
A simple algorithm for computing the Lempel–Ziv
factorization

Maxime Crochemore1, 2, ∗ Lucian Ilie3, †, ‡ W. F. Smyth4, 5, §

1Department of Computer Science, King’s College London, London WC2R 2LS, UK
2Institut Gaspard-Monge, Université Paris-Est, F-77454 Marne-la-Vallée Cedex 2

3Department of Computer Science, University of Western Ontario, London, ON, N6A 5B7, Canada
4Department of Computing and Software, McMaster University, Hamilton, ON, L8S 4K1, Canada
5Digital Ecosystems & Business Intelligence Institute, Curtin University of Technology, Perth WA

6845, Australia

Abstract

We give a space-efficient simple algorithm for computing the Lempel–Ziv factorization of
a string. For a string of length n over an integer alphabet, it runs in O(n) time indepen-
dently of alphabet size and uses o(n) additional space.

1 Introduction

The Lempel–Ziv factorization of w [16] is the decomposition w = u0u1 · · · uk, where each
ui (except possibly uk) is the longest prefix of uiui+1 · · · uk that has another occurrence
to the left in w or a single letter in case this prefix is empty. For example, the string
abbaabbbaaabab has the Lempel–Ziv factorization a.b.b.a.abb.baa.ab.ab.

The Lempel–Ziv factorization is a basic and powerful technique for text compression [23].
Introduced to analyze the entropy of strings it has many variants used in gzip or PKzip
software, and, more generally, in dictionary compression methods. The above factorization
is specifically used in LZ77-based adaptive compression methods (see [21] or Section 2.5 in
[22]).

The factorization plays an important role in String Algorithms. The intuitive reason is
that when processing a string online, the work done on an element of the factorization can
usually be skipped because already done on its previous occurrence. A typical application
of this idea resides in algorithms to compute repetitions in strings, such as Kolpakov and
Kucherov algorithm for reporting all maximal repetitions [15], and indeed it seems to be
the only technique that leads to linear-time algorithms independently of the alphabet size
(see [5]).

To compute the Lempel–Ziv factorization, some methods use suffix trees [20], others suf-
fix automata [3], but these two data structures are not the most space-efficient. Recently

∗ Research supported in part by CNRS; e-mail: maxime.crochemore@kcl.ac.uk
† Research supported in part by NSERC; e-mail: ilie@csd.uwo.ca
‡ Corresponding author
§ Research supported in part by NSERC; e-mail: smyth@mcmaster.ca



algorithms have been proposed [1, 5, 2] that use suffix arrays, a more space-efficient struc-
ture. We improve here the simplest of those, that of [5], so that it uses o(n) additional
space as opposed to O(n) of [5].

2 Suffix arrays

We recall in this section briefly the notions of suffix array and longest common prefix.
Consider a string w = w[0 . . n − 1] of length n over an integer alphabet A, that is, an
integer interval of size no more than nc, for some constant c. The suffix of w starting at
position i is denoted by sufi = w[i..n − 1], for 0 ≤ i ≤ n − 1. The suffix array of w,
[18], denoted SA, gives the suffixes of w sorted ascendingly in lexicographical order, that
is, sufSA[0] < sufSA[1] < · · · < sufSA[n−1]. The suffix array of the string abbaabbbaaabab is
shown in the second column of Fig. 1.

i w[i] SA[i] LCP[i] sufSA[i] LPF[i]
0 a 8 0 aaabab 0
1 b 9 2 aabab 0
2 b 3 3 aabbbaaabab 1
3 a 12 1 ab 1
4 a 10 2 abab 3
5 b 0 2 abbaabbbaaabab 2
6 b 4 3 abbbaaabab 4
7 b 13 0 b 3
8 a 7 1 baaabab 2
9 a 2 3 baabbbaaabab 3

10 a 11 2 bab 2
11 b 6 1 bbaaabab 2
12 a 1 4 bbaabbbaaabab 2
13 b 5 2 bbbaaabab 1

Figure 1. The arrays SA, LCP, and LPF for the string w = abbaabbbaaabab.

The suffix array of a string of length n over an integer alphabet can be computed in O(n)
time by any of the algorithms in [10, 12, 13]; these algorithms are inspired by the O(n)
suffix tree construction algorithm of [7].

Often the suffix array is used in combination with another array, the Longest Common
Prefix (LCP) which gives the length of the longest common prefix between consecutive
suffixes of SA, that is, LCP[i] is the length of the longest common prefix of sufSA[i] and
sufSA[i−1]; see the fourth column of Fig. 1 for an example.

Recall that [11] give simple linear-time algorithms to compute the LCP array; its space
complexity is improved in [19].

We shall need also the Longest Previous Factor (LPF) array, defined as follows. For any
position i in w, LPF[i] gives the length of the longest factor of w starting at position i that
occurs previously in w. Formally, if w[i] denotes the ith letter of w and w[i . . j] is the factor
w[i]w[i + 1] . . . w[j], then

LPF[i] = max
({� | w[i..i + �− 1] is a factor of w[0..i + �− 2]} ∪ {0}).



LPF was introduced in [5], but appears also as the λ array in [8]. In our example, the
LPF array as defined above is given in column 6 of Fig. 1.

3 The algorithm

As already mentioned, we compute first the LPF array. The Lempel–Ziv factorization is
then easily computed from LPF by the algorithm of Fig. 2, already proposed in [5]. For
the example text w = abbaabbbaaabab of Fig. 1, this algorithm outputs the sequence of
starting positions of factors, LZ = [0, 1, 2, 3, 4, 7, 10, 12].

Lempel–Ziv factorization(LPF)

1. LZ[0]← 0; i← 0
2. while (LZ[i] < n) do
3. LZ[i + 1]← LZ[i] + max(1,LPF[LZ[i]])
4. i← i + 1
5. return LZ

Figure 2. Algorithm for computing Lempel–Ziv factorization using LPF.

In order to explain the idea for the computation of LPF, it is helpful to arrange the SA
and LCP arrays in a graph, as done in [5]. The vertices are labeled by the SA values and
the edges by the LCP values. The vertices are arranged in left-to-right order corresponding
to their order in SA and are placed at a height corresponding to their starting position in
the string. In other words, if SA[i] = j, then the vertex labeled j is plotted with abscissa i
and ordinate j. Each edge between two vertices is labeled by the corresponding LCP value.
An example if shown by the graph in Fig. 3(i) (solid edges only). Note that the graph is
purely conceptual: no graph is constructed by the algorithm.

The value LPF[SA[i]] can be immediately computed, that is, by local test only, in any of
the following cases:

(i) SA[i − 1] < SA[i] > SA[i + 1], that is, for a “peak” in the graph. In this case
LPF[SA[i]] = max(LCP[i],LCP[i + 1]). Referring to Fig. 3, for i = 3, the value LPF[SA[3]] =
LPF[12] can be computed and it equals max(LCP[3],LCP[4]) = 2 (maximum of the labels
of the two adjacent edges). Since SA[3] = 12, the vertex labeled 12 can then be removed
from the graph. An edge between 3 and 10 is created, labeled by min(LCP[3],LCP[4]) = 1
(minimum of the two labels).

(ii) SA[i − 1] < SA[i] < SA[i + 1] and LCP[i] ≥ LCP[i + 1], that is, the SA-values are
increasing but the LCP-values are decreasing. In this case nothing better (i.e., larger) than
LCP[i] can be obtained from LCP[i + 1] and so LPF[SA[i]] = LCP[i]. For i = 6, the value
LPF[SA[6]] = LPF[4] can be computed and it is equal to 3. As before, since SA[6] = 4,
the vertex 4 can be removed and the vertices 0 and 13 connected by an edge labeled
0 = LCP[i + 1].

(iii) SA[i − 1] > SA[i] > SA[i + 1] and LCP[i] ≤ LCP[i + 1], that is, the SA-values are
decreasing but the LCP-values are increasing. This is symmetric to (ii). However, since
we consider the vertices from left to right, the case (i) will prevent the case (iii) from ever
being used.

We consider then the vertices in the order given by SA and use the above cases (i)-(ii)
any time we can. We maintain a stack with positions waiting to be processed. A fake



0

8

9

3

12

0

4

13

7

2

11

10

6

1

5

0

2

6

1

5

2

3

1

2

2

3

0

1

3

2

1

4

1

(i) (ii)

2

0

2

1

4

Figure 3. (i) Solid labeled edges form the graph representing SA and LCP for the
text abbaabbbaaabab. (ii) The graph right before considering the vertex labeled 6.

position is added at the end of SA — that is, SA[n] = −1, LCP[n] = 0 — to make sure that
all positions are considered uniformly. The algorithm for computing LPF is given in Fig. 4.
Fig. 3(ii) shows the modified graph right before the vertex labeled 6 is considered in step 3
(i = 11).

The correctness of the algorithm follows from the above discussion. It runs in O(n) time
because each position i, 0 ≤ i ≤ n− 1, is pushed at most once onto the stack.

The difference between this algorithm and the one of [5] starts with the fact that the
latter uses only the case (i) above. The use of case (ii) reduces drastically the amount of
additional space needed, from O(n) to o(n), as proved by a combinatorial argument that
we present below.

Consider the space used by the stack. As noted above, the positions in the stack at any
moment are in increasing order (from bottom to top), and both their SA- and LCP-values
are strictly increasing as well. That is, if the content of the stack is (from bottom to top)
i1 < i2 < · · · < ik, then

SA[i1] < SA[i2] < · · · SA[ik] and LCP[i1] < LCP[i2] < · · · LCP[ik].

According to our algorithm, LCP[ij ] contains at this moment the length of the longest
common prefix of sufij−1 and sufij .

We now show that ij+2 − ij ≥ LCP[ij+1] using string-combinatorial arguments; see, e.g.,
[17]. Assume the opposite inequality holds. Then the factor w[ij . . ij+1 + LCP[ij+1] − 1]
has period ij+1 − ij (due to overlap of the identical factors w[ij . . ij + LCP[ij+1] − 1] and
w[ij+1 . . ij+1+LCP[ij+1]−1]). Since LCP[ij+2] > LCP[ij+1] and w[ij+2 . . ij+2+LCP[ij+1]−1]
overlaps w[ij+1 . . ij+1 + LCP[ij+1]− 1] by at least ij+1− ij positions, the primitive roots of
the two periods must synchronize. Hence, the period ij+1 − ij continues past the position



Compute LPF(SA,LCP)

1. SA[n]← −1; LCP[n]← 0
2. push(0,S )
3. for i from 1 to n do

4. while
(
(S �= ∅) and

5.
((

SA[i] < SA[top(S )]
)

or

6.
(
(SA[i] > SA[top(S )]) and (LCP[i] ≤ LCP[top(S )])

)))
do

7. if (SA[i] < SA[top(S )]) then
8. LPF[SA[top(S )]]← max(LCP[top(S )],LCP[i])
9. LCP[i]← min(LCP[top(S )],LCP[i])

10. else
11. LPF[SA[top(S )]]← LCP[top(S )]
12. pop(S )
13. if (i < n) then push(i,S )
14. return LPF

Figure 4. Algorithm for computing LPF.

ij+1 + LCP[ij+1]− 1 in w; that is, LCP[ij+1] is strictly shorter than the actual length of the
longest common prefix of sufij and sufij+1 , a contradiction.

Since ij+2 − ij ≥ LCP[ij+1] and LCP[ij+1] > LCP[ij ], we easily obtain that k = O(
√

n)
and thus the maximum size of the stack is o(n).

It is interesting to note that the upper bound we just proved on the maximum stack size
is asymptotically optimal. For the strings w = abab2ab3 . . . ab�, the stack needs to store
simultaneously � elements, 0, 2, 5, 9, . . . , �(�+1)

2 − 1; that is, it requires Θ(
√

n) space.
We have proved

Theorem 1 The LPF array and the Lempel–Ziv factorization of a string of length n over
an integer alphabet can be computed, using SA and LCP, in O(n) time independently of
alphabet size and o(n) additional space.

4 Conclusion

We discuss briefly a number of variations of our Compute LPF algorithm that are
possible with small changes.

First, all features of the algorithm of [5] are preserved. One of them is that we can keep
LCP unchanged simply by storing (i,LCP[i]) pairs on the stack. Another one, the algorithm
of [5] computes also the PrevOcc array, which gives a previous position where a factor of
length LPF[i] starts. The present algorithm can compute PrevOcc in the same way.

Second, the LPF keyed to SA instead of w can be computed, that is, if we denote the new
array by LPF′, then LPF′[i] = j iff LPF[SA[i]] = j. We need only change LPF[SA[top(S )]]
to LPF[top(S )] in steps 8 and 11.

This may be useful, for instance, if we want to save more space by computing LPF in
place of LCP. (The LCP array is, by definition, keyed to SA.) In such a case, we would
replace LPF by LCP and remove the steps 10 and 11.



Note that, for our initial purpose, computation of the Lempel–Ziv factorization, we would
have then to compute LPF keyed to w, which can be done easily in place (using constant
additional space).

References

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlenbusch, Replacing suffix trees with enhanced
suffix arrays, J. Discrete Algorithms 2 (2004) 53 – 86.

[2] G. Chen, S.J. Puglisi, and W.F. Smyth, Fast and practical algorithms for computing
all runs in a string, Proc. of CPM’07, Lecture Notes in Comput. Sci. 4580, Springer,
Berlin, 2007, 307 – 315.

[3] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45(1) (1986) 63
– 86.

[4] M. Crochemore, C. Hancart, and T. Lecroq, Algorithms on Strings, Cambridge
Univ. Press, 2007.

[5] M. Crochemore and L. Ilie, Computing longest previous factor in linear time and
applications, Inform. Proc. Lett., to appear.

[6] J.-P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, and A. Lefebvre, Linear-Time
Computation of Local Periods, Theoret. Comput. Sci. 326(1-3) (2004) 229 – 240.

[7] M. Farach, Optimal suffix tree construction with large alphabets, in Proc. of FOCS’97,
IEEE Computer Society Press, 1997, 137 - 143.

[8] F. Franek, J. Holub, W. F. Smyth and X. Xiao, Computing quasi suffix arrays, J. Au-
tomata, Languages and Combinatorics 8(4) (2003) 593–606.

[9] D. Gusfield and J. Stoye, Linear Time Algorithms for Finding and Representing all
the Tandem Repeats in a String, J. Comput. Syst. Sci. 69(4) (2004) 525 – 546.

[10] J. Kärkkäinen and P. Sanders, Simple linear work suffix array construction, in Proc. of
ICALP’03, Lecture Notes in Comput. Sci. 2719, Springer-Verlag, Berlin, Heidelberg,
2003, 943 - 955.

[11] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, Linear-time longest-common-
prefix computation in suffix arrays and its applications, Proc. of CPM’01, Lecture
Notes in Comput. Sci. 2089, Springer-Verlag, Berlin, 2001, 181 - 192.

[12] D.K. Kim, J.S. Sim, H. Park, and K. Park, Constructing suffix arrays in linear time.
J. Discrete Algorithms 3(2-4) (2005) 126 - 142.

[13] P. Ko and S. Aluru, Space efficient linear time construction of suffix arrays, J. Discrete
Algorithms 3(2-4) (2005) 143 - 156.

[14] R. Kolpakov and G. Kucherov, Finding maximal repetitions in a word in linear time,
in: Proceedings of the 40th FOCS, IEEE Computer Society Press, New York, 1999,
596–604.

[15] R. Kolpakov and G. Kucherov, On maximal repetitions in words, J. Discrete Algo-
rithms 1(1) (2000) 159 – 186.

[16] A. Lempel and J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform.
Theory 92(1) (1976) 75 – 81.

[17] M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, 2002.



[18] U. Manber and G. Myers. Suffix arrays: a new method for on-line search, SIAM
J. Comput. 22(5) (1993) 935 – 948.

[19] G. Manzini, Two space-saving tricks for linear-time LCP computation, in T. Hagerup
& J. Katajainen (eds.) Proc. SWAT 2004, Lecture Notes in Comput. Sci. 3111 (2004)
372–383.

[20] M. Rodeh, V.R. Pratt, and S. Even, Linear Algorithm for Data Compression via String
Matching, J. ACM 28(1) (1981) 16 – 24.

[21] J. Storer and T. Szymanski, Data compression via textual substitution, J. ACM 29(4)
(1982) 928 – 951.

[22] I.H. Witten, A. Moffat, and T.C. Bell, Managing Gigabytes, Van Nostrand Reinhold,
New York, 1994.

[23] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE
Trans. Inform. Theory 23(3) (1977) 337 – 343.


