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Abstract

In this study we investigated the perspective offered by coupling a simple vegetation growth model and ground-based remotely-sensed data

for the monitoring of wheat production. A simple model was developed to simulate the time courses of green leaf area index (GLAI), dry above-

ground phytomass (DAM) and grain yield (GY). A comprehensive sensitivity analysis has allowed addressing the problem of model calibration,

distinguishing three categories of parameters: (1) those, well known, derived from the present or previous wheat experiments; (2) those, phe-

nological, which have been identified for the wheat variety under study; (3) those, related to farmer practices, which has been adjusted field by

field. The approach was tested against field data collected on irrigated winter wheat in the semi-arid Marrakech plain. This data set includes

estimates of GLAI with additional DAM and GY measurements. The model provides excellent simulations of both GLAI and DAM time

courses. GY space variations are correctly predicted, but with a general underestimation on the validation fields. Despite this limitation, the

approach offers the advantage of being quite simple, without requiring any data on agricultural practices (sowing, irrigation and fertilisation).

This makes it very attractive for operational application at a regional scale. This perspective is discussed in the conclusion.

� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Irrigated agriculture represents a major contribution to food

security, producing nearly 40 percent of food and agricultural

commodities on 17% of cultivated lands (FAO, 2002). Irri-

gated areas, which have almost doubled in recent decades, sig-

nificantly contribute to the increase of global production. The

scope for further irrigation development to meet food require-

ments in the coming years is, however, severely constrained by

decreasing water resources. In particular, serious water short-

ages occur in semi-arid areas as existing resources reach full

exploitation. A challenging objective is thus to ensure food se-

curity in a sustainable way of these regions. The design of op-

erational tools that would provide decision-makers with

regional estimates of crop production could help to reach

this objective. Quantifying crop production at a regional scale

would facilitate the monitoring of irrigation efficiency and

crop water use. In these regards, the scientific community

has paid an increasing interest on approaches based on agro-

ecological process models and remote sensing observations

(Moulin et al., 1998; Pellenq and Boulet, 2004; Olioso et al.,

2005). Models continuously simulate crop development and

growth, while satellite imagery provides with space and time

regular observations of some biophysical variables of canopies

such as the green leaf area index or the fraction of absorbed

photosynthetically active radiation (Bastiaanssen et al., 2000;

Scotford and Miller, 2005). Approaches based on the combi-

nation of modelling and remote sensing thus offers strong op-

portunities for the monitoring at a regional scale (Clevers

et al., 2002; Lobell et al., 2003; Verhoef and Bach, 2003; de

Wit et al., 2004; Mo et al., 2005).
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A lot of process-based crop models have been developed in

the recent years (see comparisons and reviews in Jørgensen,

1994; Jamieson et al., 1998 or Eitzinger et al., 2004). These

models simulate crop development, growth and yield on the

basis of the interaction between agro-environmental condi-

tions and plant physiological processes such as photosynthesis,

respiration, evapotranspiration and N-uptake. The complexity

of these models is increasing because they include either

new processes or new details for their description. Although

the performance and accuracy of crop models have

continuously made progresses over the past few years, applica-

tions for yield forecasting over large areas (10 km2 to

100,000 km2) have encountered a number of limitations since

most of the models were initially conceived for local/field-

scale applications (Boote et al., 1996; Faivre et al., 2004; de

Wit et al., 2005). Two major limitations are basically pointed

out. Firstly, there are generally a large number of model pa-

rameters compared to the amount of observation available

for their identification. This makes optimisation procedure dif-

ficult to operate, since good fits may be achieved for many

combinations of the parameters values. Thus, prior (imperfect)

information on parameters is required. This results in simula-

tion errors and reduction of the predictive capacity of models

(Franks et al., 1997; Wallach et al., 2002). Secondly, it is dif-

ficult to cope with the lack of adequate and sufficient input

data to run the model at a regional scale. This typically con-

cerns data related to technical practices such as crop calendar

as well as irrigation and fertilisation schedules, which know

large space and time variations. As an example, Mo et al.

(2005) assume uniform irrigation dates and optimal fertilisa-

tion over a 90,000 km2 area; these authors conclude that

more timely agronomic information are needed to improve

the reliability of yield prediction. An alternative for regional

application is to consider simple algorithms which are able

to deal with a strong heterogeneity compared to more complex

models that treat the surface as homogeneous (Franks et al.,

1997). There is thus a large place for testing simple models

being specifically designed for the assimilation of remote

sensing data.

Amongst the simplest approaches, the theory of light-use-

efficiency (Monteith, 1977) has provided a basis to simulate

canopy light interception and dry mass production. This theory

offers a strong opportunity to be tested in combination with

satellite imagery in the optical domain. Indeed, there is an ob-

vious link between surface reflectances and plant light absorp-

tion. This link has been widely used to predict dry matter

production on natural ecosystems, especially grassland in the

Sahelian pastoral zone with the help of coarse spatial resolu-

tion satellite data (e.g. Tucker, 1996). For irrigated crop lands,

the implementation of such approach is complicated since the

growing season varies according to agricultural practices. To

track the variability in crop development and production, the

use of high spatial resolution satellite data appears more ade-

quate. Lobell et al. (2003) have performed such an analysis

on the large irrigated Yaqui Valley (North-West of Mexico)

using Landsat-TM images, but the number of images per grow-

ing season was limited, and rough estimates of planting dates

performed. The design, from now or in a near future, of Earth

Observation Systems designed to provide both high spatial res-

olution (w10 m) and frequent time of revisit (w1 day)dsuch

as RHEA (Dedieu et al., 2003) or FORMOSAT-2 (Chern et al.,

2001)dshould make improvement possible.

In this context, this study investigates the perspectives of-

fered by the availability of times series of a key biophysical

variable (leaf area index) for the monitoring of phytomass pro-

duction and grain yield of cereal crops. The investigation is

based on the ‘‘Simple Algorithm For Yield estimate’’

(SAFY) model, which was specifically developed for this

work. The main idea is to use the model to represent well-

known processes involved in crop development and growth,

with the requirement that these processes can be simulated us-

ing standard data, i.e. climatic data and optical imagery (which

provides estimates of leaf area index). The model simulates

the increase of the dry above-ground phytomass based on

the light-use efficiency theory of Monteith (1977), with an ac-

count of the dynamics of green leaves and of the effect of tem-

perature. In contrast, the transfers of water and nutriments

between the soil and the plant were not explicitly simulated,

because of the inability to provide a spatial distribution of

the complete set of parameters, initial conditions and input

data in case of regional applications. The impact of water

and nitrogen stresses is believed to be adjusted from leaf

area observations through one main parameter, which is

named effective light-use efficiency. It has thus been assumed

that the dynamics of green leaves is a good tracer of these

agro-environmental stresses.

The objective of this article is threefold: (1) to present the

SAFY model; (2) to develop a robust method for its control

from time series of green leaf area index; (3) to evaluate this

method using data collected over semi-arid wheat crops under

a large range of irrigation and fertilisation schedules. The ar-

ticle is organised as follows. The region of interest, the fields

of study and the experimental data set are first presented. Then

the SAFY model is described, along with a discussion on the

parameters that can be identified from literature or field data

with satisfying accuracy. The calibration of the remaining pa-

rameters is discussed in Section 4, with emphasis on the prob-

lem of equifinality and over-parameterisation. Section 5

presents the model evaluation, followed by concluding

remarks.

2. The experimental data set

The region of interest is the Haouz plain which surrounds

the Marrakech city in the Centre of Morocco. The plain is en-

closed between the ‘Jbilet’ hills at North and the High-Atlas

mountain range at South. The High-Atlas, which culminates

up to 4000 m above the mean sea level at the Toubkal summit,

is the water bank which supplies several big irrigated areas in

the plain (Chaponnière et al., 2005).

The experiment took place in an irrigated area of 2800 ha

located in the Haouz plain, 40 km East of Marrakech. The

area is managed by a regional public agency (ORMVAH:

Office Régional de Mise en Valeur Agricole du Haouz), which
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is in charge of dam water distribution. Field data were col-

lected during two successive agricultural seasons, years

2002e2003 and 2003e2004. This area as well as the first-

year experimental set-up has been fully presented in Duche-

min et al. (2006). Its main characteristics are the following: ce-

real crops are dominant, mostly wheat; soils are homogeneous

with dominant clay, rather deep (around 1 m) and poor in or-

ganic matter (<2%); climate is of semi-arid continental type,

with low and irregular rainfall (w240 mm year�1), tempera-

tures moderately low in winter and very high in summer,

and a very high evaporative demand (w1500 mm year�1).

2.1. Fields of study

The fields of study are located in Fig. 1 and presented in

Table 1. A total of 17 fields have been monitored, 9 during

the 2002/2003 and 8 during the 2003/2004 agricultural season.

They were labelled C1 to C9 the first season and V1 to V8 the

second season as they were used to calibrate and validate the

SAFY model, respectively. There are also referred to as cali-

bration and validation fields hereinafter.

All fields were cropped with a short-cycle durum wheat va-

riety suitable for semi-arid conditions and commonly used in

the Marrakech plain (ORMVAH technical document). The

sowing dates ranged from mid-November to mid-January,

with a delay of up to one month between the 2003e2004 sea-

son and the 2002e2003 season (Table 1). At the beginning of

both season three irrigation rounds were decided on by ORM-

VAH, but the amount of water supplied was doubled the sec-

ond season (60 mm per round in 2004 instead of 30 mm in

2003) because the dam level was higher. Fertilisation practices

have been highly variable: no fertilisers were applied on the

calibration fields except on C5 at flowering time, while 60%

of the validation fields were fertilised at sowing (Table 1).

During the experiment a meteorological station was in-

stalled in the vicinity of the fields of study (Fig. 1). The

2002e2003 and 2003e2004 wheat seasons appeared rather

comparable in terms of climate (Fig. 2). Because of excep-

tional rainfall in November (more than 130 mm), both seasons

were more humid than usual, with accumulated rainfall close

to 380 mm for November to May. The rainfall knows a

bimodal distribution with two peaks at the beginning of

December and April. The climate was slightly more rainy in

2003e2004 than in 2002e2003 but rainfall events were

more irregular the second year, with no rain from mid-Decem-

ber to end of February and late precipitation (40 mm in May).

Mean air temperature varied on average from 10 �C in January

to more than 20 �C in May. The climate was hotter in

2002e2003 than in 2003e2004, slightly at the beginning of

the season, more significantly in May. The evaporative

demand logically followed the same trend. According to the

reference evapotranspiration ETo (PenmaneMonteith equa-

tion adapted by FAO for well-watered grass, see Allen,

2000), the two years look roughly comparable until May: ETo

was around 2 mm day�1 until end of January, then it varied

between 2 and 5 mm day�1 between February and April. The

main difference between the two seasons occurred later with

very high ETo values between 6 and 7 mm day�1 in May

2003. This explains why the seasonal evaporative demand

was 50 mm larger in 2002e2003 than in 2003e2004.

2.2. Green leaf area index (GLAI) and grain yield (GY)

During the 2002/2003 agricultural season, the Green leaf

area index (GLAI) was monitored through reflectances data

acquired with a hand-held radiometer (Duchemin et al.,

2006). We used a MSR87 multispectral radiometer (Cropscan

Inc., USA) to measure both incoming and reflected radiation

over the spectral bands of LandSat Thematic Mapper (TM)

sensor. The red (0.63e0.69 mm) and near-infrared (0.76e

0.90 mm) reflectances were used to calculate the Normalised

difference vegetation index (NDVI). The comparison with di-

rect metric measurements has allowed establishing an expo-

nential relationship between GLAI and NDVI.

During the 2003/2004 agricultural season, GLAI was de-

rived from hemispherical digital photography based on the

analysis of canopy gap fraction (see the review by Jonckheere

et al., 2004). For this analysis we strictly followed the proce-

dure designed by Welles and Norman (1991) for the LI-COR

LAI-2000 plant canopy analyser instrument. This technique

was inter-calibrated with direct measurements and NDVI

estimates performed the first season.

At the end of May of both seasons, grain maturity was

reached and grain yield (GY) was estimated by ORMVAH

technicians. These estimates accounted for yield loss due to

the harvesting technique, around 20% of the total yield. The

second season cutting and weighting of wheat plants were ad-

ditionally performed to monitor the dynamics of dry aerial

phytomass (V5 field only, on a 10-day basis) and to estimate

Fig. 1. Location of the fields of study on a Quickbird panchromatic image.

Hatched areas with horizontal and vertical lines indicate the calibration (C1

to C9) and validation (V1 to V8) fields, respectively. The black lines delimitate

the irrigation units. The black disc highlights the location of the meteorolog-

ical station.
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Table 1

Fields of study, agricultural practices and grain yield

Field Agricultural season Sowing date Irrigation Fertilisation (kg ha�1) Grain yield (t ha�1)e

ORMVAH estimates Field measurements

C1 2002e2003 Dec 18 2.5e3

C2 #Jan 15a Three events 30 mm each 0.7e1

C3 0.7e1

C4 0.7e1

C5 Jan 11 Six eventsb 100c 1.8e2.2

C6 # Dec 15a Three events 30 mm each 1.5e2

C7 2.5e3

C8 2.5e3

C9 2e2.5

Average yield value 1.87

V1 2003e2004 Nov 21 Three events 60 mm each 2e2.5 1.6 (0.4)

V2 Nov 21 50d 2.5e3 3.4 (1.7)

V3 Dec 15 2e2.5 2.8 (0.8)

V4 Dec 19 100d 1.8 e 2.2 2.3 (2.3)

V5 Dec 19 100d 3e3.5 4.3 (1.9)f

V6 Dec 19 100d 3.5e4 3.9 (1.3)

V7 Dec 20 1e1.5 2.2 (1.0)

V8 Dec 24 100d 2e2.5 2.5 (1.4)

Average yield value 2.53 2.9 (1.4)

a The exact sowing date is unknown.
b The farmer was asked for supplementary irrigation to avoid drought.
c Fertilisers were applied at flowering time.
d Fertilisers were applied just before sowing.
e Left column: range correspond to ORMVAH estimates right column: average values and standard deviation (in parenthese) derived from field measurements.
f Measurement of the dry aerial phytomass have also been performed every 10 days on this field.

Fig. 2. Time courses of main climatic variables on the area of study during 2002/2003 (top) and 2003/2004 (bottom) agricultural seasons: daily mean air temper-

ature (dotted lines) and reference evapotranspiration (full lines) are associated to the Y-left axis; rainfall (bars) is associated to Y-right axis.
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the final grain yield (all fields). GY was measured following

the protocol detailed by Hadria et al. (2007), and varied

from 0.85 to 4.3 t ha�1 (Table 1). Yield values were much

lower than those observed in other wheat experiments, even

under semi-arid climate (e.g. Lobell et al., 2003; Rodriguez

et al., 2004) or drought conditions in temperate climate (e.g.

Jamieson et al., 1998; Clevers et al., 2002). The probable

main cause is nitrogen stress (Hadria et al., 2007).

The analysis of yield data in Table 1 allows pointing out the

difficulty to get accurate estimates of grain yield in the condi-

tion prevailing during the experiment. There is a large scatter

of measurements due to the high heterogeneity of wheat can-

opy, and the standard deviation can be as large as the average

value (e.g. field V4). Estimates by ORMVAH technicians

moderately match field measurements, with a correlation coef-

ficient of 0.81 and large differences around 1 t ha�1 in two

cases (fields V5 and V7). The bias of 0.4 t ha�1 between the

two techniques is coherent with the fact that ORMVAH esti-

mates accounts for yield loss during harvest.

3. Model presentation

Monteith (1977) has developed a simple theory to link the

production of total dry phytomass and the photosynthetically

active portion of solar radiation (PAR) absorbed by plants.

The SAFY (Simple Algorithm For Yield estimates) model

uses this relationship. It operates at a daily time step from

the day of plant emergence (D0) to the day of complete leaf

senescence. During this period, the phytomass production is

driven by the incoming PAR radiation absorbed by leaves,

with two successive phenological phases: (1) leaf extent; (2)

grain filling.

3.1. Formalisms

The SAFY model includes three sub-sets of equations to

simulate the time courses of the dry above-ground mass, the

Green Leaf Area Index and the Grain Yield. The DAM

variable refers to the total aerial phytomass, grains excepted.

The climatic forcing includes daily incoming global radiation

and daily average air temperature. The notations and units of

the main variables and parameters are summarised in Table

2. The equations of the model are detailed below. The model

has been developed in MATLAB code and is available upon

request to the corresponding author.

3.1.1. Dry above-ground mass (DAM)

The phytomass increases during the period of photosyn-

thetic activity, from an initial value (DAM0) at plant emer-

gence to a final value when leaf senescence ends. During

this period, the production of dry above-ground mass

(DDAM) is driven by incoming global radiation Rg through

the following three factors: (1) the climatic efficiency 3C,

which is the ratio of incoming photosynthetically active to

global radiation; (2) the light-interception efficiency 3I, which

is the fraction of photosynthetically active radiation that is ab-

sorbed by the canopy (APAR); (3) the effective light-use effi-

ciency ELUE, which is the ratio of photochemical energy

produced as DAM from APAR. In addition, DDAM is affected

by the daily average of air temperature (Ta) through the tem-

perature-stress-function FT. This leads to:

Table 2

Parameters and variables of the SAFY model (notation and identification)

Description Notation Unit Value Source

Input variables

Daily incoming global variation Rg MJ m�2 d�1 Meteorological station

Daily mean air temperature Ta �C Meteorological station

Parameters

1st Initial dry above-ground mass DAM0 g m�2 4.5 Identified as initial green leaf area index of 0.1

Climatic efficiency 3C e 0.48 Varlet-Grancher (1982)

Light-interception coefficient K e 0.5 Arora (1998); Brisson (1998); Meinke (1998)

Minimal temperature for growth Tmin �C 0 Porter (1999)

Optimal temperature for growth Topt �C 20 Porter (1999)

Maximal temperature for growth Tmax �C 37 Porter (1999)

Specific leaf area SLa m2 g�1 2.2 � 10�2 Measured at field

2nd Partition-to-leaf function: parameter 1 PLa e 15.73 � 10�2 Calibrated

Partition-to-leaf function: parameter 2 PLb e 1.96 � 10�3 Calibrated

Sum of temperature for senescence STT
�C 1008 Calibrated

Rate of senescence Rs �C day�1 6875 Calibrated

Rate of grain filling Py �C�1 5.1 � 10�3 Calibrated

3rd Day of plant emergence D0 day Local To be adjusted field-by-field

Effective light-use efficiency ELUE g MJ�1 Local To be adjusted field-by-field

Output variables

Green leaf area index GLAI m2 m�2

Dry above-ground phytomass DAM g m�2

grain yield GY g m�2

Parameters are presented in 3 groups according to the method used for their identification, discussed in Section 3.2.
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DDAM ¼ Rg,3C,3I,ELUE� FTðTaÞ

¼ APAR�ELUE� FTðTaÞ ð1Þ

The light-interception efficiency 3I depends on the green leaf

area index (GLAI) and a light-interception coefficient k

through the well-known Beer’s law:

3I ¼ 1� e�k�GLAI ð2Þ

Both high and low temperatures decrease the rate of

phytomass production (Porter and Gawith, 1999). This effect

is accounted for by introducing the air temperature (Ta) in

2nd-degree polynomials determined by an optimal tempera-

ture for crop functioning (Topt) and two extreme values

(Tmin and Tmax) beyond which the plant growth stops (after

Brisson et al., 2003). This leads to:

3.1.2. Green leaf area index (GLAI)

The dynamics of green leaf area index is simulated from

the balance between leaf extent during growth (DGLAIþ,

eq. 4) and leaf disappearance during senescence (DGLAI�,

eq. 6). These two phenological phases are identified based

on a degree-day approach from accumulated air temperature

(thermal time STa).

During growth, the aerial phytomass production is distrib-

uted into leaf and non-leaf mass according to the partition

function PL, then the increase of leaf mass is converted in in-

crease of leaf area (DGLAIþ) according to the value of the

specific leaf area (SLA). This leads:

DGLAIþ¼ DDAM,PLðSTaÞ,SLA ð4Þ

The partition-to-leaf function PL (eq. 5) is an empirical func-

tion of air temperature with 2 parameters (PLa and PLb) adap-

ted from Maas (1993). It is based on the sum of air

temperature higher than a base temperature accumulated since

plant emergence (STa). The base temperature that affects

wheat phenology does not explicitly appear in the equation

since it is known to be 0 �C for wheat (Porter and Gawith,

1999; Brisson et al., 2003; Xue et al., 2004). As the PLa param-

eter is close to 0, PL exponentially decreases with thermal time

from a value close to 1 at plant emergence to a value of 0 at the

end of the leave production phase.

PLðSTaÞ ¼ 1� PLa,e
PLb,STa ð5Þ

The senescence of leaves starts when accumulated air temper-

ature has reached a given threshold STT. It increases with ther-

mal time at a rate determined by the Rs parameter. It ends

when GLAI has returned to a value lower than the initial

one, indicating total senescence. This leads to:

if STa> STT

DGLAI�¼ GLAI,ðSTa� STTÞ=Rs
ð6Þ

3.1.3. Grain yield (GY)

The grain filling phase is bounded by the day when

foliage production ends and the day when total senescence

occurs. During this period, the daily increase of grain yield

(DGY) is proportional to the total above-ground phytomass,

with a constant fraction Py partitioned to grains. This simply

leads:

DGY¼ DAM,Py ð7Þ

3.2. Parameters

The level of complexity of SAFY is low in the perspective

to facilitate the optimisation of unknown parameters using few

observations. The parameters are limited in number (14) and

can be divided into the three categories highlighted in Table 2

and are discussed below.

In the first category, a priori values has been identified ac-

cording to some previous and the present experimental studies.

This was the case for the climatic efficiency (3C, eq. 1), the

light-interception coefficient (k, eq. 2), the specific values of

air temperature related to plant functioning (Tmin, Topt and

Tmax, eq. 3), the specific leaf area (SLA, eq. 4) and the initial

value of dry above-ground phytomass (DAM0). Many studies

have shown that incoming PAR is roughly half of the incoming

global radiation Rg, independently of atmospheric conditions

(e.g. Szeicz, 1974). Thus, the climatic efficiency 3C is nearly

constant in space and time, around a value of 0.48 (after Var-

let-Grancher et al., 1982). The light-use efficiency is calcu-

lated from GLAI based on the light-interception coefficient k.

k values range between 0.45 and 0.5 in most of modelling

studies. Here we choose the value of 0.5, also used by Arora

and Gajri (1998), Meinke et al. (1998) and Brisson et al.

(2003). SLA has been measured at field to 0.022 m2 g�1.

This value is consistent with other values found in the litera-

ture (0.024 or 0.025 m2 g�1 in Sinclair and Amir, 1992;

Maas, 1993; Arora and Gajri, 1998). Wheat is generally con-

sidered to take advantage of an optimum temperature range of

17e23 �C over the entire growing season, with extreme

temperatures of 0 �C and 37 �C beyond which growth stops

(Porter and Gawith, 1999). Thus the minimal, optimal and

FTðTaÞ ¼ 1� ½ðTopt�TaÞ=ðTopt�TminÞ�
2

if Tmin< Ta< Topt

¼ 1� ½ðTa�ToptÞ=ðTmax�ToptÞ�
2

if Tmax> Ta> Topt

¼ 0 if Ta< Tmin or Ta> Tmax

ð3Þ
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maximal temperatures for wheat growth have been set up to 0,

20 and 37 �C, respectively. Finally, a low initial value of

4.5 g m�2 has been identified for the dry above-ground mass

at plant emergence. Given the SLA value, the DAM0 value

correspond to an initial GLAI of 0.1 (see eq. 4). The fact of

identifying (somehow) arbitrarily this parameter is not critical

since it is closely related to the definition of the plant emer-

gence stage (GLAI ¼ 0.1 in this study). Indeed, the model

would give comparable results in case of a low initial GLAI

value with early plant emergence as in case of a higher initial

GLAI value with delayed emergence. Keeping constant the

initial DAM value thus allowed gaining consistence in the def-

inition and in the inversion of the date of plant emergence.

The second category includes phenological parameters,

which depend on the genetic characteristics of the crop (type

and variety). It includes the five parameters that drive the

mass partitioning between organs and the change in phytomass

status: leaf appearance during growth (PLa and PLb, in eq. 5);

beginning and rate of senescence (STT and Rs, in eq. 6); rate of

grain filling (Py, in eq. 7). The four first parameters affect the

seasonal patterndbut not the amplitudedof the GLAI time

course.

The third category is made of the two last parameters that

strongly depend on agro-environmental conditions. The first

one is the day of plant emergence (D0), which occurs generally

1 to 3 weeks after sowing depending on the soil temperature

and moisture. The second one is the effective light-use effi-

ciency (ELUE), which is supposed in this study to account

for all agro-environmental stresses, temperature excluded.

This parameter is expected to give in a simple manner a global

level of all these agro-environmental stresses integrated to-

gether, which could be an indicator of the performance of ag-

ricultural practices, such as the irrigation and fertilisation

schedules.

The total number of parameters is 14, amongst which 7

have been obtained from the above mentioned literature, field

data or assumptions (1st category in Table 2). We can distin-

guish the 7 other parameters in terms of their variations in

space. Since the life cycle of wheat plants are determined by

genetic characteristics, the phenological parameters (2nd cate-

gory in Table 2) are assumed to be dependent of the wheat va-

riety. Consequently, there are supposed to be constant through

the fields of study. However, because their direct measure-

ments are difficult or impossible, they need to be calibrated.

The last two parameters (3rd category in Table 2) are highly

variable in space as they are directly affected by farmer prac-

tices. They required to be adjusted locally, at least at a field

scale.

4. Model calibration

In this study, calibration is considered as the procedure of

identifying a single optimum parameter set resulting in a sim-

ulation that best reproduces several observed variables.

Though important, evaluation of crop model parameters has

not been fully investigated. More studies have been under-

taken on soil-vegetation-atmosphere transfer and hydrological

models (Beven and Binley, 1992; Bastidas et al., 1999; Beven,

2001; Wagener et al., 2001; Demarty et al., 2004; Vrugt et al.,

2002, 2005). These studies have shown that the calibration of

(even simple) models is a complex issue since the parameters

are often inter-dependant. Dependency or compensation be-

tween parameters causes equifinality or functional similarity

(Franks et al., 1997; Beven and Franks, 1999). In particular,

this may occur when different sets of parameter values can re-

sult in similar simulations of a particular variable while other

variables may strongly and inconsistently differ from one sim-

ulation to the next, though initial and boundary conditions are

kept constant. That is why it is essential to identify the param-

eters which have a biophysical interpretation based on exper-

imental results, as done for half of the SAFY model

parameters (1st category of parameters in Table 2 with the

values discussed in the last section). The procedure to identify

the remaining parameters is discussed in this section.

4.1. A typical example of parameter compensations

A first attempt to derive the phenological parameters was

performed based on the experimental data collected on the

C1 field taken as an example. The objective was to retrieve

all the non-a priori-known parameters that drive the time

course of GLAI, i.e. all the parameters of the above-discussed

2nd and 3rd categories except the rate of grain filling which

only influences yield. There are 6 such parameters (Table 3):

the day of plant emergence (D0), the two parameters of the

partition-to-leave function (PLa and PLb), the two parameters

of the senescence function (STT and Rs), and the effective

light-use efficiency (ELUE). All these parameters were cali-

brated against the GLAI observations collected on the C1 field

using the SCEM-UA algorithm (Vrugt et al., 2002). This algo-

rithm is adapted from the SCE-UA global optimisation method

(Duan et al., 1992), which has been used extensively and

proved to be robust and efficient for the calibration of concep-

tual rainfall runoff models. The setting of the method was the

following: we assumed a uniform prior distribution of the pos-

sible parameters (option 3), the number of complexes was 10,

the population size was 200, the number of function evaluation

was 5000, and the residual error was assumed normally dis-

tributed (Gamma ¼ 1). The conditions of application were

strictly similar from one optimisation to the next: same for-

malisms and equations, same a priori-known parameters,

Table 3

Parameters targeted for robustness and sensitivity analysis

Description Notation Unit Range of variation

Day of plant emergence D0 day 50e150

Leaf partitioning

function: parameter 1

PLa e 0.01e0.3

Leaf partitioning

function: parameter 2

PLb e 5 � 10�4
e1 � 10�2

Sum of temperature

to start senescence

STT
�C 200e2000

Rate of senescence RS
�C day�1 1000e15000

Effective light-use efficiency ELUE g MJ�1 0e10
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same climatic forcing, same set of targeted observations. With

this setting, the SCEM-UA algorithm was successively applied

200 times with a large range of feasible parameters (see Table

3). For each run, we retained the best parameters set as the one

with the best posterior density (i.e. the lowest absolute error

between observed and measured values). The result consists

in 200 sets of the targeted six parameters associated with sim-

ulations of GLAI and DAM time courses, which were ana-

lysed using the following statistical indicators:

EFF¼ 1�

Pn

i¼1ðyimod � yiobsÞ
2

Pn

i¼1ðyiobs � yobsÞ
2

ð8Þ

(efficiency)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðyimod�yiobsÞ
2

s

ð9Þ

(root mean square error)

R¼

Pn

i¼1ðyimod � ymodÞðyiobs � yobsÞ
��

Pn

i¼1ðyimod � ymodÞ
2

��

Pn

i¼1ðyiobs � yobsÞ
2�

�1=2
ð10Þ

(correlation coefficient)

where yi mod is one simulated value, yi obs is one measurement,

ymod is the average of simulated values, yobs is the average of

measurements.

The result is displayed in Figs. 3 and 4. It appears clearly

that the GLAI observations are always accurately captured

Fig. 3. Time courses of green leaf area index (a) and dry aerial phytomass (b). The simulations have been carried out using 200 sets of the 6 parameters that drive

the GLAI time course, each set being calibrated against the GLAI values observed on one field of study (symbols in a).
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Fig. 4. Histograms of the parameters associated to the 200 simulations displayed in Fig. 3. Symbols indicate the median value (þ), the mean value (B) and the

value with maximum of occurrence (�).
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by the model (Fig. 3a): for the 200 simulations, the root mean

square error between observed and simulated GLAI values is

on average 0.06 with a maximum of 0.11 (3% of the maximum

observed GLAI), and individual errors are lower than this av-

erage value for 70% of the 200 cases; the efficiency is always

very close to 1 with a minimum value of 0.997. Nevertheless,

the parameters may strongly vary from one optimisation to the

next. The histograms of the 200 sets of parameters which are

compatible with the observed data are displayed in Fig. 4. The

relative variations of the parameters, i.e. the ratio of the differ-

ence between the maximum and the minimum value to the av-

erage value, ranges between 17% for the emergence date (D0)

to almost 200% for the second parameter of the partition-to-

leave function (PLb). These variations result in large discrep-

ancy in the simulations of the dry above-ground phytomass

from one set of parameter to the other (Fig. 3b): the final

DAM values range from 6.8 to 11.6 t ha�1 for the 200 simula-

tions, varying more or less by 50% around the average value

(9.7 t ha�1). Indeed, similar simulations of GLAI can be for

instance obtained with a high growing rate (high ELUE) in

combination with a low biomass allocation to leaf (low PL),

or with less growth (low ELUE) in combination with a high

biomass allocation to leaf (high PL). These non-coherent var-

iations will affect the estimates of grain yield with the same

order of magnitude.

This first analysis typically allowed to highlight what is re-

ferred to as equifinality in this study: good fits of GLAI may

be achieved in many areas of the parameters space, but there

is still a consequent uncertainty in the simulations of other

variables (DAM and GY). Similar behaviours have been par-

ticularly studied by S.W. Franks and K.J. Beven in the case

of hydrological and soil-vegetation-atmosphere transfer

models (Beven and Binley, 1992; Franks et al., 1997; Beven

and Franks, 1999; Beven, 2001).

4.2. Sensitivity analysis

The implication of the equifinality problem is that addi-

tional parameters should be identified to calibrate the SAFY

model. In order to quantify the respective importance of the

parameters as well as their inter-connection, we have carried

out one (1D) and two (2D) dimensional sensitivity analysis.

The analysis was done from the comparison of simulated

and observed GLAI on field C1, with a focus on one or two

of the six non a priori known parameters that impact on the

GLAI time course (see the previous section). The method con-

sisted in choosing one parameter (1D) or a couple of parame-

ters (2D), for which changes in GLAI simulations in response

to their variations were systematically analysed.

The 1D analysis was carried out by letting one parameter

vary, the five others being kept constant at their median values

displayed in Fig. 4. The interval of variation of the targeted pa-

rameter was chosen from �50% to þ50% of its median value.

The result is displayed in terms of errors between simulated

and observed GLAI on field C1 (Fig. 5). Taking as an indicator

of the sensitivity the maximum value of the root mean square

error through the interval of variation (black discs in Fig. 5),

the most sensitive parameter appears to be the effective

Fig. 5. Results of the 1-D sensitivity analysis. The targeted parameter appears as the title of each subplot. The root mean square error (RMSE) between observed

and simulated values of green leaf area index (GLAI) is plotted for each of the six parameters that drive the GLAI time course. Each parameter varies by �50%

around its median values displayed in Fig. 4. Black discs and associated labels highlight maximum errors.
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light-use efficiency (ELUE), followed by the two parameters

of the partition-to-leave function (PLa and PLb) and the day

of plant emergence (D0), then the parameter that determines

the beginning of senescence (STT), and finally the rate of se-

nescence (Rs).

The 2D analysis was carried out by letting two parameters

vary, the four other being constant to their median values dis-

played in Fig. 4. The intervals of variation of the targeted pa-

rameters accounted for the result of the 1D analysis in order to

have homogeneous representations of all the 2D-error plots.

The result of the 2D analysis is displayed in Fig. 6. When

one dimension includes the date of plant emergence

(Fig. 6aee), the RMSE regularly increases in all directions

of the 2D-parameter spaces around a minimum value. In other

words, the emergence date is the only parameter that appears

nearly fully independent. In contrast, the presence of valleys in

several plots indicates that one parameter strongly compen-

sates the other, i.e. the two parameters are partly dependent.

The strongest compensation occurs between the two

parameters of the partition-to-leaves function (Fig. 6f), fol-

lowed by each of these two parameters and the effective

light-use efficiency (Fig. 6i and l), then the two parameters

of the senescence function (Fig. 6m), and finally the parameter

that determines the beginning of senescence and each of the

two parameters of the partition-to-leaves function (Fig. 6g

and j).

4.3. Identification of parameters: simulation of leaf area

index and grain yield

According to the presentation of the SAFY model and its

sensitivity analysis (see Sections 3 and 4.2), it seems justified

to calibrate the phenological parameters in priority. Indeed,

these parameters depend on the plant genetic characteristics

and are thus believed not to vary for a given crop type and va-

riety. Consequently, a single set of parameters should be suit-

able for all the fields of study which are cropped with the same

wheat variety. Furthermore, their determination will limit

Fig. 6. Results of the 2D-sensitivity analysis. The root mean square errors between observed and simulated green leaf area index are plotted as surfaces for the

different couples of parameters used in the simulations (X- and Y-axis). The parameters deviate from their median values (see Fig. 4) by 100% divided by the

maximum errors displayed in Fig. 5. The colour bar displays the error ranging from 0.1 to 0.7 with a linear grey scale. Negative Rs values, which are out of

the physical definition domain, appear non-gridded in graphs d, h, k, m and o.
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ambiguity in the retrieval of the remaining 2 parameters (D0

and ELUE), which have been found independent (Fig. 6e).

The calibration was based on the experimental data set ac-

quired during the 2002/2003 agricultural season (fields C1 to

C9 in Fig. 1 and Table 1). It consisted in the following

three-step procedure:

(1) A statistical analysis on 1800 sets of parameters (200 runs

for each of the 9 calibration fields) was performed to iden-

tify the optimal set of the fourdgenetic, thus a priori

uniquedparameters that drives the dynamics of plant

leaves (development and senescence);

(2) The same optimisation scheme was used to identify the

two remaining parameters (ELUE and emergence date)

that control the vegetation growth; however, as these pa-

rameters varied with agricultural practices, they have

been retrieved field by field; their variations are discussed

at the end of this section;

(3) Finally, we adjusted theduniquedparameter that deter-

mines the increase of grain weight; in this last step, esti-

mates of grain yield were used as the optimisation

objective, whereas in the two previous steps the optimisa-

tion objective is only GLAI.

4.3.1. Green leaf area index

There are four parameters that affect the shape of the GLAI

time course: the two parameters of the partition-to-leaf func-

tion (PLa and PLb in eq. 5) and the two parameters of the se-

nescence function (STT and Rs, in eq. 6). The procedure for

their retrieval was similar to that applied on field C1 (based

on the SCEM-UA algorithm, see Section 4.1, Figs. 3 and 4)

but generalised to all the calibration fields. The four parame-

ters, together with the day of emergence and the effective

light-use efficiency, have been adjusted 200 times for each

of the 9 calibration fields. All the retrieved parameters were

mixed together, and then one can choose amongst three statis-

tical variables to derive a single value from the resulting histo-

grams: median, mean and maximum of occurrence. Though

there are few differences amongst the variables, the use of me-

dian values led to the best agreement between observations

and simulations. Indeed, the mean value can be affected by un-

realistic extreme values, while the maximum of occurrence is

not satisfying in case of non-monomodal histogram. This is il-

lustrated in the case of field C1 in Fig. 4: for the PLb parame-

ter, there is a shift of the mean compared to the median due to

several large values; for the PLa parameter, the value associ-

ated to the maximum of occurrence is significantly different

from both the median and the mean value.

The set of PLa, PLb, STT and Rs median values resulting

from the previous analysis is displayed in Table 2. After cali-

bration, simulations were adjusted again on GLAI observa-

tions for each individual field, with all the parameters

remaining constant and fixed at the values displayed in Table 2

excepted the day of emergence and the effective light-use ef-

ficiency. These two parameters have been re-optimised field by

field using the SCEM-UA algorithm, which was repeated 50

times for each field, always resulting in the same D0 � ELUE

couple of values. This finding was expected since the two param-

eters have been found independent (see Fig. 6e).

The resulting simulations of green leaf area index are plot-

ted together with observations in Fig. 7. The time courses of

GLAI are quite well simulated: for the 9 calibration fields ef-

ficiencies are on average 0.95 with a minimal value of 0.88 for

field C9; the root mean square error between observed and

simulated GLAI ranges between 0.08 for field C2 and 0.59

for field C9, representing 3% and 12% of the maximum

values, respectively. The maximum errors, which occur on

fields C7 and C9, appear firstly linked to underestimation at

the end of simulations (see days after 180 in Fig. 7). This un-

derestimation is explained by uncertainty in the retrieval of the

day of plant emergence due to a lack of measurements at the

beginning of the season (see Section 4.3.3). Large errors are

secondly due to the fact that the normalised difference vegeta-

tion index saturates for well-developed canopy (see Duchemin

et al., 2006), resulting in scatter of high GLAI observations

(e.g. day 150, fields C6 to C9).

4.3.2. Grain yield

The six parameters that controls LAI and DAM being now

identified, the only unknown parameter is the one that deter-

mines the partition of the dry above-ground phytomass into

grains (Py, eq. 7). This parameter was adjusted from simula-

tions obtained with a realistic interval of variation with the ob-

jective to accurately predict the crop yield. In this objective,

we search to minimise the root mean square error between ob-

served and simulated yield values, with this error calculated

from the 9 calibration fields. A minimal root mean square er-

ror of 0.47 t ha�1 was found for a Py value equal to

5.1 � 10�3 �C�1. This error represents 25% of the C1 to C9

average yield value (1.87 t ha�1, see Table 1).

Observations and simulations of grain yield are plotted to-

gether with the GLAI time courses in Fig. 7. The model ap-

pears able to track a significant part of yield variation: the

correlation coefficient between simulated and observed GY

is 0.8 (R2 ¼ 0.64) for the nine calibration fields. GY simula-

tions end within the range of error assumed for ORMVAH es-

timates, excepted on fields C1 and C7 for which GY appears

underestimated by 0.8 and 0.7 t ha�1, respectively. Although

the formalism of the SAFY model to simulate grain yield is

quite simple, the accuracy of these results are comparable to

that obtained with more complex models (e.g. O’Leary and

Connor, 1996; Asseng et al., 1998; Jamieson et al., 1998;

Clevers et al., 2002; Brisson et al., 2003).

4.3.3. Day of emergence and light-use efficiency

Table 4 provides with the final values of days of plant emer-

gence (D0), together with the value of sowing dates collected

from the farmers. Sowing and emergence dates are highly cor-

related (R2 ¼ 0.93), with emergence occurring on average

21 days after sowing. However, there are large variations in

the delay between sowing and emergence, which may partly

be due to uncertainty in the observations (see Table 1). Ex-

cluding the case of field C1, the delay appears to increase
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by about 10 days for the fields sown in December (C6 to C9)

to around 30 days for the fields sown in January (fields C2 to

C5). Although these variations are coherent with the fact that

both air temperature and soil moisture are higher in December

than in January (see Fig. 2, left), the short delays on fields C6

to C9 appears unrealistic. The fitting procedure probably un-

derestimates D0 on these four fields which have not been

monitored at the beginning of the season. This also explains

the shift in the simulation of GLAI at the end of leaf senes-

cence (Fig. 7).

The effective light-use efficiency varies between 1.49 and

2.43 g MJ�1 (Table 4), in the range found in the literature

for the production of wheat above-ground dry mass, e.g.

1.34 to 2.5 g MJ�1 (Maas, 1993; Jamieson et al., 1998;

Table 4

Values of the local parameters of the SAFY model (adjusted field by field)

Calibration fields

C1 C2 C3 C4 C5 C6 C7 C8 C9

Day of emergencea Jan 1 Feb 22 Feb 16 Feb 14 Feb 4 Dec 15 Dec 12 Dec 21 Dec 17

30 w38 w32 w30 24 w8 w5 w14 w10

Light-use efficiency 1.89 1.66 1.64 1.49 1.82 1.74 2.13 2.43 2.26

Validation fields

V1 V2 V3 V4 V5 V6 V7 V8

Day of emergencea Dec 16 Dec 11 Jan 24 Jan 20 Jan 14 Jan 13 Jan 23 Feb 3

25 20 36 31 25 24 33 41

Light-use efficiency 2.18 2.37 1.75 1.56 1.94 2.18 1.46 2.19

a Numbers in italics indicate the delay between the sowing day and day of plant emergence (the w symbol is used if the sowing date is not exactly known, see

Table 1).

Fig. 7. Observations of green leaf area index (stars) and grain yield (ranges of ORMVAH estimates displayed by vertical lines) together with their respective sim-

ulations (lines) after calibration. Each subplot corresponds to one calibration field named in the title. Root mean square error and efficiency between observed and

simulated GLAI values are displayed with label ‘rms’ and ‘e’, respectively. The days are numbered from October 15, 2002.
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Meinke et al., 1998; O’Connell et al., 2004). Its variation ap-

pears consistent with agricultural practices. Firstly, ELUE is

higher when sowing is earlier (fields C1 and C6 to C9 com-

pared to others). The advantage of early sowing has been

also underlined using the STICS crop model by Hadria et al.

(2007). In case of early sowing the plant takes advantage of

the first effective rainfalls (3 events with daily rainfall higher

than 20 mm between November 15 and December 9, 2002, see

Fig. 2, left) and do not suffer from water stress at the end of

the season when the evaporative demand reach its maximum

values. Amongst the remaining fields (C2 to C5), ELUE is

the highest for the field which has been irrigated six times

and fertilised (fields C5 compared to C2, C3 and C4, which

are all sown Mid-January).

5. Model evaluation

The SAFY model was evaluated against the experimental

data set collected on the validation fields during the 2003/

2004 agricultural season (V1 to V8 in Fig. 1 and Table 1).

The day of emergence and the effective light-use efficiency

have been adjusted for each of these fields, with all other pa-

rameters remaining constant to their calibrated values (see Ta-

ble 2). The values of these two parameters are first discussed,

then the simulations of the three main output variables (green

leaf area index, dry above-ground mass, and grain yield) are

analysed.

5.1. Day of emergence and light-use efficiency

The values of days of emergence and effective light-use ef-

ficiencies are presented in Table 4. The trends in their variation

are common with the calibration fields. Firstly, days of plant

emergence and sowing date are highly correlated (R2 ¼ 0.92

in Fig. 8). Secondly, the delay between sowing and emergence

increases with the time of sowing: it is on average 22.5 days

for the fields sown in November (V1 and V2) against

31.5 days for the fields sown in December (V3 to V8). This de-

lay appears more regular on validation fields than on calibra-

tion fields. The effective light-use efficiency ranges between

1.56 and 2.37 MJ�1 on the validation fields and shows the

same trends than on calibration fields. Its variation between

fields appears to be first linked to agricultural practices: the

field displaying the highest efficiency (V2) was sown early

and fertilised at sowing; the field that displays the lowest effi-

ciency is V7, with late sowing and no fertilisation (see Table

1). However, if these two extreme values correspond to the

best and the worst practices, the hierarchy is not so clear for

intermediate values. In particular, the differences in practices

do not explain the variation in ELUE between the fields V4,

V5 and V6, which are juxtaposed and cropped by the same

farmer. It is possible here that inaccuracy occurs during the

collection of technical itinerary. As additional indicators of

the crop behaviour, it would be also interesting to consider

other practices such as ploughing or weed/pest controls as

well as the field history, but these data were unavailable for

most of the fields of study.

5.2. Green leaf area index

The performance of the SAFY model to simulate GLAI

time courses on the validation fields appears quite satisfactory

(Fig. 9). The seasonal variation appears as well reproduced as

for the calibration fields (compare Figs. 7 and 9), even if the

root mean square errors is slightly larger than on the calibra-

tion fields (on average 0.4 for the validation fields against

0.24 for the calibration fields). The explanation appears to

be first linked to observations: it seems that high GLAI values

are more scattered the second season (using hemispherical

photography) than the first season (estimates from NDVI).

Furthermore, it is clear from Figs. 7 and 9 that GLAI observa-

tions are much noisy for well-developed canopies than for

scarce vegetation. However, the consequence is limited for

the simulation of the crop production since the intercepted

radiation saturates for high GLAI values (exponential law in

eq. 2).

Despite this, the GLAI seasonal patterns are all well repro-

duced by the model. This confirms the quality of the calibra-

tion of the phenological parameters. In the conditions

prevailing in this study, the assumption that these parameters

do not depend on water and nitrogen stresses appears valid.

This assumption is used in several crop models (e.g. STICS,

Brisson et al., 2003), while other models simulate an acceler-

ation of leaf senescence in case of water stress. In the last case,

the impact of water stress is nevertheless much larger on the

amplitude than on the shape of the GLAI seasonal course

(e.g. Jamieson et al., 1998).

The accuracy of GLAI simulations appears comparable to

that of other simplified models with a higher degree of liberty

during calibration (e.g. 5 parameters adjusted in Maas, 1993).

The performance of the SAFY model to simulate GLAI time

courses is often much better than that of more complex models

(e.g. Pala et al., 1996; Asseng et al., 1998; Jamieson et al.,

Fig. 8. Comparison between sowing and emergence dates for the validation

fields (in number of days after October 15, 2003). The dotted line highlights

the X ¼ Y line.
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1998; Meinke et al., 1998; Clevers et al., 2002; Olesen et al.,

2002; Panda et al., 2003; Asseng et al., 2004; Rodriguez et al.,

2004; Hadria et al., 2007). However, it should be kept in mind

that the SAFY model is driven by GLAI observations, which is

not always the case in the above-mentioned studies.

These results are quite acceptable regarding the accuracy of

leaf area index estimates performed with indirect methods

such as remote sensing or hemispherical photography. Indeed,

average difference of 30% on wheat GLAI estimates between

direct (metric) and indirect methods have been reported during

this experiment (Duchemin et al., 2006; see also Weiss et al.,

2004 for a review).

5.3. Grain yield

The SAFY model moderately reproduces the variation ob-

served from one validation field to the next (Fig. 10). The corre-

lation coefficient between simulation and visual estimates is

around 0.69 (R2 ¼ 0.48), slightly lower than for the calibration

fields. Furthermore, the model clearly underestimates grain

yield, by on average 0.5 t ha�1when compared toORMVAHes-

timates and 0.9 t ha�1 when compared to field measurements.

Fig. 9. Times course of observed (stars) and simulated (lines) green leaf area index (GLAI). Each subplot corresponds to one validation field named in the title.

Root mean square errors and efficiencies between observations and simulations are displayed with label ‘rms’ and ‘e’, respectively. The days are numbered from

October 15, 2003.

Fig. 10. Simulated values (black discs) of grain yield, together with ORMVAH

estimates (vertical full lines) and field measurements (vertical dotted lines) on

the validation fields. The length of full and dotted lines indicates the error

associated to ORMVAH estimates and the standard deviation associated to

measurements, respectively.
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The problem may be due to the fact that the agricultural condi-

tions on the calibration fields do not encompass those of the val-

idation fields. In particular, the validation fields have been sown

earlier and have received more irrigation water and fertiliser

than the calibration fields. The model partly account for these

variation because the GLAI was slightly larger on the validation

than on the calibration fields: the simulations result in an average

yield of 1.95 t ha�1 for fields V1 to V8 against 1.74 t ha�1 for

fields C1 to C9. Nevertheless, re-calibration of the Py parameter

would be necessary to obtain good estimate of grain yield for the

2003/2004 agricultural season.

5.4. Dry aerial mass

The dry aerial phytomass was measured on field V5 during

the 2003/2004 agricultural season. The measurements of this

variable are plotted against its simulation in Fig. 11. The

performance of the SAFY model was surprisingly good since

no specific calibration was performed for this variable. The

agreement between observation and simulation is perfect at

the beginning of the season (before day 150). The explanation

is twofold: numerous GLAI observations are available to

constrain the phytomass production and inaccuracy of mea-

surements at high GLAI values does not strongly affect the

phytomass production because of the saturation of PAR

absorption (eq. 2). At the end of the season, the SAFY model

clearly underestimates the dry aerial phytomass. This discrep-

ancy appears to be due to the underestimation of grain yield.

Globally, the SAFY model simulates the time course of dry

aerial phytomass as accurately as others wheat models (e.g.

Maas, 1993; O’Leary and Connor, 1996; Pala et al., 1996;

Asseng et al., 1998; Jamieson et al., 1998; Olesen et al.,

2002; Panda et al., 2003; Asseng et al., 2004; Wahbi and Sin-

clair, 2005). However, there is a need for evaluation on a wider

range of crops and/or conditions to strengthen this conclusion.

6. Conclusion

The use of crop models on large areas for local (field scale)

estimates of crop production is hampered by the lack of suffi-

cient and accurate spatial information about model inputs. In

particular it is impossible to exactly know the space and

time variation of the input related to farmer practices (sowing,

irrigation and fertilisation). As an alternative, a simple model

(SAFY) was developed under the assumption that a key-pa-

rameterdthe effective light-use efficiencydis sufficient to

furnish an indicator of all agro-environmental stresses to-

gether. The model simulates the time courses of leaf area,

dry above-ground phytomass and grain yield, with no explicit

modelling of the effects of water or nutrient limitations on

plant growth. The impact of possible water and nitrogen deficit

is expected to be accounted for by the variation of the effective

light-use efficiency, with the idea that this parameter can be

derived from the time course of the green leaf area index

(GLAI). This variable is critical in plant modelling, and

a lot of techniques and methods are available for its observa-

tion by remote sensing from ground as well as from space.

Since the model is based on a limited number of parameters

and equations, its control with GLAI observations appears

simple and robust. The approach offers the advantage to

only describe well documented processes with standard data,

i.e. data supplied by meteorological stations and time series

of GLAI estimates which can be derived from satellite data.

This makes it very attractive for operational application at a

regional scale.

The approach was tested against field data collected on

winter wheat during two successive agricultural seasons

(2002/2004) in the plain that surrounds the city of Marrakech

(Morocco). During this experiment 17 fields were monitored,

with a large range of sowing dates as well as irrigation and fer-

tilisation schedules. GLAI estimates were performed based on

the NDVI collected at field using a handheld radiometer and

the analysis of hemispherical photography. A method was de-

veloped to invert the two most sensitive parameters (date of

emergence and effective light-use efficiency) from GLAI

time courses at a field scale. The comparison of simulated/in-

verted and observed data has allowed us to reach the following

conclusions:

U The retrieval of the dates of plant emergence appears

satisfactory.

U The model provided with excellent simulations of the time

courses of green leaf area index.

U Though no specific calibration was performed, the model

accurately simulates the time course of the dry above-

ground phytomass.

U Field-to-field variations of grain yield were also correctly

predicted, but significant underestimation was observed

Fig. 11. Time courses of observed (stars) and simulated (full line) total dry

above-ground phytomass on the V5 field. The root mean square error and

the efficiency between measured and simulated values are displayed with label

‘rms’ and ‘e’, respectively. The dashed line corresponds to the dry mass of all

aerial organs except grain. The dotted line displays the time course of simu-

lated grain yield, associated with ORMVAH estimates and field measurement

at the end of the season (vertical line with stars and plus symbols, respec-

tively). The days are numbered from October 15, 2003.
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during evaluation. Underestimation was attributed to a shift

in agricultural practices (irrigation and fertilisation) be-

tween the fields used for calibration (2002/2003) and those

used for validation (2003/2004).

The last statement highlights the limit of the assumption

prevailing in this study, which is the use of GLAI as an indi-

cator of all agro-environmental stresses considered together.

For grain yield prediction, strong attention should be paid at

using the SAFY model close to its domain of calibration.

The control of the model with satellite data (e.g. daily time se-

ries of images at high spatial resolution acquired by the new

FORMOSAT-2 satellite) could result in accurate regional

crop yield estimate provided that local measurements are

available for calibration and that the agricultural practices do

not much vary within the area of interest. Nevertheless, the

SAFY model could be combined with remote sensing data

to detect anomalies in crop phenology and to predict above-

ground phytomass production at a regional scale. In particular,

it could be used as a simple and accurate interpolator to mon-

itor and/or predict the dynamics of the vegetation (green

leaves). In this perspective it would be interesting to investi-

gate the performance of the model in case of reduced GLAI

data availability. The model can be also adapted to integrate

additional processes associated to crop growth such as water

transfer between soil, plant and atmosphere. SAFY was al-

ready coupled with the soil water balance and evapotranspira-

tion models developed by the FAO to schedule irrigation

(Duchemin et al., 2005). The assimilation of satellite data in

the coupled model offers perspectives for the operational mon-

itoring of crop actual evapotranspiration and water require-

ments at a regional scale.
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