
A Simple Algorithm for Learning Stable Machines
Savina Andonova

�
and Andre Elisseeff

�
and Theodoros Evgeniou

�
and Massimiliano Pontil

�

Abstract. We present an algorithm for learning stable machines
which is motivated by recent results in statistical learning theory. The
algorithm is similar to Breiman’s bagging despite some important
differences in that it computes an ensemble combination of machines
trained on small random sub-samples of an initial training set. A re-
markable property is that it is often possible to just use the empirical
error of these combinations of machines for model selection. We re-
port experiments using support vector machines and neural networks
validating the theory.

Keywords: Machine Learning, Statistical Learning Theory, Bag-
ging.

1 Introduction and Notation

An important theoretical approach to analyzing the performance of
learning machines is through studying their stability [7, 11, 3]. Var-
ious notions of stability have been proposed in the past [7, 11, 3],
and have been used to study how combining machines can influence
the generalization performance [4]. There has also been a lot of ex-
perimental work showing that combining learning machines, for ex-
ample using Boosting or Bagging methods [4, 13], very often leads
to improved generalization performance, and a number of theoretical
explanations have been proposed [13, 4, 10].

Bagging [4] is a particular ensemble architecture consisting of a
voting combination of a number of learning machines. Each machine
is obtained by training the same underline learning algorithm, e.g. a
decision tree, on a dataset drawn randomly with replacement from
an initial training set. The size of this sub-sampled dataset is equal
to the size of the original training set, but repetitions of points occur.
Although there does not exist a well-accepted theory of Bagging,
there are some theoretical and experimental indications that Bagging
works better when the individual machine is “unstable” [4]. Instabil-
ity in this case means that the machine changes a lot with changes of
the training set.

In this paper we present a simple algorithm for learning stable ma-
chines which is based on recent results in statistical learning theory
[8]. The algorithm is similar to Breiman’s Bagging despite some im-
portant differences: (i) we let each machine use only a small part (i.e.
5-20%) of the original training data formed by random sampling with
replacement, (ii) we consider the case where classification is done af-
ter thresholding the combination of the real valued outputs of each of
the machines. The algorithm is named Subagging and is summarized
in Figure 1.

�
Boston University - Boston, USA, E-mail:savina@math.bu.edu�

Biowulf Technologies, New-York, NY, USA, E-mail:
andre@barnhilltechnologies.com�
INSEAD, Fontainebleau, France E-mail: theodoros.evgeniou@insead.fr�
Dept. of Information Engineering, Univ. of Siena, Siena, Italy, E-mail:
pontil@dii.unisi.it

Input: - A set of i.i.d. data �
	���
������������������! "
$#&%'�(%*)+) 	 �-, �
- A learning algorithm .0/1���2 "
$#&%'�(%*)*� 	�3 ���4��5 6
(7'8:9 denotes the solution of . trained on �;)

For <=�>%+�@?(?A?A��B
C Sub-sample D points from �E	
Let �GF��H<I� the obtained set.

C Train . on �
	 to compute 7 8KJ'LNM�O

Output:
�P�Q PM�, � 7 8 J LNM�O

Figure 1. Subagging algorithm.

In a Related work [8] we analyzed the characteristics of this al-
gorithm. In particular, we developed probabilistic bounds on the
distance between the empirical and the expected error that, unlike
in the standard analysis of Bagging [4], are not asymptotic. These
bounds formally suggest that Subagging can increase the stability of
the learning machines when these are not stable and decrease oth-
erwise. These results are reviewed in Section 2. In Section 3 we
present experiments validating this theory using support vector ma-
chines and neural networks as the base machine. The results indicate
that Subagging can significantly increase the stability of these ma-
chines whereas the test error is close (and sometimes better) to that
of the same machines trained on the full training set.

Another important practical consequence of our theoretical results
is that, since Subagging improves the stability, it can be easier to
control the generalization error. In Section 4 we present experiments
suggesting that the empirical error can indeed be a good estimate
of the predictive performance of Subagging. This is a remarkable
property which shows the advantage of our ensemble method over
standard learning algorithms based on empirical risk minimization.

2 Theory

Let �R	S�T
��������������S�U�V W
$#&%+�@%*)+) 	 �-, � be the training set. A
learning algorithm is a function .X/G���Y Z
$#&%'�(%*)*� 	 3 ���4� 5 6
which, given a training set � 	 , returns a real valued classifier 7 8 9[/
� 3]\ ^ . Classification of a new input � is done by taking the sign
of 7*8:9+���:� . For simplicity we consider only deterministic and sym-
metric algorithms although the theory can be extended to general
algorithms by adding a randomizing preprocessing step. We denote
by � �	 the training set obtained by removing point ���_��������� from �`	 ,

that is the set �`	��1
$��� � ��� � �I) . We use the following notion of stability
from [3]:

Definition: We say that a learning algorithm is �1	 -stable with respect
to a training sets of size � if the following holds:��� �4
$%+�(?@?A?A���()$� � � 	 � � ���=� �1��/	� 7 8 9'���K�K# 7 8�
9 ���K����
�� 	

Roughly speaking the output of a learning machine on a new (test)
point � should not change more than �+	 when we train the machine
with any training set of size � and when we train the machine with the
same training set but one training point (any point) removed. Bounds
on stability for many algorithms were proved in [3].

It is possible to relate the stability of a learning algorithm to his
generalization error, � L ��� �(O�� � ��# �17*8:9+���:����� , where the expectation is
taken w.r.t the unknown probability distribution generating the data
and � is the Heavyside function, � ��� � � % , if ����� , and zero oth-
erwise (for a discussion, see [7, 11, 3]). In order to state the results
we also define for any given constant the empirical error !#"emp
on function 7 to be: ! "emp ��7 �4�

�
	 Q 	 �-, �%$ " ��# ����7:����� ��� , where

the function $ " �'&�� is 0 for &)(#* , 1 for &)�+� , and ," - % for
#* .
/&0
�� (a soft margin function). The following theorem from
[3] expresses the relation between generalization and stability.

Theorem 1 For any given , with probability %[#21 the general-
ization misclassification error of an algorithm that is ��	 stable is
bounded by:

! "emp ��7'8:9A� -�3 �_	 -24 %3 �.5 3 �6�1	 - %�7 �98;: � %1 �
We now discuss a similar generalization bound for an ensemble

of machines where each machine uses only D points drawn randomly
with the uniform distribution from the training data. To study such a
system, let us introduce some more notations that incorporates the
“random sub-sampling” effect. Let < F8:9 �=� 8 J � 7 8 J>� be the ex-
pected combination of machines trained on sub-samples of size D .
The expectation is taken with respect to the training data � F of size
D drawn uniformly from � 	 . The next theorem is from [8].

Theorem 2 For any given , with probability %[#21 the general-
ization misclassification error of the expected combination < F8 9 of
machines each using a sub-sample of size D of the training set and
each having a stability � F is bounded by:

! "emp �?< F8:9 � -A@ D� � F -/4 %3 � 5 @ D>� F - %B7 � 8;: � %1 �
Proof (Sketch): The proof consists of bounding the stability of the
Subagging procedure. To this end, it is sufficient to show that the
stability of < F8 9 is upper bounded by

3 F�C J	 and apply Theorem 2.1
afterwards.

This theorem holds for ensemble combinations that are theoretically
defined from the expectation � 8KJ � 7'8KJD� . It does not apply to a finite
combination of machines computed by Subagging,

�P�Q PM�, � 7 8KJ'LNMHO .
Yet, when B is large !E"emp �?< F8 9 �GFH!I"emp �

�P"Q PM�, � 7 8 J L M�O � and
when B increases the stability of the combined learning system tends
to the stability of the expectation � 8 J � 7 8 JB� which does not improve
after B has passed a certain value. This value may correspond to the
convergence of the finite sum

�P Q PMH, � 7 8KJ LNM�O to its expectation w.r.t.
� F - See [8] for a formal discussion. Thus, the control of the test error
by the empirical error is mainly due to the sub-sampling effect and

not to the number of machines used in the combination. That means
that increasing B shouldn’t improve this control as much as reducing
the value of D , a fact which we experimentally verified - See Section
3.

A consequence of Theorem 2 is that, since the stability of < F8:9 is
smaller than

� FJC J	 , if this stability is better than the stability of a sin-
gle machine (which equals �$	 � , the average of functions 7 8 J LNM�O pro-
vides a better bound. However, in the other case, the bound is worse
and Subagging should be avoided. We have the following corollary:

Corollary 2.1 If a learning machines is � 	 stable and
C 9C J (� F	 , then

combining these learning machines via Subagging does not provide
a better bound on the difference between the test and empirical er-
ror. Conversely, if

C(9C J � � F	 , then combining these learning machines
leads to a better bound on the difference between the test and empir-
ical error.

This corollary says that combining machines via Subagging
should not be used if the stability of the single machine is very good.
However, it is not often the case to have a highly stable single ma-
chine, so typically Subagging improves stability. In such a situation,
the bounds presented in this paper show that we have better control
of the generalization error for combination of machines in the sense
that the empirical error is closer to the test error.

At last notice that the bounds presented do not necessarily imply
that the generalization error of Subagging is less than that of single
machines (the r.h.s. of the bounds include both the empirical error
and the stability), a remark which also been made for Bagging [4].

3 Experimental Results

We conducted a number of experiments using five datasets from
UCI K : Breast-Cancer, Diabetis, German, Image, and Flare-Solar. We
focused mainly on two learning machines: Support Vector Machines
(SVMs) and Neural Nets. The goal of the experiments was to study
how the test error and the absolute difference between test and train-
ing error behave with the “free parameters” of Subagging, i.e. with
the number B of machines and the percentage L of sub-samples used
by each machine, L�� F	 %��M� . For both SVM and Neural Nets we
found that Subagging decreases the above difference, thus increas-
ing their stability. We now discuss these results and link them to the
theoretical findings.

3.1 Subagging SVMs

We used SVMs [14] by using a Gaussian kernel. Each SVM was
trained with a fixed value of the regularization parameter and vari-
ance of the Gaussian which were previously computed using 10-fold
cross validation. Table 1 shows the average test error (top row in
each cell) and the average absolute difference between test and train-
ing error (bottom raw in each cell) with their standard deviation as
a function of the percentage L . The average was computed over 10
random splits of the overall datasets in testing and training. The num-
ber of machines combined by Subagging was equal to NM� . The last
column in Table 1 shows the results of the SVM trained on the whole
dataset.

These results indicate that the difference between test and train-
ing error of one SVM using all training data is, except that for the
Flare-Solar dataset, about double the same difference obtained byK The dataset along with a short description are available from

http://www.ics.uci.edu/˜mlearn/MLRepository.html

Subagging with L � %B��� . At the same time, the test performance
of one SVM alone is close on four datasets and better than Subag-
ging on the Image dataset. In other words the test performance is
about the same, but the difference between test and training error is
significantly smaller for Subagging than for a single SVM. Note that
the parameters of the SVM were optimized for the single SVM, so
the performance of Subagging is not the optimal one.

The fact that the test error gets closer to the training error for
Subagging can be explained by Theorems 1 and 2. Indeed if we
denote by � the kernel of the SVM and by � the regularization
parameter, the stability of an SVM can be bounded by ��� �� where� �
	���
�������� ��� ���:� . Thus, because � was fixed to a constant in
our experiments, the stability does not depend on the size of the train-
ing set � . In this case Theorem 2 gives a much tighter bound than
Theorem 1.

Finally, we noticed that the number B of machines is not very
important: combining only 10 SVMs gives already a good approxi-
mation of the “true average” (We will add a figure showing this in a
future version of the paper).

Table 1. Subagging SVMs. Average test error and (below it) the average
absolute difference between test and training error with their standard

deviations for different values of the percentage � of the sub-samples. The
last column shows the results for the SVM trained on the full dataset.

Dataset 5% 10% 20% 1SVM

Breast 28.5 � 4.8 27.1 � 4.6 27.0 � 4.7 26.6 � 4.8
5.3 � 4.4 5.6 � 3.4 7.2 � 4.3 9.0 � 5.0

Diabetis 24.6 � 1.9 23.5 � 2.0 23.5 � 2.0 23.3 � 2.3
2.6 � 1.5 2.8 � 1.4 3.1 � 1.7 5.4 � 1.8

German 26.2 � 2.7 24.3 � 1.9 23.8 � 2.2 23.4 � 1.7
2.7 � 1.4 2.6 � 1.6 3.1 � 1.8 6.7 � 2.2

Image 8.9 � 0.8 7.1 � 0.8 4.7 � 0.7 3.0 � 0.6
0.8 � 0.6 0.7 � 0.8 0.7 � 0.7 1.7 � 0.6

Solar 33.8 � 2.3 34.0 � 1.9 33.5 � 2.7 34.9 � 3.0
2.5 � 2.0 2.4 � 1.9 2.5 � 2.2 3.1 � 1.9

3.2 Subagging Neural Nets

Neural Nets were trained with the conjugate gradient (see [12] for
details). We used a three layers network architecture with ten hidden
units. The initial momentum, the learning rate, the attenuate learning
rate, the error limit and the iteration limit were fixed for all of the
machines. Also, we did not apply any heuristics in order to find the
initial parameters for the Neural Network - they were chosen ran-
domly a priori. Table 2 shows the experimental results (the setting is
the same as in Table 1).

Like in the case of SVMs, the results indicate that Subagging de-
creases the difference between test and training error. The theoretical
explanation is more delicate in this case, because we do not know
theoretically the stability of Neural Nets. However, this does not re-
duce the interest of the discussion since the former theoretical results
hold for very general algorithms as soon as uniform stability can be
defined.

We also noticed in a separate series of experiments that the above
difference is more sensitive to the size of the sub-sample than to the
number of the machines. In particular the test error decreases and it

� The discussion becomes more tricky if we let � be a function of the size of
the training set � , see [8].

Table 2. Subagging Neural Nets. Average test error and (below it) the
average absolute difference between test and training error with their

standard deviation for different values of the percentage � of the
sub-samples. The last column shows the results for the Neural Net trained on

the full dataset.
Dataset � P 5 % 10% 20% 1NN

Cancer 26.7 � 5.8 27.9 � 3.7 28.6 � 3.4 32.6 � 5.7
5.3 � 4.5 6.4 � 3.6 11.0 � 5.2 30.1 � 5.5

Diabetis 24.3 � 2.0 24.2 � 2.5 24.3 � 2.6 28.6 � 1.3
3.2 � 2.3 5.2 � 2.9 8.2 � 2.5 24.3 � 1.7

German 24.5 � 2.2 24.6 � 2.8 23.7 � 1.9 29.9 � 2.7
2.9 � 2.0 4.9 � 3.0 8.2 � 3.3 27.7 � 2.9

Image 8.8 � 0.8 5.7 � 0.6 4.5 � 1.8 9.6 � 18.2
1.5 � 1.6 1.5 � 2.3 1.8 � 2.5 7.8 � 18.9

Solar 35.4 � 1.7 35.4 � 2.5 35.0 � 1.6 33.8 � 1.7
3.0 � 1.8 3.7 � 2.0 3.6 � 2.0 2.8 � 2.2

stabilizes when the number of machines combined is greater than 50
(We will add a figure showing this in a future version of the paper).

3.3 Applying Subagging to Other Machines

We also carried our experiments with Decision Trees and � # Nearest
Neighbors (not shown here). For � # Nearest Neighbors the experi-
ments done showed that Subagging does not decrease the difference
between test and training error. The � # Nearest Neighbors is known
to be a stable algorithm [4] and his stability scales as

�
	 [7], which

means (with Corollary 2.1) that Subagging shouldn’t help. Experi-
ments and theory are thus consistent. In the case of decision trees we
found the same trend as with SVMs and Neural Nets.

4 Model Selection Using Small Sub-samples

The bound in Theorem 2 implies that the empirical error of Sub-
agging can be a good indicator of the expected error of the combi-
nations of the machines, especially for small sub-sample sizes. For
example, in the case of SVMs the stability does not depend on the
variance of the kernel. Thus, if we believe Theorem 2 is predictive,
we may just try to select the best value of the variance by minimizing
the empirical error.

To further explore how the empirical error of Subagging can be
used for model selection, we performed one more series of experi-
ments. We focused only on two datasets, namely Breast-Cancer and
Diabetis.

We first compared one single SVM and a Subagging combination
of 30 SVMs each using a small percentage of the original training
set. Each of these two architectures was trained on different values
of the regularization parameter and variance of the Gaussian kernel.

Figures 2 and 3 show test and training error as a function the vari-
ance of the Gaussian kernel (for the same fixed value of the regular-
ization parameter used in Section 3.1) for Breast-cancer and Diabetis
datasets respectively - notice that the scales of the y-axis of the plots
are different for single and Subagging SVMs. For both datasets, the
training error of the SVM alone monotonically increases with the
variance of the Gaussian. Then, as expected, in this case the training
error cannot be used for model selection. On the other hand, in the
case of Subagging, the training error has a minimum fairly close to
the minimum of the test error.

Figures 4 and 5 show test and training error for our two datasets as
a function of the logarithm of the regularization parameter. In these
figures the test error present a large “U” shape. However, in the case

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40 45 50

Test
Training

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 5 10 15 20 25 30 35 40 45 50

Test
Training

Figure 2. Breast cancer dataset: Test and Training error as a function of
the variance of the Gaussian kernel. (Left) One single SVM, and (Right)

Subagging 30 SVMs trained on 10% of the data.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45 50

Test
Training

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 5 10 15 20 25 30 35 40 45 50

Test
Training

Figure 3. Diabetis dataset: Test and Training error as a function of the
variance of the Gaussian kernel. (Left) One single SVM, and (Right)

Subagging 30 SVMs trained on 5% of the data.

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5

Test
Training

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2

Test
Training

Figure 4. Breast cancer dataset: Test and Training error as a function of
the logarithm of the regularization parameter. (Left) One single SVM, and

(Right) Subagging 30 SVMs trained on 10% of the data.

0.15

0.2

0.25

0.3

0.35

-1 -0.5 0 0.5 1 1.5 2 2.5

Test
Training

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0 0.5 1 1.5 2 2.5 3

Test
Training

Figure 5. Diabetis dataset: Test and Training error as a function of the
logarithm of the regularization parameter. (Left) One single SVM, and

(Right) Subagging 30 SVMs trained on 5% of the data.

of Subagging, it is still possible to well locate the minimum of the test
error by looking at the minimum of the training error. Thus, the ex-
periments indicate that for Subagging by small sub-samples the train-
ing error can effectively be used for model selection. Notice also, that
in all cases the test error for Subagging is only slightly bigger than
the test error of a single SVM.

In the case of Neural Nets, we tried to select the number of hidden
units of the Neural Nets. Table 3 shows the average test and train-
ing error for one single Neural Nets and Subagging Neural Nets withL ����� for different numbers of hidden units. Although this exper-
iment is only preliminary (we used only four different values for the
hidden unites) it indicates that the training error can predict the best
choice of the parameter i for Subagging.

The fact that, in the case of Subagging with small sub-samples,
the empirical error can be used for model selection is, as far as we
know, a quite surprising result. For standard learning algorithms, in-
stead, the empirical error is an increasing function of the model com-
plexity, i.e. the complexity of the hypothesis space used for learning
(measured for example through the VC-dimension of that space). As
a consequence, to perform model selection, one typically needs to
use other error estimates such as the leave-one-out error [7]. How-
ever, the computation of these error estimates is, in general, very ex-
pensive. Then, the fact that just the training error is good enough to
perform model selection is a very pleasant property of out learning
algorithm.

Table 3. Results on Neural Nets with different trained on different
numbers of hidden units. Each cell shows the test error and (below it)

empirical error with their standard deviations.

H. Units 0 2 5 10

Cancer 28.8 � 3.3 30.1 � 2.5 35.5 � 4.3 32.6 � 5.7
(1NN) 21.9 � 1.3 17.1 � 1.8 5.9 � 0.9 25.0 � 0.9
Cancer 26.6 � 3.1 32.5 � 3.2 28.4 � 3.4 26.7 � 5.8

(Suggabing) 22.4 � 1.6 24.4 � 1.3 23.4 � 1.6 23.3 � 1.5

Diabetis 23.6 � 2.5 26.2 � 3.2 28.4 � 1.0 28.6 � 1.3
(1NN) 20.4 � 2.3 19.6 � 5.6 10.7 � 2.3 4.3 � 1.5

Diabetis 24.6 � 2.4 25.2 � 1.6 25.0 � 1.9 24.3 � 2.0
(Subagging) 22.8 � 2.5 22.6 � 1.7 21.9 � 2.5 21.6 � 2.1

5 Conclusions and Future Work

We presented Subagging, a learning algorithm which combines the
output of real-valued classifiers each trained on small random sub-
samples of the original training set.

We reported experiments using a number of learning machines and
datasets where we studied the characteristics of this algorithm. The
results indicate that Subagging improves the stability of unstable ma-
chines while the test error is close (and sometimes better) than that of
these machines trained on the whole dataset. We also showed that, in
the case of Subagging, the empirical error of can be used for model
selection, unlike the case of single machines trained using all the
training data. These experimental findings support the theoretical re-
sults discussed in Section 2 and suggest that Subagging is a viable
technique for learning stable machines.

In the future it could be interesting to further study how the dif-
ference between test and training error of Subagging depends on the
size of the sub-sampling, and how to experimentally infer from this
the form of the stability of the underline learning machine as a func-
tion of the size of the training data. Another future direction for re-

search is to explore how to extend our theoretical framework to other
ensemble methods like Boosting.

REFERENCES
[1] E. Bauer and R. Kohavi. An Empirical Comparison of Voting Classifi-

cation Algorithms: Bagging, Boosting and Variants. Machine Learning,
36:105–142, 1999.

[2] S. Boucheron, G. Lugosi, and P. Massart. A sharp concentration in-
equality with applications. Random Structures and Algorithms, 16:277–
292, 2000.

[3] O. Bousquet and A. Elisseeff. Stability and generalization. To be pub-
lished in Journal of Machine Learning Research, 2002.

[4] L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140,
1996.

[5] L. Breiman. Heuristics of instability and stabilization in model selec-
tion. Annals of Statistics, 24(6):2350–2383, 1996.

[6] P. Cunningham, J. Carley and S. Jacob. Stability Problems with Artifi-
cial Neural Network and the Ensemble Solution. , 1999.

[7] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pat-
tern Recognition. Number 31 in Applications of mathematics. Springer,
New York, 1996.

[8] T. Evgeniou, M. Pontil, and A. Elisseeff. . Leave one out error, stability,
and generalization of voting combinations of classifiers. Preprint, 2001.

[9] Y. Freund and R. Schapire. A decision-theoretic generalization of on-
line learning and an application to Boosting. Journal of Computer and
System Sciences,55(1):119–139, 1997.

[10] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:
a statistical view of boosting. Tech. report, Department of Statistics,
Stanford University, 1998.

[11] M. Kearns and D. Ron. Algorithmic stability and sanity check
bounds for leave-one-out cross validation bounds. Neural Computa-
tion, 11(6):1427–1453, 1999.

[12] W.H. Press et al.. Numerical Recipes in C. Cambridge University
Pressb, 1986.

[13] R. Shapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin:
A new explanation for the effectiveness of voting methods. The Annals
of Statistics, 1998.

[14] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

