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Abstract

We give a simple constructive version of Szemerédi’s Regularity
Lemma, based on the computation of singular values of matrices.
Mathematical Reviews Subject Numbers: 05C85, 68R10.

1 Introduction

“Szemerédi’s Regularity Lemma [9] is one of the most powerful tools of (ex-
tremal) graph theory”. One can only agree with that opening sentence of the
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paper by Komlós and Simonovits [6]. It has many, many applications and
we refer the reader to this excellent survey.

The Regularity lemma is often used to prove the existence of certain objects
and if in addition one wants to construct them, then one needs a constructive
version of the lemma. This was provided by Alon, Duke, Lefmann, Rödl and
Yuster [1]. Subsequently, Frieze and Kannan [3, 4] gave a different version
and extended it to deal with hypergraphs, (see also Czygrinow and Rödl [2]).

In this note, we give another construction based on the construction of sin-
gular values of matrices. The proofs in [1, 3, 4] are somewhat technical.
The result of this paper follows quite easily from a simple lemma relating
non-regularity and largeness of singular values.

1.1 Szemerédi’s Lemma

Let G = (V,E) be a graph with n vertices and let A be its adjacency matrix.
For a disjoint pair of subsets A,B ⊆ V let e(A,B) denote the number of
edges between A and B. The density d(A,B) is defined by

d(A,B) =
e(A,B)

|A| |B| .

A disjoint pair A,B ⊆ V is said to be ε − regular if for every X ⊆ A with
|X| ≥ ε|A| and Y ⊆ B with |Y | ≥ ε|B|, we have

|d(X,Y )− d(A,B) | ≤ ε.

Theorem 1 (Szemerédi’s Regularity Lemma) For every ε > 0 and in-
teger m > 0 there are integers P (ε,m), Q(ε,m) with the following property:
for every graph G = (V,E) with n ≥ P (ε,m) vertices there is a partition P
of V into k + 1 classes V0, V1, . . . , Vk such that

• m ≤ k ≤ Q(ε,m).

• |V1| = |V2| = · · · = |Vk|.

• All but at most εk2 of the pairs (Vi, Vj) are ε-regular.

• |V0| ≤ εn.
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A partition satisfying the second criterion is called equitable. V0 is called the
exceptional class.

Following [9], for every equitable partition P into k + 1 classes we define a
number called the index of P.

ind(P) =
1

k2

∑
1≤r,s≤k

d(Vi, Vj)
2.

A crucial lemma proved in [9] and stated in the following form in [1] states:

Lemma 1 Fix k and γ and let G = (V,E) be a graph with n vertices. Let
P be an equitable partition of V into classes V0, V1, . . . , Vk. Assume |V1| >
42k and 4k > 600γ−2. Given proofs that more than γk2 pairs (Vr, Vs) are
not γ-regular (where by proofs we mean subsets X = X(r, s) ⊆ Vr, Y =
Y (r, s) =⊆ Vs that violate the γ-regularity of (Vr, Vs)) we can find in O(n)
time an equitable partition P ′ (which is a refinement of P) into 1 + k4k

classes, with an exceptional class of cardinality at most

|V0|+ n/4k

and such that
ind(P ′) ≥ ind(P) + γ5/20.

We first describe a procedure for finding a proof that a pair is not γ-regular;
this will be the central part. Then we complete the algorithm with this
procedure on hand using the above lemma.

1.2 Singular Values

An m × n matrix A has a Singular Value Decomposition into the sum of
rank one matrices, see for example Golub and Van Loan [5]. It has many
important applications. The first singular value σ1 is defined as

σ1(A) = max
|x|=|y|=1

|xTAy|.

This value can be computed with high accuracy in polynomial time [5]. It is
the square root of the largest eigenvalue of ATA.

For the following lemma, W is a p × q matrix with rows indexed by R,
columns indexed by C. We assume that ||W||∞ = maxi∈R,j∈C |W(i, j)| ≤ 1.
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For S ⊆ R,U ⊆ C we let

W(S, T ) =
∑
i∈S

∑
j∈T

W(i, j) = xTSWxU (1)

where xS is the 0-1 indicator vector of S i.e. (xS)i = 1 iff i ∈ S.

Let A be the adjacency matrix of G. Suppose we now have a partition of V
into V1, V2, . . . and we wish to check whether (Vr, Vs) form a γ-regular pair
for some γ. We let R = Vr, C = Vs and let Ar,s be the R × C submatrix of
A corresponding to these rows and columns. Let

d =
1

|Vr| |Vs|
∑
i∈Vr

∑
j∈Vs

A(i, j)

be the average of the entries in Ar,s. Let D be the R × C matrix with all
entries equal to d. Let W = Wr,s = Ar,s −D. Re-phrasing the definition of
a regular pair we see that

(Vr, Vs) is an ε-regular pair iff |W(S, T )| ≤ ε|S| |T | (2)

for all S ⊆ R, |S| ≥ ε|R|, T ⊆ C, |T | ≥ ε|C|.

The following lemma relates this all to σ1(W).

Lemma 2 Let W be an R×C matrix with |R| = p, |C| = q and ||W||∞ ≤ 1
and γ be a positive real.

(a) If there exist S ⊆ R, T ⊆ C such that |S| ≥ γp, |T | ≥ γq and |W(S, T )| ≥
γ|S| |T | then σ1(W) ≥ γ3√pq.

(b) If σ1(W) ≥ γ
√
pq then there exist S ⊆ R,T ⊆ C such that |S| ≥

γ′p, |T | ≥ γ′q and |W(S, T )| ≥ γ′|S| |T | where γ′ = γ3

108
. Furthermore S, T

can be constructed in polynomial time.

Proof
(a) From (1) we see that

|xTSWxT | ≥ γ|S| |T | ≥ γ3pq.

Now let ξS = xS/|xS| and ξT = xT/|xT |. Then

|ξTSWξT | ≥ γ3pq/(|ξS| |ξT |) ≥ γ3√pq
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since |xS| ≤
√
p and |xT | ≤

√
q. This proves (a).

(b) W.l.o.g. we can choose x, y such that xTWy ≥ γ
√
pq, |x| = 1, |y| = 1.

Let β > 0 (β will be later set to 3/γ) and define x̂ by

x̂i =

{
xi : if |xi| ≤ β√

p

0 : otherwise

and define ŷ by a similar truncation at β/
√
q.

Since |x| = 1 we see that I = {i : |xi| ≥ β/
√
p} has cardinality at most

p/β2. Let W1 be obtained from W by replacing elements in rows other than
I by zero. Then (using the standard inequality that for any vector a and
matrix M, we have |aTM| ≤ |a|||M||F , where ||M||2F is the sum of squares
of the entries of M)

|(x− x̂)TWy| = |(x− x̂)TW1y| ≤ |x− x̂|||W1||F |y| ≤ ||W1||F ≤
√
pq

β
.

By a similar argument we obtain |x̂TW(y − ŷ)| ≤ √pq/β. Thus

x̂TWŷ = xTWy − (x− x̂)TWy − x̂TW(y − ŷ) ≥ (γ − 2/β)
√
pq.

Let γ̂ = γ − 2/β. Then at least one of (x̂+)TWŷ+, (x̂+)TWŷ−, (x̂−)TWŷ+,
(x̂−)TWŷ− is at least γ̂

√
pq/4. Here ξ+ is obtained from ξ ∈ Rp by putting

ξ+
i = max{0, ξi}. ξ− = −((−ξ)+).

Suppose without loss of generality that (x̂+)TWŷ− ≥ γ̂
√
pq/4. (The proof

for the other cases is similar.) We define random subsets S, T as follows:

For each i ∈ R, put i in S with probability x̂+
i

√
p/β.

For each j ∈ C, put j in T with probability −ŷ−j
√
q/β.

Then
E(W(S, T )) = −(x̂+)TWŷ−(

√
pq/β2) ≤ −γ̂pq/(4β2).

Thus there exist S, T such that W(S, T ) ≤ −γ̂pq/(4β2). Furthermore, such
S, T can easily be constructed in O(pq) time using the method of conditional
expectations [7] and [8]. Indeed for any r ∈ R we have

E(W(S, T )) = E(W(S, T ) | r ∈ S)Pr(r ∈ S)+E(W(S, T ) | r 6∈ S)Pr(r 6∈ S)

and fixing r ∈ S or r 6∈ S essentially reduces the size of R by one.
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Putting β = 3/γ we get |W(S, T )| ≥ γ3pq/108. We need only verify that
S, T are not too small in order to complete the proof of (b). But this follows
immediately from |S| |T | ≥ |W(S, T )|. 2

We can combine Lemmas 1 and 2 to make an algorithm for finding an ε-
regular partition, much as in [1].

1. Arbitrarily divide the vertices of G into an equitable partition P1 with
classes V0, V1, . . . , Vb where |Vi| = bn/bc and hence |V0| < b. denote
k1 = b.

2. For every pair (Vr, Vs) of Pi, compute σ1(Wr,s). If the pair (Vr, Vs) are
not ε-regular then by Lemma 2 we obtain a proof that they are not
γ = ε9/108-regular.

3. If there are at most ε
(
ki
2

)
pairs that produce proofs of non γ-regularity

then halt. Pi is ε-regular.

4. Apply Lemma 1 where P = Pi, k = ki, γ = ε9/108 and obtain a parti-
tion P ′ with 1 + ki4

ki classes.

5. Let ki+1 = ki4
ki ,Pi+1 = P ′, i = i+ 1 and go to Step 2.

The algorithm finishes in at most O(ε−45) steps with an ε-regular partition,
since ind ≤ 1/2 and each non-terminating step increases the index by γ5/20 =
Ω(ε45).
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