 
pendent, and the Gramm-Schmidt  orthogonalization proc- 
ess will not work for a linearly dependent set of vectors. 
If  we t ry  to apply it to such a linearly dependent set in 
which the first ,~ vectors are linearly independent but  the 
(k + 1)-th vector is a linear combination of the previous 
k, it will successfully orthogonalize the first/c vectors, but 
upon calculating ck+l, we will find 

k 

Ck+l ak+l E H O. = -- (a~+lqi)ql = 
i = 1  

Thus the process breaks down upon encountering a 
linearly dependent vector. Although the columns of A 
will in general be linearly dependent, we have seen tha t  it 
can just as well be assumed tha t  A has a partitioning in 
the form A = (R, S) with all the linearly dependent 
columns last. 

Therefore, let us carry out a modified Gramm-Sehmidt  
process in the following manner:  apply the normal ortho- 
gonalization process to the columns of R and continue 
over the columns of S in the same manner  except tha t  as 
each vector becomes zero no normMization step is p e r -  
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formed. If we carry out this process and, beginning with 
the nth order identity matrix, carry out exactly the same 
elementary column operations on it, we have 

where 

Lo [o I._kJ 

)_ (R, S) I.-k 

and Q is a matrix with the property QHQ = I. 
Note that  the (n -- k)-order  identity matrix in the 

lower righthand corner of the bookkeeping matrix remains 
unchanged by the process. This is because all the columns 
of S become zero when the process is applied to them, thus 
essentially zeroing any terms that  might change the In-k 
when the same elementary column operations are applied 
to the bookkeeping matrix. 

From eq. (25) it can be seen that  

R Z  = Q (26) 

and 
R X + S  = 0 .  

Rearranging the latter equation gives R X  = - -S ,  and by 
eq. (8), X = --R~S. Since by eq. (10) U = R*S we have 

X = - U .  (27) 

Thus the matrix U comes out of the bookkeeping matrix; 
i.e., 

I I! [0 I,.-kJ I~-k 

Also it is easy to see that  R ~ is given by 

R ~ = ZQ H. (28) 

To verify this one need only note that  by eq. (26) R 
= QZ -1, and if this expression is used for R, then the 
matrix ZQ H does actually satisfy Penrose's Lemmas and 
hence must be R z. 

Recall that  the expression for A ~ was by eq. (21), 

A" = ( ( I  + UUn)-~Rt~ 
\ u'(i  + uun)-iRV 

and now we have a method for obtaining U and R ~. The 
only remaining problem is the evaluation of the expressions 
( I  + UUU) - i  and UH(I + UUU) -l. 

For this purpose, note that  the former term can be re- 
written 

( I  + uuH)  -~ = I - u ( u H u  + I) -~U H 

and the latter term, 

u ' ( I  + UUH) -~ = (UHU + I ) -~U n. 

These two expressions are easily verified matrix identities 

and making these substitutions in the expression for the 
generalized inverse gives 

A ~ = ( [ I  -- u ( u H u  + I)-iUH]Rr~ 
( u H u  + i ) -~UHR,] .  (29) 

Now reca]l that  upon completion of the orthogonallzation 
process, the matrix 

appeared as the last (n - k) columns of the bookkeeping 
matrix. Obviously this matrix has linearly independent 
columns; so its columns can be orthogonalized by the 
Gramm-Schmidt process. If we carry along a bookkeeping 
matrix, then 

where 

G-S) 

\ In--h~ 

- - U  ( ,.0 
Clearly, by the above relationship 

Y = -- UP. 
W = P and 

Thus there is no need to carry along a bookkeeping 
matrix since the matrix W of the result contains the same 
information that  the bookkeeping matrix would. So 

where the columns of the result are orthogonal; i.e., 

v)=,. 
o r  

(-V):, 
Carrying out the indicated multiplications gives 

pHU nUP + PHP = I, 

and factoring out the pH and the P gives 

pH(UHU + I ) P  = I.  

Now, P is a matrix which could be obtained from an 
identity matrix by elementary column operations and 
therefore must be nonsingular. Hence 

(UHU + I )  = (pH)--lp--1, 

whence 

( u H u  + i ) - I  = p p , .  

Also, 

I -- U(UHU + [ ) - i u  n = I -- U P P " U  n, 

(30) 
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o r  

I -- u ( u H u  + I)-~U u = I -- ( U P ) ( U P )  H. (31) 

Thus we cast substitute the expressions on the right of 
eqs. (30) and (31) into eq. (29) to obtain 

A" = ([I -- (UP)(UP)H]RX~ 
pp.UHR ~ ] .  (32) 

And substituting the value for R x given by eq. (28) and 

SUBROUTINE GINV2 (A,UoAFLAG,ATFMP,MR~NR~.NC) 
C 
C THIS ROUTINE CALCULATES THF GENERALIZED INVERSE OF A 
C AND STORES THE TRANSPOSE OF IT IN A. 
C MR#FIRST DIMENSION Nno OF A. 
C NR # NO. OF POI;S IN A 
C NC # NO, C~F COLUMN£ I t l  A 
C U IS THE BOOKKEEPING ~ATPIX. 
C AFLAG AND AT¢~P ARF T~MP"~RARY WORKING STORAGe. 
C 

DI'qENSION A(MR,NC) ,U(Nc,,NC) ,AFLAG(NC) ,ATC'MP(r,!C) 
DO IO I # I ,NC 
OO 5 J # I ,NC 

5 U ( I , J )  # D.q 
I0 U ( I , I } # 1 . O  

FAC # DOT(MP,NR+A~I.I} 
FAC# I . O/SORT ( FAC ) 
DO I 5 I # I ,NR 

15 A ( I , I I # A I I , I i + ~ A C  
DO 20  I # I ,NC 

20 U ( I , I } # U (  I , I ) ~ c A C  
AFLAG( I } # I . ~  

C 
C DEPENDENT COL TOLERANCE FOR N BIT FLOATING POINT FRACTION 
C 

N # 2T 
TOL # (10. * O . ~ * * N ) * * ~  
DO ION J # 2,pNC 
DOTI # D O T I M R , N R , A , J ~ J )  
JMI#J-I 
DO 5n L#I  ~7 
DO 9r~ K#I,JMI 

3Q ATEMP(K} # DOT(r~R,NR+A,,I,K) 
DO 45 K#I ,JMI 
DO 35 I # I ,NP 

35 A( I , J ) # A (  I , J ) - A T E M P ( K ) * ~ (  I , K ) * A F L A G ( K )  
DO 40 I # 1 ,NC 

zoo U( I ,J )#U( I , J I -ATEMP(KI*U(  I ~K ) 
a5 CONTINUE 
53 CONTINUE 

DOT2 # DOT(MR,NR,A ,J~J )  
I F ( ( D O T 2 / D ~ T I )  - TOL) m5.55~70 

55  DO 60 I#I,JMI 
ATEMP ( I } # 3 . q  
DO 60 K#I ,I 

60 ATEMP( I }#ATEMP( I )+U(K, I)*U(K,J} 
DO 65 I # I ,NR 
A{ I.J)#O°F] 
DO 65 K # I , J M [  

65 A( I , J I # A (  I , J I - A (  I ,KI*ATEMP(K)*AFLAG(K) 
AFLAG(J ) #I].[~ 
FAC # D O T ( N C , N C , U , J , J )  
FAC# I . D/SORT ( FAC } 
GO TO 75 

7 r] A F L A G f J ) # I . n  
FAC#1 .O/SORT(DOT2) 

75 DO 80 I # I',NR 
80 A( I , J ) # A (  I , J ) *FAC 

DO 85 I # I ,NC 
85 U( I ~J)#U( I,J)*FAC 

10O CONTINUF 
DO 130 J#l +NC 
DO 130 I#l ,NR 
FAC#n.q 
DO 12Q K#J,NC 

120 FAC#FAC+A( I , K } * U { J , K 1  
1'3D A i I * J ) # F A C  

RETURN 
FNO 

FUNCTION DmTIMP~NP+A,JC~KC) 

COMPUTES THE INNPP RPODUCT OF COLUMNS JC AND KC 
OF MATPlX A. 

DIMENSION A(MR~I) 
DOT#P.n 
DO 5 I # I,NR 
DOT # DOT + A ( I , J C ) * A ( I , K C }  
RFTUPN 
END 

F | G .  1. 

rearranging the bottom submatrix gives 

A' = ([I - (UP) (up)H]zQH~ 
p(up)HZQn ] .  (33) 

We now have a simple scheme for computing the gen- 
eralized inverse. 

Beginning with the matrix (R, S)  and an identity 
matrix, we can illustrate the scheme as follows: 

r ,l r0 i! 0, a-s (-iv ) - u P .  

[0 I,_~J [0 I j  p j 

We would then have all the information necessary to 
compute the generalized inverse of A from eq. (33).  

Thus we have a simple extension of the Gramm-Schmidt 
method for computing the genera]ized inverse. 

In carrying out this algorithm on a computer, all the 
calculations could be performed in the space of the matrix 
A itself plus the space required for an n X n bookkeeping 
matrix. It is clear that all the orthogonalization required 
to reduce these matrices to the form 

! pJ 
can be done in this space. We could then form the product 
(UP)~Z in the space of the zero submatrix in the lower 
lefthand corner of the bookkeeping matrix to get 

I Q 0] 
Z -- UP 

[ (UP)"Z P J 
We could then form the product [(UP)I'ZQH] H in the O- 
submatrix of (Q, O) and then restore the O-submatrix in 
the lower !efthand part of the bookkeeping matrix to get 

! [(UP)~ZQHIH] 
- UP I 

I 

P ) 
We then would only need to perform the product 

OH (ZQ u - (UP) ( up)HZQ'~ 

= A z 

The transpose of this product can be formed in the space 
originally occupied by (Q, (up)HZQ~). Thus the net 
result of carrying out the algorithm is to replace the matrix 
A by the transpose of A'. 

A FORTRAN subroutine for carrying out the algorithm 
is given in Figure 1. The program does not carry out the 
algorithm explicitly in that it avoids permuting the 
columns to obtain the form (R, S) ,  and as each linearly 
dependent column becomes zero in the orthogonalization 
process, it is immediately replaced by a corrected columm 
The net result, however, is the same as would be obtained 

(Continued on page 887) 
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Option C The longitudinal center line of the feed holes shall be located 
within 0.300 inch maximum from the two-track edge and 0.395 inch maxi- 
mum from the three-track edge of the tape. The distance from this center 
line to either edge shall not vary by more than .006 inch (total variation) 
within any 6 inch length of tape. 

To help clarify the above options, a sketch is submitted indicating the 
tolerance from the feed hole to the guided edge (Figure 2). 

5. A purpose of option " C "  is to prevent interference between the tape 
and the tape guide in readers containing both a feed wheel and a narrow 
tape guide. However, preferred practice in the design of readers with feed 
wheels is to make the tape guide wide enough to assure locating the tape 
by the feed wheel only, at the sensing pins. The purpose of the guide, then, 
is to facilitate insertion of the tape into the reader and to prevent exces- 
sive skew. 

GUIDE.' ] )  E_DG~_. 

• S - 

I o o ° - - ~ - - / / / / / / / / ~ / / / /  / // 
O P T I O N  '~," O P T I  O ix/ "B "  O P T t  O N  " C "  

COMtv lU N I C A T I O N S  OFFICE_.  P R O P O S E D  
M A C  H IN  E S  A L T E R  N A T E  

FIG. 2 

Pertinent factors relating to the three options are as follows: 

Option A 

1. This type of dimensioning of paper tape punches has been standard 
in the communications industry for the past 75 years. To change the 
guiding of these machines would be economically impractical. 
2. This type of dfinensioning permits variation in feed hole location of 
0.006 inch from the two hole edge and 0012 inch from the three hole edge 
of the tape. 
3. Tapes punched according to this standard are sensed equally well by 
communication and business machine readers which guide on the sprocket 
holes only. 
4. Tapes punched according to this standard are sensed well by readers 
which guide only on the two hole edge of the tape. There may be some 
loss of sensing margin (due to Item 2 above) when such tapes are passed 
through a reader which guides only in the three hole edge. 
5. This method of dimensioning differs from that  used in EIA RS-227 
for one inch paper tape but conforms to that  used in thousands of 
domestic and foreign machines in use and manufacture today. 

Option B 

1. This type of dimensioning of paper tape punches has been standard 
in the business machine industry for two decades. To change the guiding 
edge of these machines would be economically impracticM. 
2. This type of dimensioning permits a variation in feed hole location of 
0.012 inch from the two hole edge and 0.006 inch from the three hole edge 
of the tape. 
3. Tapes punched according to this standard are sensed equally well by 
communications and business machine readers which guide on the 
sprocket holes only. 
4. Tapes punched according to this standard are sensed well by readers 
which guide only on the three hole edge of the tape. There may be some 
loss of sensing margin (due to I tem 2 above) when such tapes are passed 
through a reader which guides only on the two hole edge. 
5. This method of dimensioning is the same as used in EIA RS-227 for 
one inch paper tape and would permit a reader which guides on only the 
three hole edge of the tape to read both 1 ~  6 inch and 1 inch tape with 
equal margins. 

Option C 

1. This type of dimensioning offers a compromise between Option A and 
B. I t  recognizes the present and continuing existence of tape perforators 
producing tape in accordance with both Option A and Option B conven- 
tions. 
2. This type of dimensioning permits a variation in feed hole location of 
up to 0.012 inch from either the two hole or the three hole edge of the 
tape. 
3. Tapes punched according to this standard are sensed equally well by 
communications and business machine readers which guide on the 
sprocket holes only. 
4. This method of dimensioning requires that  readers which guide only 
on one edge of the tape be designed to accommodate tapes guided on 
either edge during preparation. The number of readers which guide only 
on one edge is small and the design problems encountered in such a reader 
to allow for the possible maximum 0.012 inch variation (Item 2 above) arc 
considered minimal. 
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in carrying out the algorithm in the manner described 
above. In the interest of accuracy the program reortho- 
gona]izes each column after it is firs~ orthogonalized. This 
is a standard technique in carrying out the Gramm- 
Schmidt orthogonalization. 

A number of publications have appeared in the past 
few years which are also concerned with methods for 
computing the generalized inverse. Pyle [2] discusses a 
method for finding the generalized inverse of an arbitrary 
m X n complex matrix A with m _< n in which the Gramm- 
Schmidt process is applied to the columns of A g and then 
to the columns of A if rank (A) _< m. Ben Israel and 
Wersan [3] describe dimination methods in which the 
elimination process is applied to the symmetric product 
AHA or the symmetric product of some submatrix of A. 
I t  is important to note that  all these methods, including 
that  of the authors, depend upon the correct determina- 
tion of the rank of the matrix. In [4] Golub discusses the 
strategy of using the generalized inverse to solve least 
squares problems when the matrix is deficient in rank or 
poorly conditioned. 
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