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S U M M A R Y
A simple model is employed to find scaling relations between key features of the temperature
structure of subduction zones and subduction zone parameters. Flow in the wedge of mantle
between the slab and the overriding plate is approximated by the corner flow of a Newtonian
viscous fluid. The flow maintains an advective boundary layer on top of the slab that controls the
temperature at the interface between the slab and the wedge. This temperature, the maximum
temperature in the wedge above the slab, and the thickness of the advective boundary layer, all
depend on a single dimensionless distance, V rδ2/κ , where V is the speed of plate convergence,
r is distance from the corner of the wedge, δ is the dip of the slab and κ is thermal diffusivity.
The observation that volcanic fronts at island arcs lie above places where the slab reaches a
depth that correlates negatively with convergence rate and slab dip suggests that the thermal
structure of subduction zones may be described by the simple scaling developed here, and that
the locations of the arcs are controlled by a strongly temperature-dependent process taking
place in the wedge.
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1 I N T RO D U C T I O N

The recent observation (England et al. 2004) that the depth of the
top of the intermediate-depth seismicity beneath arc volcanoes (in-
terpreted as lying close to the top of the slab) varies systematically
with the speed of descent of the slab has motivated us to seek scaling
relations for temperatures in subduction zones in order to develop
understanding of this systematic variation, and to provide a simple
framework in which to investigate its implications for the processes
of melting and melt transport in subduction zones.

We simplify the problem as far as possible by assuming that
the wedge of mantle between a slab and an overriding plate is a
Newtonian fluid, whose motion is driven entirely by the relative
motion of its bounding plates (see Fig. 1, Section 2). The main math-
ematical development of the paper is contained in the Appendix, in
which we derive approximate expressions for the temperatures along
the top of a slab and in the wedge of mantle above the it. We show
that these approximations depend on a single parameter—a dimen-
sionless distance r ′ = V rδ2/κ , where V is convergence rate, δ is dip
of the slab, κ is thermal diffusivity and r is distance from the wedge
corner. We compare, in Section 3, the temperatures predicted by the
simple scaling relations with numerical calculations, and show that
over the full range of parameters pertaining to active subduction
zones the scaling derived from our analytical approximations is in
agreement with numerical solutions to the full equations. Section 4
uses the scaling relations along with the observed systematics in the
distribution of volcanoes (England et al. 2004) to draw inferences
about the processes controlling the location of arc volcanoes.

2 T H E M AT H E M AT I C A L M O D E L

The configuration we assume for the motion of material in subduc-
tion zones is shown in Fig. 1. The overriding plate is taken to be
fixed; the subducting plate has thickness a, converges with the over-
riding plate at speed V and descends into the mantle with a dip δ.
(The notation we use is given in Table 1.) The relative motion be-
tween the two plates drives flow in the wedge of mantle between
them. Similarly, the subducting plate drives a flow in the obtuse
wedge beneath it. In this section we define our mathematical model
by prescribing the form of these flows, and giving the boundary
conditions on temperature. The main aim of this paper is to use a
simplified model to determine scaling relations for the temperature
in subduction zones; because these expressions are tested against
full (numerical) solutions to the model, we outline in this section
the numerical techniques employed.

2.1 The velocity field

The wedges of mantle above and below the subducting plate are
treated as incompressible Newtonian fluids of essentially infinite ex-
tent (Fig. 1). This assumption allows us to use ‘corner flow’ solutions
of simple analytical form for the flow (Batchelor 1967; McKenzie
1969).

The velocity in the wedge, u(ur, uθ ), can be expressed in terms
of a stream function, ψ :

ur = 1

r

∂ψ

∂θ
(1)
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Analytical approximation to subduction zone temperatures 1139

Figure 1. Idealized sketch of a subduction zone, illustrating terminology and parameters used in the paper. Two plates converge at a speed V , measured
perpendicular to the trend of the island arc. A slab, of thickness a, dips at an angle, δ, beneath the overriding plate. The relative motion between the slab and
overriding plate generates circulation in the wedge of mantle between them, which is here depicted as conforming to the flow of a Newtonian fluid with velocity
equal to zero on the top of the wedge and equal to the velocity of the slab on the base of the wedge (the corner flow of McKenzie 1969). The base of the
overriding plate, and thus the wedge corner, are at depth zw, and the boundary between the two plates lies on the top of the slab, from the surface to the wedge
corner at depth zw. The material of the wedge follows stream lines, shown as curved lines; illustrative arrows show the relative magnitudes of the velocity in
different parts of the wedge. Shading depicts the portion of the wedge that is cooler than the background temperature of the mantle, Ta, while still being hot
enough to participate in the flow. This layer forms an insulating boundary on the top of the subducting slab.

uθ = −∂ψ

∂r
(2)

where r, θ are polar coordinates whose origin is at the corner of the
flow (Batchelor 1967).

The stream function for the corner flow beneath the subducting
plate is (McKenzie 1969):

ψ = r V [(θ − ω) sin θ − θ sin (θ − ω)]

ω + sin ω
(3)

where δ is the dip of the slab, ω =π − δ and θ is measured clockwise
from the horizontal base of the subducting plate. This expression is
used only when we solve numerically for the temperatures in slab and
mantle. In practice, the details of this flow are unimportant for the
region of interest, which is the top of the slab and its overlying wedge
of mantle, because the timescale for thermal diffusion through the
slab, ∼a2/π 2κ , greatly exceeds the timescale for advection of heat
in the wedge (see Section A3).

We take the velocity of the descending slab to be parallel to the
slab. With the overriding plate having zero velocity, the stream
function, ψ , for the flow in the wedge above the slab is given by
(McKenzie 1969):

ψ = r V [(δ − θ ) sin θ sin δ − δθ sin (δ − θ )]

δ2 − sin2 δ
(4)

where θ is measured counter-clockwise from the horizontal base of
the overriding plate (Fig. 1).

We also investigate the case in which free slip is allowed at the
base of the overriding plate, for which the solution is:

ψ = r V [δ cos δ sin θ − θ sin δ cos θ ]

δ − cos δ sin δ
. (5)

It is worth noting, for completeness, that a condition of free slip
on the top of the slab would result in a static wedge; this case has

been treated by Molnar & England (1990), but is of no interest in the
current context because temperatures in such a static wedge would
never be high enough to yield melting beneath the island arcs.

2.2 Thermal model

In both numerical and analytical solutions, we take the temperature
at the surface of the Earth to be zero (and 0 ◦C when dimensional
quantities are used). The temperatures on the side boundaries are
taken to be

T = Ta z

a
z ≤ a (6)

T = Ta z > a (7)

T = Ta z

zw
z ≤ zw (8)

T = Ta z > zw (9)

where z is depth beneath the Earth’s surface, and Ta is the back-
ground temperature of the upper mantle. Eqs (6) and (7) refer to the
right-hand side and (8) and (9) refer to the left-hand side beneath
the overriding plate. We do not use the error function or Fourier se-
ries solution for the temperature structure of the oceanic lithosphere
because temperature variations due to differences in thickness, a, of
the plate are much more important than details of the temperature
structure within a plate of a given thickness.

In the numerical calculations, the base of the zone of calculation
is at a depth of 800 km; the right-hand boundary is 500 km to
the right of the trench, and the left-hand boundary is taken to be
1500 km to the left of the slab at the base of the solution domain.
We assume zero vertical derivative of temperature on the base of the
solution domain.
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Table 1. Notation, with expressions for, or values of, parameters.

Symbol Definition Notation/value

a Thickness of the slab 40–100 km

c Specific heat 103 J kg−1 K−1

K Thermal conductivity κ ρ c

R Scale length for temperature change in wedge 400 κ/V δ2

r Radial distance from wedge corner

r′ Dimensionless radial distance from wedge corner V rδ2/κ

T Temperature

Ta Background temperature of the upper mantle 1280 ◦C

T s Temperature at the top surface of the slab [T1 + παTa
2a erf( a

2
√

κt
)]

(
1 +

√
πα

2β

)−1

T 1 Maximum temperature in the wedge on a Ta exp
{

1
2

[
1 − ( R

r

)1/3
]}

0 < r < R

profile perpendicular to the slab Ta r ≥ R

ux Component of velocity in the wedge perpendicular to the slab

Ux Maximum value of ux on a profile perpendicular to the slab

V Convergence rate between plates

x Distance measured perpendicular to the top of the slab

z Depth below Earth’s surface

zw Depth of wedge corner, equal to thickness of the overriding plate 40, 60, 80 km

α Thickness of advective boundary layer on top of slab rδ(16/9
√

πξr ′)1/3

β Thickness of inverted thermal gradient within slab
√

κz/(V sin δ)

δ Dip of the slab

κ Thermal diffusivity 8 × 10−7 m2 s−1

θ Angle within wedge, measured from horizontal

ξ 1 − 2
5 sec (2δ/5)

ρ Density 3300 kg m−3

φ Angle within wedge, measured from slab δ − θ

ψ Stream function for flow in wedge

Dissipative heating is neglected throughout; we discuss this as-
sumption further below (Section 3.4.2). We also assume that heat
transfer is by advection and diffusion through the solid wedge and
plates, ignoring transport of heat and mass by flow through con-
nected porosity or cracks. Finally, we assume thermal steady state
and solve the time-independent advection–diffusion equation for
temperature, T , in an incompressible medium of constant thermal
diffusivity, κ:

v · ∇T = κ∇2T, (10)

where v is the velocity of the medium.

2.3 Numerical solution

We calculate numerical solutions to (10) by the finite-element
method, using the streamline upwind Petrov–Galerkin method (e.g.
Johnson 1990). We employ grids that are greatly densified close to
the wedge corner, in the boundary layers at the top of the slab and
at the bases of the slab and plates, typically with around 105 nodes
and 2 × 105 elements. We have tested for convergence, and find
that solutions obtained with these meshes agree to within 1 per cent
with those obtained with twice the mesh spacing. We assessed the
accuracy of our solutions by computing numerical solutions to the
problem considered by Molnar & England (1990) in which a rigid
slab moves beneath a stationary wedge. Although that problem does

not contain relative motion within the wedge, which is an impor-
tant part of the present problem, it does contain, at the top of the
slab, thermal gradients that are as steep as those encountered here.
Molnar & England (1990) give approximate analytical expressions
for the temperature in the wedge and on the top of the slab, obtained
by ignoring thermal diffusion parallel to the slab. We find that, for
δ < 20◦ and 30 mm yr−1 < V < 150 mm yr−1, our solutions agree
with these analytical solutions to within 2 per cent, consistent with
the degree of approximation in the expressions of Molnar & England
(1990).

To evaluate the validity of the scaling relations derived in this
paper, we obtain numerical solutions for slab dips of 10◦ to 80◦, in
steps of 10◦, for convergence speeds of 10 to 100 mm yr−1, in steps
of 10 mm yr−1. We show the results from two suites of calculations;
in the first the thickness, a, of the slab is 100 km and depths to the
wedge corner, zw, are 40, 60 or 80 km. In the second suite, zw is
fixed at 60 km, and a is taken to be 40, 60 or 80 km.

3 A P P RO X I M AT E A N A LY T I C A L
E X P R E S S I O N S

Although our analytical approximations are independent of the nu-
merical solutions with which we check them, it is useful to begin our
discussion with an illustrative calculation that displays the principal
features of the problem. We are concerned with the temperature in
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Analytical approximation to subduction zone temperatures 1141

three parts of the system: the overriding plate, whose base is de-
fined by the constant depth, zw; the slab, whose top is defined by a
plane of constant dip, δ, and the wedge of fluid mantle between these
rigid layers. (As discussed above, the temperature field below the
subducting plate does not influence significantly the temperatures
in the rest of the system.)

Fig. 1 shows a portion of the solution domain for a calculation
in which the thickness of the overriding pate, zw, is 60 km, the slab
thickness, a, is 100 km, the dip, δ, of the slab is 60◦ and the plate
convergence rate is 100 mm yr−1. There are two parts of the wedge in
which the thermal gradient is appreciably steeper than in the interior
of the wedge. The first of these is the boundary layer beneath the
overriding plate, where the upward component of the corner flow
carries heat to the base of the plate. The second part lies immediately
above the slab, where the corner flow carries heat downwards to
the top of the slab. The key to our analytical expressions lies in
the temperature structure of this advective boundary layer on top
of the slab. This layer partly insulates the slab from the mantle
wedge and our solution therefore differs significantly from that of
McKenzie (1969), which treats the mantle outside the slab as being
isothermal and applying a constant, high, temperature on the top of
the slab.

3.1 Thickness of the advective boundary layer
on top of the slab

The boundary layer beneath the overriding plate layer thins as it is
advected towards the slab; in the particular illustration of Fig. 1,
the layer of steep thermal gradient on top of the slab has approxi-
mately one-quarter of the thickness of the equivalent layer beneath
the overriding plate. Davies & Stevenson (1992) obtained an analyti-
cal solution for the temperature structure in the advective boundary
layer on top of the slab, under the assumption that it has a con-
stant thickness of a few kilometres. This assumption is retained by
Davies (1999) in his analytical solution to the problem but, because
the thickness of the advective boundary layer on top of the slab de-
pends upon the speed of the flow in the wedge, Davies’ solution is
incomplete.

In the Appendix we show that, in the corner flow, the maximum
value of the component of velocity in the wedge perpendicular to
the slab is ∼Vδ/4, where V is the speed of convergence between
the plates and δ is the dip of the slab (see Table 1 for notation).
Assuming that diffusion of heat parallel to the slab is negligible in
comparison with diffusion and advection of heat perpendicular to
the slab, we show that the thickness, α, of the advective boundary
layer on top of the slab is

α ∼
(

16κr 2δ

9
√

πξV

)1/3

= rδ

(
16

9
√

πξr ′

)1/3

. (11)

In this expression, r is distance from the wedge corner, ξ is a factor
dependent weakly on the dip of the slab (see eq. A4) that is close to
0.6, and r′ is a dimensionless distance, given by

r ′ = V rδ2

κ
.

The form of the expression for the thickness of the thermal bound-
ary layer arises from the balance between diffusion and advection
of heat, which is often expressed in terms of the Péclet number,
or thermal Reynolds number. The Péclet number is the ratio of the
length of time required for heat to diffuse through a layer of a given
thickness to the length of time taken for heat to be carried the same
distance by the flow. For a boundary layer of thickness α, these times
are approximately equal to α2/(π 2κ) and α/U , respectively, where

U is the characteristic speed of the flow in the boundary layer. Sec-
tion A2 shows that, at the top of the boundary layer, material moves
towards the slab at a rate U ∼ 9π 2 V ξα2/16 r 2δ (series substitution
for cosine in eq. A9). The thickness of the advective boundary layer
is determined by the requirement that its diffusional and advective
timescales be comparable:

U

α

α2

π2κ
= 9V ξα3

16κr 2δ
∼ 1, (12)

which gives an approximate expression for α:

α ≈
(

16κr 2δ

9V ξ

)1/3

(13)

that closely resembles (11).
The temperature in the advective boundary layer on top of the

slab is given by

T (x) = Ts + (T1 − Ts)erf

(
x

α

)
, (14)

where T s is the temperature on the top of the slab at a distance r
from the wedge corner, and T 1 is the maximum temperature in the
wedge on a profile perpendicular to the slab, starting at the same
distance, r, from the wedge corner (see eq. A18), and x is distance
along that profile. (Expressions for T s and T 1 are given below.)

We evaluate the accuracy of the expression for α using our nu-
merical solutions. For each calculation we take temperature profiles
perpendicular to the slab at integer multiples of 25 km, starting
below zw and continuing to 300 km. We then fit an error function
solution to each profile to obtain the best-fitting value of α. We find
that (11) gives an accurate estimate of the thickness of the boundary
layer on top of the slab, provided that α < π

√
κt where t = r/V

is the length of time that the top of the slab has been in contact
with the wedge. We may expect a breakdown in the assumptions
that led to (11) when the length scale associated with thermal diffu-
sion, proportional to

√
κt , becomes comparable with the thickness

of the advective boundary layer on top of the slab . If we modify
(11), by setting the boundary layer thickness to be the smaller of α

and π
√

κt , then we have an accurate description of the boundary
layer thickness for almost the full range of parameters we investigate
(Fig. 2).

We exclude from Fig. 2 those calculations for which t > a2/π2κ .
In these cases, the timescale for diffusion of heat through the slab
is less than the length of time that the top of the slab has been
in contact with the wedge, so the heat flux from within the slab
varies significantly with distance along the slab, rendering invalid
the assumption that we can neglect diffusion parallel to the slab.

3.2 Maximum temperature in the wedge

The remaining parameter required for the description of tempera-
tures in the wedge is T 1, the maximum temperature in the wedge
along a profile taken perpendicular to the slab. Eq. (14) shows that,
along any profile perpendicular to the top of the slab, temperatures
rise from T s, the temperature at the top of the slab, to T 1 over a dis-
tance ∼α, given by (11). Temperatures in the interior of the wedge
are thereafter isothermal, until the thermal boundary layer at the
base of the overriding plate is reached. Further, as we show below,
the temperature on the top of the slab is, itself, determined by T 1.

We obtain an expression for T 1 by considering the heat balance
in the wedge (see Section A4). As for the thermal boundary layer on
top of the slab (see Section A2.1), this balance is between thermal
diffusion and advection of heat by the flow. Whereas the character-
istic speed within the advective boundary layer on top of the slab is
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Figure 2. Comparison between the theoretical expression for the thickness,
α (see eqs 11 and A17) of the advective boundary layer on top of the slab and
the thickness determined from numerical solutions (see text). The theoretical
expression for the thickness of the advective boundary layer on top of the
slab is given by the smaller of α (eq. 11) and π

√
κt , where t = r/V is

the length of time for which the top of the slab has been in contact with
the wedge (solid symbols). Numerical solutions are obtained for slab dips
between 10◦ and 80◦, and for convergence speeds between 10 and 100 mm
yr−1. Calculations are shown for two combinations of the thickness, a, of
the slab and zw, the depth to the wedge corner: zw is fixed to 60 km, with
a being 40, 60 or 80 km, or a is fixed to 100 km, with zw being 40, 60 or
80 km. Solutions are not plotted in the cases where the speed of descent was
so slow that no error function could be fit to the profile (usually V sin δ <

10 mm yr−1), or when heat flux from within the slab varies appreciably with
distance along the slab (t > a2/π2κ).

generally a small fraction of the convergence rate, V , heat is carried
within the wedge at a speed comparable to V . Heat is carried both
downwards, by cold material in the slab and the fluid it entrains, and
upwards by rising hot material of the wedge; the combined effect
is to advect heat towards the wedge corner. This advection is bal-
anced by the diffusion of heat out of the wedge into the surrounding
plates. Our simple analysis neglects the diffusion through the over-
riding plate and concentrates on the much steeper thermal gradient
through the advective boundary layer on top of the slab , and we find
(see eqs A38–A47)

T1 ∼ Ta exp

{
1

2

[
1 −

(
R

r

)1/3
]}

0 < r < R

T1 = Ta r ≥ R,

(15)

where R is a length scale, given by

R ∼ 400κ

V δ2
. (16)

We evaluate the validity of our approximation for T 1 from the
numerical solutions. The maximum temperature in the wedge, T 1,
is plotted against its theoretical value, given by (A47), in Fig. 3. For
all cases, the misfit between the approximate expression for T 1 and
the numerical value is less than about 100 ◦C; the r.m.s. misfit is
50 ◦C, which is equivalent to 5–10 per cent of the magnitude of T 1.
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Figure 3. Comparison between theoretical and numerical values of max-
imum temperature, T 1, in the wedge at different distances from the wedge
corner. Numerical solutions are obtained for slab dips between 10◦ and 80◦,
and for convergence speeds between 10 and 100 mm yr−1. Calculations are
shown for two combinations of the thickness, a, of the slab and zw, the depth
to the wedge corner: zw is fixed to 60 km, with a being 40, 60 or 80 km, or
a is fixed to 100 km, with zw being 40, 60 or 80 km. Theoretical values for
T 1 are calculated from (15).

3.3 Temperature at the top of the slab

The temperature gradient at the top of the slab is approximately
T s/β, where the length scale, β = √

κt is set by the time, t, taken
for the top of the slab to reach the depth of interest. The temperature
gradient at the bottom of the advective boundary layer on top of the
slab is approximately T s/α, where α is the thickness of the boundary
layer. The requirement that these two gradients be equal, to conserve
heat flux, gives an expression for the temperature on the top of the
slab in terms of the maximum temperature in the wedge above it
(see eqs A25–A35):

Ts ∼
[

T1 +
√

παTa

2a
erf

(
a

2
√

κr/V

)] / (
1 +

√
πα

2β

)
(17)

where T 1 is the maximum temperature in the wedge along the profile
taken perpendicular to the slab, Ta is the background temperature
of the mantle and a is the thickness of the slab.

We evaluate the validity of (17) from our numerical solutions.
Fig. 4 shows the value of T s, calculated from (17) with T 1 given
by (15), plotted against the numerical solution for temperature at
the top of the slab for each profile. For all cases in which the speed
of descent of the slab, V sin δ, is greater than 10 mm yr−1, the
misfit between the approximate expression for T s and the numerical
value is less than about 100 ◦C. More importantly, for our purpose,
Fig. 4 shows that the numerical values for T s follow the scaling
of (17).

Fig. 5 shows that temperatures on the top of the slab (at depths
shallower than 300 km) do not rise above about 600 ◦C unless the
thickness of the slab is less than about 40 km. Furthermore, the
temperatures on the top of the slab appear to be insensitive to the
convergence rate, and to the dip of the slab. This behaviour, which
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Figure 4. Comparison between theoretical and numerical values of temper-
ature, T s, at the top of the slab. The ranges of parameters for the numerical
solutions are given in the caption to Fig. 2. Calculations are for the range of
conditions given in the caption to Fig. 3.

has been noted by others previously (e.g. Davies & Stevenson 1992;
Peacock et al. 1994), arises from the thermal boundary condition at
the interface between the slab and the wedge.

For slabs older than about 50 Myr, α 
 a so we may neglect
the second term in the numerator of (17) and the expression for the
temperature at the top of the slab becomes

Ts ∼
(

T1

1 + √
πα/2β

)
. (18)

The denominator in (18) depends only upon the ratio of the two
length scales, α and β, which may be written (see A37) as

α

β
∝

(
1 − zw

z

)(
V δ2r

κ

)1/6

, (19)

where z is depth and zw is depth of the wedge corner. This equation
shows that the ratio of the temperature on the top of the slab to
the maximum temperature in the wedge above it should depend
only weakly on convergence rate (weaker than one-sixth power) and
dip (weaker than one-third power) of the subduction zone. Equally,
within an individual subduction zone, with V and δ fixed, T s/T 1

should vary weakly with distance from the wedge corner, for z >∼
zw. The appendix (Section A3) shows that α/β ranges from about
1.6 to 2.6 for the range of conditions pertaining to active subduction.
Thus we should expect that in the upper few hundred kilometres of
subduction zones containing slab of age 50 Myr or older (for which
eq. 18 applies), the temperature at the top of the slab would vary
only slowly with depth and would not vary greatly, at a given depth,
from one subduction zone to another.

3.4 Sensitivity of scaling to model assumptions

The previous sections show that the scaling relations for boundary
layer thickness and temperatures agree with the results of full, 2-D,
numerical solutions to the steady-state diffusion–advection equation
for the model we have adopted. It is appropriate, however, to ask how

sensitive these scalings might be to assumptions made in developing
the model.

3.4.1 Assumptions about flow in the wedge

The key to our scaling is the thickness, α, of the advective boundary
layer on top of the slab. This parameter appears both in the expression
for T 1, the maximum temperature in the wedge interior, and in the
relation between T 1 and T s, the temperature on the top of the slab.
Because the thickness of the advective boundary layer on top of the
slab depends directly upon the speed at which the flow in the wedge
advects heat towards the slab (Section A2), the scaling developed
here depends most directly upon assumptions made about the form
of the flow in mantle at subduction zones.

One major geometrical assumption that we make is that the flow in
the wedge is directly coupled to the overlying plate; thus the velocity
in the wedge is zero at its top (Fig. 1). It has often been suggested,
however, that the mantle immediately beneath the lithosphere may
be a zone of low viscosity, which could decouple the overriding
plate from the wedge (e.g. Mitrovica & Forte 1997). We therefore
investigated the thermal structure associated with a wedge having
zero shear stress at the base of the overriding plate (eqs A19–A21).
The scaling is identical to that discussed above, with the exception
that α is about 10 per cent greater than in the no-slip case discussed
above. The numerical solutions verify this scaling (Fig. 6), thus we
may apply the scaling discussed above to the case of free slip at the
top of the wedge by making the appropriate small adjustment to α.

In Section A2.1 we argue that, provided the maximum tempera-
ture occurs at a roughly constant angle within the wedge, and the
maximum speed of circulation perpendicular to the slab scales with
the convergence rate between the plates, then the thickness, α, of
the advective boundary layer on top of the slab will still scale with
r and r′, in a fashion similar to that discussed here. We therefore
expect that flow in a wedge of power-law fluid, as investigated by
Tovish et al. (1978), would yield a scaling similar to that discussed
here, though we have not investigated this point.

There are forms of the flow for which the scaling proposed here
would definitively be inappropriate. One such form would arise if
buoyancy were to play an important role in transporting heat within
the wedge. The advection of heat that we consider here is entirely by
forced convection, with the velocity scale imposed by the conver-
gence speed of the two plates. The scaling would not, presumably,
be perturbed significantly by the migration of small fractions of
melt through connected porosity, but it would be inapplicable if free
convection of the bulk of the wedge were to occur.

Our analysis is also inapplicable to subduction zones in which sig-
nificant back-arc spreading takes place. The scalings for the quan-
tities of interest, α, T 1 and T s, are based on the direct link between
the convergence rate, V , and advection of heat towards the wedge
corner and towards the top of the slab. When back-arc spreading
occurs, this link is broken; the circulation is split (Ribe 1989), with
some of the flow being directed towards the wedge corner and some
towards the spreading centre. In addition, the flow in the presence
of back-arc spreading is intrinsically time dependent and generally
short-lived. We have not investigated this problem.

A major simplification in our model is the assumption that the
mantle wedge has a constant viscosity. It is seems likely that the large
lateral variations in temperature and fluid content of the wedge may
generate significant variations in viscosity, and the few numerical
experiments that have been carried out with temperature-dependent
rheologies (e.g. Furukawa 1993; van Keken et al. 2002) show that
higher wedge temperatures are obtained than in constant-viscosity
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Figure 5. Profiles of temperature along the top of the slab for δ = 30◦, 60◦ and a = 20, 40, 60 and 100 km, with zw = 60 km. Dotted curves illustrate the
temperatures for V = 10 mm yr−1, dashed curves for V = 30 mm yr−1 and solid curves for V = 100 mm yr−1.

calculations. It remains to be determined whether a scaling compa-
rable to that developed here can be found for flows with temperature-
dependent rheology.

3.4.2 Influence of dissipation

We have, so far, neglected dissipation of heat. This approximation is
probably valid within the wedge, because McKenzie (1969) shows
that typical rates of viscous dissipation are lower than heat gener-
ation in mantle rocks if the mantle viscosity is lower than about
1021 Pa s. Viscous dissipation on the plate boundary probably is
required, however, both to account for the metamorphic conditions
recorded by rocks that are believed to have been subducted along
plate boundaries (e.g. Peacock 1992) and to explain the heat flux
observations near trenches (e.g. Molnar & England 1990; England
& Molnar 1991; Von Herzen et al. 2001). These studies suggest that
stresses of a few tens of MPa may act to depths of about 50 km on
subduction zones. Assuming a deviatoric stress of 30 MPa, a dip of
10◦ and a slip rate of 100 mm yr−1 yields an estimate of 3 × 104 W
m−1 for the contribution of dissipation in the upper 50 km to the
thermal budget of a subduction zone. An independent estimate of

the total rate of dissipation comes from McKenzie & Jarvis (1980)
who used the result that about 2.5 per cent of energy in a convect-
ing system is available to carry out mechanical work on horizontal
planes (Jarvis & McKenzie 1980). For a heat flow of 3.4 × 1013 W
from the mantle, this yields an estimate of 2 × 104 W m−1 for the
dissipation on 50 000 km of convergent plate boundary.

As we show above, temperatures in the wedge and at the top of the
slab are determined by the advection of heat towards the top of the
slab by flow in the wedge. This advection produces boundary layers
10–20 km thick, across which the temperature contrast is more than
600 ◦C, which is equivalent to a heat flux of ∼0.1–0.2 W m−2. Thus
the transfer of heat to the top of the slab by dissipation may be
comparable with that due to advection in the top 100–200 km of the
subduction zone.

We have no analytical solution to offer, but investigate this ques-
tion further by numerical experiment. In the absence of reliable
information on the rates of shear heating on subduction plate bound-
aries, and in the presence of many competing models for how such
heating should be treated, we adopt a simple approach that fixes
the temperature on the plate boundary to be the depth multiplied
by 10 ◦C km−1, down to the base of the plate boundary at depth
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Figure 6. Comparison between the theoretical expression for the thickness,
α (see eq. A21) of the advective boundary layer on top of the slab and the
thickness determined from numerical solutions for the case in which free
slip is allowed at the base of the overriding plate. The theoretical expression
for the thickness of the advective boundary layer on top of the slab is given
by the smaller of α (eq. A21) and π

√
κt , where t = r/V is the length of time

for which the top of the slab has been in contact with the wedge. Numerical
solutions are obtained for slab dips between 10◦ and 80◦, for convergence
speeds between 10 and 100 mm yr−1. In all cases the thickness, a, of the
slab is taken to be 100 km, and the depth to the wedge corner, zw, is 40, 60
or 80 km. Numerical values for boundary layer thickness were obtained by
fitting profiles perpendicular to the top of the slab, starting where the top of
the slab was at depths between zw and 300 km. Solutions are not plotted in
the cases where the descent speed was so slow (V sin δ <∼ 10 mm yr−1) that
no error function could be fitted to the profile, or when heat flux from within
the slab varies appreciably with distance along the slab (t > a2/π2κ).

zw. This temperature gradient is consistent with the metamorphic
conditions inferred from blueschists and eclogites believed to have
been exhumed from subduction zones (e.g. Peacock 1992; Fryer
et al. 1999), and with the inference, from the distribution of depths
of thrust-faulting earthquakes, that temperatures of 400–600 ◦C are
obtained at depths of 40–50 km on convergent plate boundaries
(Tichelaar & Ruff 1993).

In Fig. 7 we compare the profiles of temperature along the top of
the slab with and without this proxy for dissipative heating. We can
see that, although the extra heating causes considerable increase
in temperature along the plate boundary (depth, z, <∼ zw), the in-
creases at greater depth are modest, being mostly 100 ◦C or less.
This result shows, as would be expected from the arguments made
at the beginning of this subsection, that dissipation can contribute
significantly to heating near the plate boundary but once the slab
has penetrated 100–200 km into the mantle the advection of heat
by flow in the wedge is the dominant influence on the temperature
structure.

Greater influence of dissipative heating on the thermal state of
the top of the slab has been suggested in the past, particularly by
Peacock et al. (1994), who postulated shear stresses on the top of
the slab of 10–100 MPa down to depths of 150 km or more. Such
distributions of stress yield total rates of dissipation of up to 6 ×

105 W m−1, far in excess of the estimates quoted above for the rates
of dissipation on plate boundaries.

4 P E T RO L O G I C A L I M P L I C AT I O N S

We now return to the evidence for systematic variation in the depth
of the slab beneath the fronts of volcanic arcs, which motivated this
study. England et al. (2004) found that the top of the intermediate-
depth seismicity beneath island arcs (which is close to the top of the
slab (e.g. Engdahl & Gubbins 1987; Abers 1992; Zhao et al. 1994,
1997; Helffrich & Abers 1997; Igarishi et al. 2001)) lies at a depth
that varies significantly from arc to arc and is strongly negatively
correlated with V sin δ. The observations of England et al. (2004)
are summarized in Table 2, with the exclusion of three arcs that
exhibit significant back-arc spreading (see Section 3.4.1).

Our scaling arguments suggest that the places at which the tops
of slabs reach a given temperature will all be at the same dimension-
less distance Vrδ2/κ from the wedge corner and that the maximum
temperature in the mantle wedge, T 1, also depends upon Vrδ2/κ .
The distance, r, from the wedge corner cannot be measured directly
but can be calculated from the depth to the top of the slab, D, and the
dip, δ, if the depth of the wedge corner, zw, is assumed: r = (D −
zw)/sin δ. We take a value of 50 km for zw, approximately the max-
imum depth of thrust-faulting at subduction zones (e.g. Tichelaar
& Ruff 1993), and plot r, estimated for the top of the slab beneath
the volcanic fronts, against Vδ2 (Fig. 8). There is strong negative
correlation between these two quantities and the data lie close to a
line of slope −1, which is the relation expected if the location of
arcs were controlled by maximum temperatures in the wedge that
depended on Vδ2/r (as described by eqs 15 and 16).

Note that the correlation between Vδ2 and r is very similar to
the correlation between V sin δ and D observed by England et al.
(2004) because

V rδ2

κ
= V (D − zw)δ2

κ sin δ
∼ V (D − zw) sin δ

κ
(20)

for sin δ ∼ δ.
The strong negative correlation between r and Vδ2 (Fig. 8) im-

plies that the locations of the arcs are controlled by a temperature-
dependent process in the subduction zones that conforms to the
scaling we have developed here. If this implication is correct, we
may use our scaling relations to draw conclusions about the temper-
ature regime beneath island arcs and, hence, about the petrological
processes occurring there. We do not expect temperatures given by
our scaling relations to agree precisely with their counterparts in
the real world. Each temperature discussed below is uncertain by at
least 100 ◦C, given the limitations of our approximation (Figs 3 and
4) and there is, doubtless, additional inaccuracy due to the simplic-
ity of the model. However, more complex models exhibit variations
in temperature of significantly more than 100 ◦C as parameters are
varied (e.g. van Keken et al. 2002). Given the uncertainty in values
of key parameters, such as those determining rheology, it is hard to
tell which ranges of these more ‘realistic’ models lie closer to reality
than our simple solutions.

4.1 Temperature on the top of the slab

A fundamental question about arc volcanism concerns the degree
to which the material of the slab (sediment and/or hydrated oceanic
crust) melts, and whether differences in subduction zone parame-
ters, such as convergence speed, dip, and age of the slab can influ-
ence such melting. Estimates of the conditions required for oceanic
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Figure 7. Profiles of temperature along the top of the slab for δ = 30◦, 60◦ and a = 20, 40, 60 and 100 km, with zw = 60 km. In all panels, curves illustrate the
temperature for V = 30 mm yr−1 (dashed) and 100 mm yr−1 (solid); thick curves show temperatures calculated as in Fig. 5 and thin curves show temperatures
calculated with the plate boundary held at a temperature of 10 ◦C km−1 to a depth of 60 km.

sediment to melt have been made by Nichols et al. (1994), who
suggest that the solidus lies at about 650 ◦C at a depth of 100 km,
rising to about 720 ◦C at 200 km and, more recently by Johnson &
Plank (1999), who conclude that temperatures approximately 100 ◦C
higher than these may be appropriate. We use the solidus of Schmidt
& Poli (1998) for H2O-saturated basaltic crust; this lies at about
750 ◦C at 100 km, rising to about 900 ◦C at 200 km.

The scaling for temperature on the top of the slab is discussed
in Section 3.3, in which we emphasize that the temperature within
any subduction zone is expected to vary only slowly with depth, and
that differences, between subduction zones, in the temperature at any
depth will be slight unless the slab is young. These considerations
are illustrated in Fig. 9 by plotting the temperature, at depths of 100,
150, 200 and 250 km, as a function of plate age and the quantity
Vδ2, using (17). Fig. 9 also shows the parameters for the subduction
zones listed in Table 2.

According to the calculations illustrated here, the conditions at the
tops of the slabs beneath these island arcs are too cold for the melting
either of sediment or of H2O-saturated oceanic crust. We recall,

however, that the temperatures derived from scaling arguments may
be inaccurate by 100 ◦C or more. If all the calculated isotherms in
Fig. 9 were raised by 100 ◦C, then the conditions determined by
Nichols et al. (1994) for melting pelagic sediments would be met,
for some of the subduction zones, when the top of the slab reaches
depths between 200 and 250 km, though the conditions determined
by Johnson & Plank (1999) would not be met.

The conditions for melting of H2O-saturated oceanic crust are not
satisfied at any depth illustrated in Fig. 9 for the arcs investigated
by England et al. (2004). None of those arcs, however, contains
slab of age younger than 40 Myr; subduction zones containing slabs
younger than this age do not yield enough intermediate-depth earth-
quakes for the analysis employed by those authors. The large symbol
A in Fig. 9 indicates the approximate position in parameter space
occupied by the subduction zones of southwest Japan, southern-
most Chile and the Cascades. These are all regions in which it is in-
ferred that melting of oceanic crust contributes to the volcanism (e.g.
Defant & Drummond 1990; Drummond & Defant 1990; Grove et al.
2001; Tatsumi et al. 2001).

C© 2004 RAS, GJI, 159, 1138–1154

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/159/3/1138/2095585 by guest on 16 August 2022



Analytical approximation to subduction zone temperatures 1147

Table 2. Parameters of volcanic arcs. Two-letter codes identify arc segments
in Figs 9 and 10.

Code Name Depth, Da Dip, δb V c Aged

EA E. Aleutians 65 61◦ 65 60
CA C. Aleutians 80 61◦ 61 55
NK N. Kuriles 80 49◦ 79 120
EP E. Alaska Pen. 85 57◦ 56 46
AP W. Alaska Pen. 95 50◦ 63 46
KA Kamchatka 95 54◦ 76 90
GU Guatemala 100 55◦ 67 25
JP Japan 100 34◦ 88 124
SK S. Kuriles 100 48◦ 71 120
SS S. Sumatra 100 56◦ 61 80
JA Java 100 40◦ 72 130
WA W. Aleutians 105 61◦ 44 60
RY Ryukyus 105 55◦ 49e 47
CC C. Chile 110 30◦ 67 34
NZ New Zealand 110 50◦ 36 100
SP S. Peru/N. Chile 115 35◦ 68 50
NS N. Sumatra 115 37◦ 47 50
WI West Indies 115 47◦ 19f 70
BO Bonin 120 42◦ 30e 140
AE Aegean 125 43◦ 43g 120
IZ Izu 130 47◦ 51e 140

aAverage depth to the top of intermediate earthquakes below volcanoes of
island arcs, in kilometres (England et al. 2004).
bAverage dip of the seismic zone between a depth of 80 km and 400 km or
the termination of intermediate-depth seismicity, whichever is the
shallower (England et al. 2004).
cAverage rate of convergence, in millimetres per year, between the two
plates bordering the arc, from the angular velocities of DeMets et al.
(1994); the plate relative velocity is resolved perpendicular to the
best-fitting small circle through the volcanic arc (England et al. 2004).
Uncertainties represent the range in V along the arc segment. Rates for arcs
bordering the Philippine Plate (e) are calculated from the angular velocities
of Seno et al. (1993) for the Philippine Plate with respect to its surrounding
plates. The rate for the Lesser Antilles (f) is calculated from the angular
velocity of DeMets et al. (2000). The rate for the Aegean (g) is calculated
from the Aegean–Eurasia angular velocity of Le Pichon et al. (1995) and
the Africa–Eurasia angular velocity of DeMets et al. (1994).
dAverage of the age of ocean floor entering the trench (Mueller et al. 1997).

For the reasons given in Section 3.3, if the slab is older than about
40 Myr variations in convergence rate and dip of the slab have very
little influence on the temperature at the top of the slab. Fig. 9 shows,
however, that the increase in temperature at the top of the slab that
arises when the ocean floor is younger than 20 Myr can be as much
as 300–400 ◦C: sufficient to cause melting of the basaltic crust. Thus
the analysis we employ here supports the suggestions of previous
workers that temperatures on the top of the slab become high enough
to generate melting of the basaltic crust only where the ocean floor
is younger that about 20 Myr (e.g. Defant & Drummond 1990;
Drummond & Defant 1990; Peacock et al. 1994), or close to the
ends of slab segments, where hot upper mantle can leak around the
edges of the slab (Yogodzinski et al. 2001). It is also highly probable
that the influence of temperature-dependent rheologies will be to
raise temperatures at the top of the slab to higher values than we
obtain with a constant-viscosity fluid (e.g. van Keken et al. 2002).

An additional implication of Fig. 9 is that melting of material
of the slab is not the trigger for arc volcanism. The depth of the
slab beneath island arcs varies significantly from arc to arc, and
is strongly negatively correlated with its speed of descent (Fig. 8
and eq. 20). Regardless of the uncertainties in the absolute value
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Figure 8. The parameters of volcanic fronts above subduction zones stud-
ied by England et al. (2004). The radial distance between the top of the
slab beneath each individual arc segment and the wedge corner (r = (D −
zw)/sin δ, where zw is taken to be 50 km) is plotted against Vδ2 (see Table 2).
The solid line has a slope of −1 on the log–log plot.

of temperature derived from scaling arguments, our analysis shows
that the temperature on the top of the slab at any depth depends
very weakly on convergence rate and slab dip (Section 3.2), and
thus that the observed correlation could not be generated in any
simple way by the onset of melting of slab material, nor by any other
strongly temperature-dependent process taking place on the top of
the slab. It is probable that melting of sediment does contribute to
arc magmatism (see, for example, Johnson & Plank 1999), but Fig. 9
suggests that this melting may be initiated when the slab has passed
beyond the volcanic front (perhaps to depths of 150 km or more) and
that melt travels back towards the volcanic front through the wedge.
This suggestion is consistent with the inferences, from body-wave
tomography beneath Japan, of inclined channels of low wave speed
leading from the slab at depths around 150 km to beneath the arc
volcanoes (e.g. Hasegawa et al. 1991; Iwamori & Zhao 2000; Wyss
et al. 2001).

4.2 Temperatures in the wedge

Fig. 10 shows the variation of maximum temperature in the wedge
(given by eq. 15) as a function of distance from the wedge corner,
r, and the quantity Vδ2. The figure also plots the values of these
parameters for the top of the slab beneath the volcanic front in the
subduction zones listed in Table 2. It is evident from this figure
that if our scaling is relevant to active subduction zones then the
fronts to the volcanic arcs investigated lie above portions of the
wedge whose maximum temperatures are within a narrow range
of about 150 ◦C. Although the figure suggests that this range is
about 950–1100 ◦C, we must recall that the absolute values of the
temperatures we estimate are uncertain by at least 100 ◦C. Let us,
for example, assume that the algebraic form of the scaling is correct
but that the values of constants in the relations may vary. If, instead
of using a value of 400 for the numerical constant in (15), we were
to use a value of 300, then the relevant temperature range becomes
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Figure 9. Theoretical values of temperature on the top of the slab, calculated using (17), with T 1 given by (15), as a function of convergence rate, V , and
plate thickness, a; zw is fixed at 50 km and δ is fixed at π/4. Depth to the top of the slab is 100 km (a), 150 km (b), 200 km (c) and 250 km (d). To enable
comparison with the experimental solidi, an adiabatic gradient of 0.6 ◦C km−1 is added to the temperatures. Slab thickness, a, is converted to effective age
of the oceanic lithosphere by the relation a ∼ 11 km × √

age (Myr) or a = 125 km, whichever is the smaller. The shaded regions correspond to parts of
parameter space in which the maximum depth of penetration of the slab would be comparable to the depth considered, thus the calculated temperatures would
probably underestimate the true temperatures of material at the top of the slab (see text). The large letter A indicates the conditions of slab age and Vδ2 that
pertain to the Austral Andean zone, the Cascades and southwest Japan, taken from Jarrard (1986). Double curves indicate the approximate temperature contours
corresponding to the solidi of pelagic sediment (lower temperatures (Nichols et al. 1994)) and H2O-saturated basalt (higher temperatures (Schmidt & Poli
1998)). Segments are identified by a two-letter code: AEgean; AP, western Alaskan Peninsula; BOnin; Central Aleutians; Central Chile; East Aleutians; EP,
Eastern Alaskan Peninsula; GUatemala; JaPan; JAva; KAmchatka; IZu; New Zealand; North Kuriles; North Sumatra; RYukyu; South Kuriles; South Peru;
South Sumatra; West Aleutians; West Indies. Symbols EA, IZ, NS and AP are slightly misplaced from their correct positions for clarity.

1050–1200 ◦C; a value of 500 for the constant brings this range
down to 900–1050 ◦C.

The fact that, in Vδ2 − r space, the positions of the top of the slab
beneath present island arcs lie close to the positions of a narrow range
of isotherms of peak temperatures in the wedge suggests that the lo-
cation of the volcanic front is controlled by a temperature-dependent
process in the wedge. Mechanisms have been proposed that seem at
least qualitatively consistent with this conclusion. Several authors
have suggested that the release of fluid in strongly temperature-
dependent reactions may explain the locus of arc volcanism; can-
didate reactions include the dehydration of serpentine or lawsonite
and the liberation of fluid by the partial melting of sedimentary ma-
terial or hydrated oceanic crust within the slab (e.g. Nichols et al.

1994; Ulmer & Trommsdorff 1995; Iwamori 1998; Johnson & Plank
1999; Kerrick & Connolly 2001). Most of these candidate reactions
would, however, take place in the top of the slab or in the advective
boundary layer on top of the slab. As we discuss above, the grad-
ual increase of temperature along the top of the slab means that a
temperature-dependent process taking place there is an unpromising
mechanism for producing sharp localization of the volcanic front. In
contrast, each isotherm within the wedge is sharply convex towards
the wedge corner (Fig. 1), thus if a strongly temperature-dependent
process in the wedge controls the generation or ascent of magma be-
neath the arcs then the closest approach of this critical temperature
to the trench will be at the localized ‘nose’ of the relevant isotherm.
For example, Schmidt & Poli (1998), emphasizing the large number
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Figure 10. Contours of maximum value of temperature in the wedge cal-
culated from (15), with the slab being 100 km thick; an adiabatic gradient of
0.6 ◦C km−1 is added to the temperatures. Squares indicate the approximate
values of Vδ2 and r for subduction zones listed in Table 2. White squares
correspond to arcs in which ocean floor at the trench is younger than 50 Myr;
for light grey squares the age lies between 50 and 100 Myr; for dark grey
squares, the age is greater than 100 Myr. Refer to the caption to Fig. 9 or to
Table 2 for two-letter abbreviations for arcs.

of potential dehydration reactions in slab and upper mantle, postu-
late localization of the volcanic front above an isotherm in the wedge
where the extent of melting is great enough to allow extraction of
the melt.

5 C O N C L U S I O N S

There have been many investigations of the thermal state of sub-
duction zones but, almost without exception since the pioneering
studies of McKenzie (1969) and Turcotte & Schubert (1973), they
have relied on numerical solutions to the equations. Numerical solu-
tions have the superficial attraction of being able to handle complex
details of geometry, of rheology, of heat transport and of petrological
processes. Such complex models, however, have the often-neglected
disadvantage that, without an underpinning analytical framework,
they are impossible to understand. Analytical solutions, while nec-
essarily idealized, offer insights into the processes through the trans-
parent relation between governing parameters and the solutions to
the equations, and through the relative ease with which their pa-
rameter space may be explored. The analytical approximations to
temperatures that we have developed here allow us to make gen-
eral statements about the temperatures in subduction zones, and to
draw inferences about the processes governing the location of the
volcanic arcs.

In our simplified model, the temperature of the top of the slab, T s,
the maximum temperature on a profile through the wedge perpen-
dicular to the slab, T 1, and the thickness of the advective boundary
layer on top of the slab, α, all depend on the dimensionless distance
from the wedge corner, V rδ2/κ , where V is the convergence rate, r
is radial distance from the wedge corner, δ is the dip of the slab and

κ is thermal diffusivity (Fig. 1 and Table 1). Numerical experiments
show that these analytical approximations adequately describe the
variation of temperatures with the parameters of subduction over
the full range relevant to active subduction zones (Figs 2 to 4).

The observation that the radial distance, r, between the top of
the intermediate-depth seismicity beneath the volcanic fronts and
the wedge corner at active subduction zones is strongly negatively
correlated with V δ2/κ (Fig. 8 and its discussion) suggests that the lo-
cation of the arcs is controlled by a strongly temperature-dependent
process taking place either at the top of the slab or in the wedge of
mantle beneath the arcs. Our analytical solutions allow us to dis-
tinguish between these possibilities. The temperature at the top of
the slab depends only weakly upon the convergence rate, V , and
dip, δ, of the slab (Fig. 9 and its discussion), thus one would not
expect any temperature-dependent process occurring at the top of
the slab to exhibit the sharp localization that characterizes the posi-
tions of the volcanic arcs. In contrast, each isotherm in the wedge is
strongly convex towards the wedge corner (Fig. 1) and thus the clos-
est approach to the trench of any isotherm in the wedge is strongly
localized. Because the maximum temperature in the mantle wedge
depends strongly on V rδ2/κ (15), we conclude that the negative
correlation between V δ2/κ and r shown in Fig. 8 implies that a
temperature-dependent process in the mantle wedge is responsible
for the focusing of volcanic activity at the sharp fronts to the arcs
(Fig. 10). We do not speculate about what that process might be, but
suggest that the observations of England et al. (2004), combined
with the scaling arguments of this paper, may provide strong con-
straints for petrological modelling of the generation of island-arc
magmas.
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A P P E N D I X A : A N A LY T I C A L
E X P R E S S I O N S F O R T E M P E R AT U R E S
AT T H E T O P O F T H E S L A B
A N D I N T H E W E D G E

In this appendix we derive approximate expressions for the temper-
ature along the top of the slab, and in the wedge of mantle above
the slab. As a preliminary to our analysis we obtain approximate
expressions for the component of velocity in the wedge that is per-
pendicular to the slab. We use the balance between diffusion and
advection of heat perpendicular to the top of the slab to derive an
expression for the temperature in the advective boundary layer on
top of the slab. We find that the temperature at the top of the slab
scales with the maximum temperature in the interior of the wedge
above the slab. We then use the balance between radial advection
of heat in the wedge and diffusion of heat out of the wedge through
the bounding plates to show that the maximum temperature in the
wedge scales with dimensionless distance V rδ2/κ , where V is con-
vergence rate, δ is dip of the slab, κ is thermal diffusivity and r is
distance from the wedge corner.
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A1 Expressions for velocity in the wedge

The approximate solutions we obtain for temperature in the slab
and wedge are governed by the advection of heat towards the slab
by flow in the wedge. We therefore need to know the component of
velocity, ux, perpendicular to the slab:

ux = ur sin(θ − δ) − uθ cos(θ − δ), (A1)

where radial and tangential components of the velocity in the wedge
(ur, uθ ) are expressed in terms of derivatives of the stream function
(2)–(5), and x is measured perpendicular to the top of the slab, in
the upward (−θ ) direction.

For transparency of our solutions, we seek a simplification of this
expression. We cast our expression in terms of the angular distance,
φ = δ − θ , measured from the top of the slab. Substituting for ur

and uθ , and rearranging, we obtain

ux = V
sin2 φ

(
1
2 sin 2δ − δ

) + sin2 δ
(
φ − 1

2 sin 2φ
)

δ2 − sin2 δ
. (A2)
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Figure A1. (a) Solid curves show the component of velocity perpendicular to the slab, ux/V , plotted against φ/δ given by eq. (A2). Dotted curves show the
approximation given by eq, (A5). The nine pairs of curves correspond to δ = 10◦ (lowest) to 90◦ (highest), in steps of 10◦. (b) Solid and dotted curves show
the full (eq. A1) and approximate (eq. A5) solutions divided by Ux (eq. A3). Again, solutions are shown for δ = 10◦ to 90◦, in steps of 10◦, though the curves
overlap and obscure one another. Panels (c) and (d) as panels (a) and (b), but for free-slip condition on the base of the overriding plate (eq. A20).

The form of ux is shown in Fig. A1(a). We have been unable to
simplify this expression usefully by any of the common expansions,
but we note that the minimum (most negative) value of ux is attained
at φ ∼ 2δ/3 (Fig. A1b), and we have determined empirically that
this value is given by

Ux ∼ −V δξ

2
, (A3)

where

ξ = 1 − 2

5
sec (2δ/5). (A4)

For 0 < δ < π/3, 0.6 > ξ > 0.56 and for π/3 < δ < π/2, 0.56 >

ξ > 0.51. Furthermore, ux may be approximated by

ux ∼ Ux

2

[
1 − cos

(
3πφ

2δ

) ]
. (A5)

Fig. A1 shows that this approximation agrees with the full solution
to within a few per cent as long as φ/δ <∼ 0.8. We shall obtain a
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solution below for the temperature as a function of distance, x, from
the top of the slab; if a point on the top of the slab is a distance, r,
from the wedge corner (Fig. 1),

ux ∼ Ux

2

[
1 − cos

(
3π arctan (x/r )

2δ

)]
, (A6)

which may be approximated, for x <∼ r , by

ux ∼ Ux

2

[
1 − cos

(
3πx

2rδ

)]
. (A7)

A2 Thickness of the advective boundary layer

We assume that subduction has continued for long enough that
the temperature at the top of the slab is in steady state. Because
the gradients of temperature near the top of the slab are very small
in the direction parallel to the slab, and steep in the direction perpen-
dicular to the slab (Fig. 1) we make the approximation that advection
and diffusion of heat perpendicular to the slab dominate over ther-
mal diffusion parallel to the slab. In a frame of reference fixed to the
top of the slab, the temperature equation becomes

d2T

dx2
− ux

κ

dT

dx
= 0, (A8)

where x is distance measured upward from, and perpendicular to,
the top surface of the slab and κ is thermal diffusivity. Substituting
for ux from (A3), (A4), (A7) and (A8) become

d2T

dx2
+ V δξ

4κ

[
1 − cos

(
3πx

2rδ

)]
dT

dx
= 0. (A9)

The solution to (A9) is:

T (x) = A + B

∫
exp

{
V δ2ξr

6πκ

[
sin

(
3πx

2rδ

)
− 3πx

2rδ

]}
dx . (A10)

Taking the first two terms of the sine expansion gives

T (x) ∼ A + B

∫
exp

(−3π 2V ξ x3

32κr 2δ

)
dx, (A11)

which suggests a solution of the form

T (x) ∼ A + B f

(
x

x0

)
, (A12)

where

x0 =
(

κr 2δ

V ξ

)1/3

. (A13)

Numerical evaluation shows that, for λ >∼ 1,∫ x

0
exp

{
λ

[
sin

(
x ′

b

)
− x ′

b

]}
dx ′ ∼ I∞erf

(
λ1/3x√

πb

)
, (A14)

where

I∞ =
∫ ∞

0
exp

{
λ

[
sin

(
x ′

b

)
− x ′

b

]}
dx ′. (A15)

In (A10), λ = V δ2ξ r/6πκ and b = 2rδ/3π . For subduction speeds
of 10(100) mm yr−1 or greater, λ 
 1 provided that r is greater than
3(0.3) km, so we may use (A14) to approximate (A10). Substituting
for λ and b, we obtain

T (x) ∼ A + B erf

(
x

α

)
, (A16)

where

α =
(

16κr 2δ

9
√

πV ξ

)1/3

. (A17)

Let the temperature on the top of the slab (x = 0) be T s and let
the temperature in the interior of the wedge, at a great distance from
the slab, be T 1 then:

T (x) = Ts + (T1 − Ts) erf

(
x

α

)
. (A18)

The quality of this approximation is assessed in Section 3.1.

A.2.1 Boundary layer thickness for different assumptions about
velocity in the wedge

When free slip is allowed at the base of the overriding plate (see
eq. 5), the equivalent expression to (A3) for the maximum velocity
perpendicular to the slab is

Ux ∼ −4V δξ

5
, (A19)

and its variation with distance from the top of the slab is given by

ux ∼ Ux

2

[
1 − cos

(
πx

δr

)]
. (A20)

Again, Fig. A1 shows that this approximation agrees with the full
solution. The corresponding expression for the thickness, α, of the
boundary layer is

α =
(

5κr 2δ

2
√

πV ξ

)1/3

. (A21)

The expressions so far determined for α owe their details to a
specific form, in (A7) and (A20), of the component of velocity
perpendicular to the top of the slab. We should expect that, in the
real situation of a subduction zone, the details of the flow would
not follow exactly the corner flow investigated here, and it is worth
investigating a more general form for ux. We may imagine that any
circulation driven by the descending slab will have a maximum in
its component perpendicular to the top of the slab that scales with
the speed, V , of the slab and perhaps, as in the case investigated
here, with its dip, δ. Thus we may write, generally, that

Ux ∼ −εV δn,

where n may be zero, or a small number, and ε is a constant whose
magnitude is perhaps between 1/π and 1. We may further reasonably
imagine that ux reaches its maximum value at an angle within the
wedge that is approximately a constant fraction of δ and, as here,
that the velocity near the boundary varies approximately as a power
of distance from the boundary. Thus a simple general form for ux

might be

ux ∼ −εV δn

(
φ

δ

)m

∼ −εV δn

(
x

rδ

)m

. (A22)

As we describe in Section 3.1, an expression for the thickness
of the thermal boundary layer is given by the requirement that the
timescales for diffusion and advection across it are approximately
equal. For a boundary layer of thickness α, these times are approx-
imately equal to α2/(π2κ) and α/U , respectively, where U is the
characteristic speed of the flow in the boundary layer. Substituting
U ∼ ux(α) into the second of these timescales gives

εV δn−m(α/rm)

α

α2

π2κ
∼ 1, (A23)
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or

α ∼ rδ

(
π2κ

εV rδ(n+1)

)1/(m+1)

. (A24)

A3 Temperature at the top of the slab

Following Davies & Stevenson (1992), we solve for T s in (A18)
by matching heat fluxes across the boundary x = 0. Differentiating
(A18) with respect to x and multiplying by conductivity, K, gives
the heat flux at the base of the advective boundary layer on top of
the slab:

Q|+ ∼ 2K√
π

(
T1 − Ts

α

)
. (A25)

We assume (see Section 2.2) that the temperature in the slab as it
enters the subduction zone is

T (x) = − Ta x

a
− a ≤ x < 0, (A26)

T (x) = Ta x < −a. (A27)

(Note the change in variable from eqs (6) and (7), in which z refers
to depth beneath the Earth’s surface; here x refers to distance above
the top of the slab.) If the temperature at the top of the slab re-
mained at zero, then this temperature profile would relax with time to
give

T (x < 0, t) = Ta

{√
κt

πa2

[
exp

(
− (x − a)2

4κt

)

− exp

(
− (x + a)2

4κt

)]

−1

2

[(
1 − x

a

)
erf

(
x − a

2
√

κt

)

+
(

1 + x

a

)
erf

(
x + a

2
√

κt

)]}
(A28)

∂T

∂x

∣∣∣∣
x=0

= − Ta

a
erf

(
a

2
√

κt

)
. (A29)

However, the top of the slab is heated through contact with the
overriding plate, and by heat advected towards it by the wedge.
Profiles of the temperature along the top of the slab (Fig. 5)
show two types of behaviour. For high descent speeds, and when
the slab is thick, the top of the slab warms only very slowly as
it is thrust beneath the overriding plate, but then warms rapidly
as it comes into contact with the wedge, so the profile shows a
sharp kink at the depth of the base of the overriding plate. At
lower descent speeds, and with thinner plates, the flux of heat
from within the slab has time to penetrate to the surface of the
slab, contributing to its warming, so that the temperature profile is
smoother.

The majority of solutions show a smooth temperature increase,
and we obtain an expression for the perturbation to heat flux out of
the slab in this case by treating the slab as a semi-infinite medium
whose surface is kept at a temperature

T (0, t) = Ctm/2, (A30)

where t is time since the top of the slab passed beneath the Earth’s
surface and C is a constant. The perturbation to the temperature

gradient at the top of the slab caused by this boundary condition is,
for m a positive integer,

∂T

∂x

∣∣∣∣
x=0

= b
T (0, t)√

κt
, (A31)

where (Carslaw & Jaeger 1959, p. 63)

b = �(m/2 + 1)

�(m/2 + 1/2)
. (A32)

We let the moderate variation of surface temperature with time, seen
in Fig. 5, be represented by (A30) with m = 1 or 2, in which case
b ∼ 1 and

∂T

∂x

∣∣∣∣
x=0

= Ts

β
, (A33)

where T s is the temperature at the top of the slab at the depth, z, of
interest and β = √

κt = √
κz/V sin δ.

Summing the contributions to the temperature gradient within
the slab and close to its top from the decay of the original thermal
profile in the slab (eqs A29 and A33) yields the heat flux out of the
top of the slab:

Q|− ∼ K

[
Ts

β
− Ta

a
erf

(
a

2
√

κt

)]
. (A34)

Hence, matching heat fluxes across the top of the slab,

Ts ∼
[

T1 +
√

παTa

2a
erf

(
a

2
√

κt

)] / (
1 +

√
πα

2β

)
. (A35)

The quality of the approximation in (A35) is assessed in
Section 3.3.

For most present subduction zones, α < 20 km and the ocean
floor is 50 Myr old, or older. For these conditions, α 
 a and the
second term in the numerator is much smaller than the first so may
be neglected, yielding a simpler expression for the relation between
T s and T 1:

Ts ∼ T1

(
1 +

√
πα

2β

)−1

. (A36)

Substituting β = √
κz/V sin δ, and for α from (A17),

√
πα

2β
=

(
2π

9ξ

)1/3(
1 − zw

z

)(
V δ2r

κ

)1/6

, (A37)

where we have used r = (z − zw)/sin δ. The first term on the right-
hand side of (A37) is approximately 0.85 for 0 ≤ δ ≤ π/2, and
the second term is close to unity for depths z 
 zw. For the ranges
of V , r and δ in modern subduction zones (Table 2), the quantity
V rδ2/κ varies between about 50 and 200 beneath the arc volcanoes
and between about 200 and 800 where the slabs reach depths of
400 km. The range in the one-sixth power of this quantity is from
1.9–3, and the denominator in (A35) ranges from about 2.6 to 3.6
for depths z 
 zw.

A4 Maximum temperature in the wedge

We obtain an expression for the maximum temperature, T 1, in the
wedge at any radial distance, r, from the wedge corner by considering
the balance of heat fluxes across an annular segment of wedge, 0 ≤
θ ≤ δ. We may neglect the radial diffusion of heat in comparison
with the radial advection of heat, and write the total rate of heat
transport in the radial direction as

−ρcr

∫ δ

0
ur

∂T

∂r
dθ, (A38)
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whereρ is density and c is specific heat. We distinguish three regimes
of advection within the wedge. Near the upper boundary, the veloc-
ities are much slower than elsewhere in the wedge (Fig. 1), and
we neglect advection here. At the top of the slab there is an ad-
vective boundary layer, of thickness α and of average temperature
(T 1 + T s)/2; we approximate the radial component of velocity, ur,
in this layer by the speed, V , of the slab. The volume flux, per unit
length, in the advective boundary layer in the radial direction is,
by this approximation, Vα, and the contribution to (A38) from this
layer is

−ρcV α
d

dr

(
T1 + Ts

2

)
. (A39)

The volume flux, per unit length, through the wedge above the ad-
vective boundary layer on top of the slab must, by conservation of
mass, be −Vα and we assume that all significant advection of heat
in this part of the wedge takes place in the isothermal core of the
wedge, at its temperature T 1. The contribution to (A38) from this
part of the wedge is

ρcV α
dT1

dr
. (A40)

The advection of heat towards the corner is balanced by diffusion
of heat into the slab and the overriding plate. Because the temper-
ature gradients above the slab are generally much greater than the
temperature gradients at the base of the overriding plate (see, for
example, Fig. 1), we neglect diffusive heat loss into the overriding
plate. Substituting (A39) and (A40) into (A38) and equating to this
advective flux to the diffusive loss into the slab, given by (A25), we
obtain

ρcV α

2

d(T1 − Ts)

dr
= 2K (T1 − Ts)√

πα
. (A41)

The discussion at the end of the previous subsection shows that, for
fixed V , δ, the ratio of T s to T 1 varies as the one-sixth power of r,
thus we may make the approximation that T s is a constant fraction
of T 1 at all depths, hence

ρcV α

4

dT1

dr
= K T1√

πα
. (A42)

Substituting for α from (A17) into (A42) we obtain

1

T1

dT1

dr
= γ r−4/3, (A43)

where

γ =
(

81ξ 2

4
√

π

)1/3 (
κ

V δ2

)1/3

.

This gives

T1 = A exp
(
−3γ r− 1

3

)
. (A44)

We note (Fig. 1) that the maximum temperature in the wedge is
reached where θ ∼ 2δ/3, equivalent to φ ∼ δ/3. We may evaluate A
by identifying the radial position, R, at which the advective boundary
layer on top of the slab is first thinner than rδ/3. Below this radius,
the boundary layer on top of the slab is connected to that beneath
the overriding plate, and T 1 increases with distance from the wedge
corner; above this radius, the boundary layers are separated by the
isothermal core of the wedge, and T 1 = Ta. The temperature in the
advective boundary layer on top of the slab (A18) approaches T 1 to
within 1 per cent when x ∼ 2α, thus the critical radius, R, is given
by (Rδ/3) ∼ 2α, or

R ∼ 6α

δ
=

(
384κ R2

√
πξV δ2

)1/3

R = 384κ√
πξV δ2

. (A45)

We thus obtain

T1 = Ta exp [3γ (R−1/3 − r−1/3)]

= Ta exp

{
9ξ

8

[
1 −

(
R

r

)1/3
]}

0 < r < R

= Ta r ≥ R. (A46)

The form of (A46) is more complicated than is warranted by the
level of approximation we have made. Recognizing that ξ varies lit-
tle, and is close to 0.5 (eq. A4 and following) we employ a simplified
version of this expression to approximate the maximum temperature
in the wedge:

T1 ∼ Ta exp

{
1

2

[
1 −

(
R

r

)1/3
]}

0 < r < R,

= Ta r ≥ R, (A47)

with R = 400κ/V δ2. The quality of this approximation is assessed
in Section 3.2.
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