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Arti�cial bee colony (ABC) is a new population-based stochastic algorithm which has shown good search abilities on many
optimization problems. However, the original ABC shows slow convergence speed during the search process. In order to enhance
the performance of ABC, this paper proposes a new arti�cial bee colony (NABC) algorithm, which modi�es the search pattern
of both employed and onlooker bees. A solution pool is constructed by storing some best solutions of the current swarm. New
candidate solutions are generated by searching the neighborhoodof solutions randomly chosen from the solution pool. Experiments
are conducted on a set of twelve benchmark functions. Simulation results show that our approach is signi�cantly better or at least
comparable to the original ABC and seven other stochastic algorithms.

1. Introduction

Optimization problems arise in many application areas such
as engineering, economy, and management. E
ective and
e�cient optimization algorithms are always required to tackle
increasingly complex real-world optimization problems. In
the past several years, some swarm intelligence algorithms,
inspired by the social behaviors of birds, �sh, or insects, have
been proposed to solve optimization problems, such as par-
ticle swarm optimization (PSO) [1], ant colony optimization
(ACO) [2], arti�cial bee colony (ABC) [3], and �re�y algo-
rithm (FA) [4]. A recent study has shown that ABC performs
signi�cantly better or at least comparable to other swarm
intelligence algorithms [5].

ABC is a new swarm intelligence algorithm proposed
by Karaboga in 2005, which is inspired by the behavior of
honey bees [3]. Since the development of ABC, it has been
applied to solve di
erent kinds of problems [6]. Similar to
other stochastic algorithms, ABC also faces up some chal-
lenging problems. For example, ABC shows slow convergence
speed during the search process. Due to the special search
pattern of bees, a new candidate solution is generated by
updating a random dimension vector of its parent solution.

�erefore, the o
spring (new candidate solution) is similar
to its parent, and the convergence speed becomes slow.
Moreover, ABC easily falls into local minima when handling
complex multimodal problems. �e search pattern of bees is
good at exploration but poor at exploitation [7]. However, a
good optimization algorithm should balance exploration and
exploitation during the search process.

To improve the performance of ABC, this paper proposes
a new search pattern for both employed and onlooker bees.
In the new approach, some best solutions are utilized to
accelerate the convergence speed. In addition, a solution pool
is constructed by storing the best 100�% solutions in the
current swarm with � ∈ (0, 1]. �e best solution used in the
search pattern is randomly selected from the solution pool.
�is is helpful to balance the exploration and exploitation.
Experiments are conducted on twelve benchmark functions.
Simulation results show that our approach outperforms the
original ABC and several other stochastic algorithms.

�e rest of the paper is organized as follows. In Section 2,
the original ABC algorithm is presented. Section 3 gives a
brief overview of related work. Section 4 describes the
proposed approach. In Section 5, experimental studies are
presented. Finally, the work is concluded in Section 6.



2 Mathematical Problems in Engineering

2. Artificial Bee Colony

Arti�cial bee colony (ABC) algorithm is a recently proposed
optimization technique which simulates the intelligent for-
aging behavior of honey bees. A set of honey bees is called
swarm which can successfully accomplish tasks through
social cooperation. In the ABC algorithm, there are three
types of bees: employed bees, onlooker bees, and scout bees.
�e employed bees search food around the food source in
theirmemory;meanwhile they share the information of these
food sources to the onlooker bees. �e onlooker bees tend to
select good food sources from those found by the employed
bees. �e food source that has higher quality (�tness) will
have a large chance to be selected by the onlooker bees than
the one of lower quality. �e scout bees are translated from
a few employed bees, which abandon their food sources and
search new ones [8].

In the ABC algorithm, the �rst half of the swarm con-
sists of employed bees, and the second half constitutes the
onlooker bees.�e number of employed bees or the onlooker
bees is equal to the number of solutions in the swarm [3].

�e ABC generates a randomly distributed initial popu-
lation of SN solutions (food sources), where SN denotes the
swarm size. Let �� = {��,1, ��,2, . . . , ��,�} represent the �th
solution in the swarm, where � is the dimension size. Each
employed bee�� generates a new candidate solution�� in the
neighborhood of its present position as follows:

	�,� = ��,� + 
�,� ⋅ (��,� − ��,�) , (1)

where �� is a randomly selected candidate solution
(� ̸= �), � is a random dimension index selected from the set{1, 2, . . . , �}, and 
�,� is a random number within [−1, 1].
Once the new candidate solution �� is generated, a greedy
selection is used. If the �tness value of �� is better than that
of its parent ��, then update �� with ��; otherwise keep ��
unchangeable.

A�er all employed bees complete the search process, they
share the information of their food sources with the onlooker
bees through waggle dances. An onlooker bee evaluates the
nectar information taken from all employed bees and chooses
a food source with a probability related to its nectar amount.
�is probabilistic selection is really a roulette wheel selection
mechanism which is described as follows:

�� = �t�

∑SN
�=1 �t�

, (2)

where �t� is the �tness value of the �th solution in the swarm.
As seen, the better the solution �, the higher the probability of
the �th food source selected.

If a position cannot be improved over a prede�ned
number (called limit) of cycles, then the food source is
abandoned. Assume that the abandoned source is ��, then
the scout bee discovers a new food source to be replaced with�� as follows:

��,� = ��� + rand (0, 1) ⋅ (��� − ���) , (3)

where rand(0, 1) is a random number within [0, 1] based
on a normal distribution and ��, �� are lower and upper
boundaries of the�th dimension, respectively.

3. Related Work

Since the development of ABC, it has attracted much
attention for its excellent characteristics. In the last decade,
di
erent versions of ABCs have been applied to various
problems. In this section, we present a brief review of these
ABC algorithms.

Karaboga and Akay [5] presented a comparative study
of ABC. A large set of benchmark functions are tested in
the experiments. Results show that the ABC is better than
or similar to those of other population-based algorithms
with the advantage of employing fewer control parameters.
Inspired by di
erential evolution (DE) algorithm, Gao and
Liu [7, 9] proposed two improved versions of ABC. In [7], a
new search pattern called ABC/best/1 is utilized to accelerate
the convergence speed. In [9], ABC/best/1 and another
search pattern called ABC/rand/1 are employed. Moreover, a
parameter � is intruded to control the frequency of these two
patterns. Zhu and Kwong [8] utilized the search information
of the global best solution (�best) to guide the search of
ABC. Reported results show that the new approach achieves
better results than the original ABC algorithm. Akay and
Karaboga [10] proposed a modi�ed ABC algorithm, in which
two new search patterns, frequency and magnitude of the
perturbation, are employed to improve the convergence rate.
Results show that the original ABC algorithm can e�ciently
solve basic and simple functions, while the modi�ed ABC
algorithm obtains promising results on hybrid and complex
functions when compared to some state-of-the-art algo-
rithms. Banharnsakun et al. [11] modi�ed the search pattern
of the onlooker bees, in which the best feasible solutions
found so far are shared globally among the entire swarm.
�erefore, the new candidate solutions are similar to the
current best solution. Kang et al. [12] proposed a Rosen-
brock ABC (RABC) algorithmwhich combines Rosenbrock’s
rotational direction method with the original ABC. �ere
are two alternative phases of RABC: the exploration phase
realized by ABC and the exploitation phased completed by
the Rosenbrock method. Wu et al. [13] combined harmony
search (HS) and the ABC algorithm to construct a hybrid
algorithm. Comparison results show that the hybrid algo-
rithm outperforms ABC, HS, and other heuristic algorithms.
Li et al. [14] proposed an improved ABC algorithm called I-
ABC, in which the best-so-far solution, inertia weight, and
acceleration coe�cients are introduced to modify the search
process. Moreover, a hybrid ABC algorithm (PS-ABC) based
on �best-guided ABC (GABC) [8] and I-ABC is proposed.
Results show that PS-ABC converges faster than I-ABC and
ABC.

Karaboga and Ozturk [15] used ABC algorithm for data
clustering. Experiments are conducted on thirteen typical
test data sets from UCL Machine Learning Repository. �e
performance of ABC is compared with PSO and other nine
classi�cation techniques. Simulation results demonstrate that
the ABC algorithm can e�ciently solve data clustering.
Zhang et al. [16] also used ABC algorithm for clustering.
�ree data sets are tested. �e performance of ABC is
compared with genetic algorithm, simulated annealing, tabu
search, ACO, and K-NM-PSO. Results demonstrate the
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e
ectiveness of ABC on clustering. Karaboga and Ozturk
[17] applied ABC to solve fuzzy clustering. �ree data sets
including cancer, diabetes, and heart chosen from UCI
database are tested. Results indicate that the performance of
ABC is successful in fuzzy clustering.

�eABCalgorithm is usually used to solve unconstrained
optimization problems. In [18], Karaboga and Akay investi-
gated the performance of ABC on constrained optimization
problems. In order to handle constraints, Deb’s rules con-
sisting of three simple heuristic rules are employed. Mezura-
Montes and Velez-Koeppel [19] proposed an elitist ABC
algorithm for constrained real-parameter optimization, in
which the operators used by di
erent types of bees are mod-
i�ed. Additionally, a dynamic tolerance control mechanism
for equality constraints is utilized to facilitate the approach
to the feasible region of the search space. Yeh and Hsieh
[20] proposed a penalty-guided ABC algorithm to solve
reliability redundancy allocation problems. Sabat et al. [21]
presented an application of ABC to extract the small signal
equivalent circuitmodel parameters of GaASmetal-extended
semiconductor �eld e
ect transistor (MESFT) device. �e
performance comparison shows that ABC is better than PSO.

It is known that the ABC algorithm is good at solving
optimization problems over continuous search space. For
discrete optimization problems, it is a big challenge for the
ABC algorithm. Li et al. [22] used a hybrid Pareto-based ABC
algorithm to solve �exible job shop-scheduling problems. In
the new algorithm, each food sources is represented by two
vectors, that is, the machine assignment and the operation
scheduling. Moreover, an external Pareto archive set is uti-
lized to record nondominated solutions. In [23], Kashan et al.
designed a new ABC algorithm called DisABC to optimize
binary structured problems. Szeto et al. [24] proposed an
enhanced ABC algorithm to solve capacitated vehicle routing
problem. �e performance of the new approach is tested
on two sets of standard benchmark instances. Simulation
results show that the new algorithm outperforms the original
ABC and several other existing algorithms. Pan et al. [25]
presented a discrete ABC algorithm hybridized with a variant
of iterated greedy algorithm to solve a permutation �ow shop-
scheduling problem with the total �ow time criterion.

4. Proposed Approach

Di
erential evolution (DE) has shown excellent search abili-
ties on many optimization problems. Like other population-
based stochastic algorithms, DE also starts with an initial
population with randomly generated candidate solutions.
A�er initialization, DE repeats three operations: mutation,
crossover, and selection. Among these operations, mutation
operation is very important. �e mutation scheme highly
in�uences the performance of DE.�ere are several di
erent
mutation schemes, such as DE/rand/1, DE/rand/2, DE/best/1,
and DE/best2 [26].

�e property of amutation scheme determines the search
behavior of individuals in the population. For DE/rand/1,
it results in good exploration but slow convergence speed.
For DE/best/1, it obtains fast convergence speed but poor

exploration. �e DE/rand/1 and DE/best/1 are described as
follows: 	�,� = ��1,� + � ⋅ (��2,� − ��3,�) ,

	�,� = �best,� + � ⋅ (��1,� − ��2,�) , (4)

where��1,��2, and��3 are three randomly selected individ-
uals from the current population, � ̸= �1 ̸= �2 ̸= �3, �best is the
best individual found so far, and the parameter � is known as
the scale factor which is usually set to 0.5.

As seen, the search pattern of employed and onlooker
bees is similar to themutation schemes ofDE. It is known that
the ABC algorithm is good at exploration, but it shows slow
convergence speed. By combining theDE/best/1 and the ABC
algorithm, it may accelerate the convergence speed of ABC.
However, this hybridization is not a new idea. In [7], Gao
and Liu embedded DE/rand/1 and DE/best/1 into the ABC
algorithm. To balance the exploration and exploitation, a new
parameter � is introduced. Results reported in [7] show that
the parameter � is problem oriented, and an empirical value� = 0.7 is used.

In this paper, we propose a newABC (calledNABC) algo-
rithm by employing a modi�ed DE/best/1 strategy. NABC
di
ers from other hybrid algorithms [7, 9], which combine
ABC and DE. Although the global best individual used
in DE/best/1 can accelerate the convergence speed by the
attraction, it may result in attracting too fast. It means
that new solutions move to the global best solution very
quickly. To tackle this problem, a solution pool is constructed
by storing the best 100p% solutions in the current swarm
with � ∈ (0, 1]. �e idea is inspired by an adaptive DE
algorithm (JADE) [27]. It shares in commonwith the concept
of belief space of cultural algorithm (CA) [28]. Both of them
utilize some successful solutions stored in solution pool or
situational knowledge to guide other individuals. But the
updating rule of the solution pool or situational knowledge is
di
erent.�enewABC/best/1 strategy is described as follows:

	�,� = ��
best,� + 
�,� ⋅ (��1,� − ��2,�) , (5)

where ��
best,� is randomly chosen from the solution pool,��1,��2 are two randomly selected candidate solutions from the

current swarm, � ̸= �1 ̸= �2, � is a random dimension index
selected from the set {1, 2, . . . , �}, and 
�,� is a random
number within [−1, 1]. Empirical studies show that a good
choice of the parameter� should be set between 0.08 and 0.15.
In this paper, � is set to 0.1 for all experiments.

According to the new search pattern described in (5),
new candidate solutions are generated around some best
solutions.�is is helpful to accelerate the convergence speed.
For the existing ABC/best/1 strategy proposed in [7], it only
searches the neighborhood of the global best solution. In our
approach, bees can search the neighborhood of di
erent best
solutions. �is can help avoid fast attraction.

�emain steps of our new approachNABC algorithm are
listed as follows.

Step 1. Randomly initialize the swarm.

Step 2. Update the solution pool.
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Table 1: Benchmark functions used in the experiments.

Name Function Range Opt

Sphere �1 = ∑��=1 �2� [−100, 100] 0

Schwefel 2.22 �2 = ∑��=1 ���������� + ∏��=1�� [−10, 10] 0

Schwefel 1.2 �3 = ∑��=1 (∑��=1 ��)2 [−100, 100] 0

Schwefel 2.21 �4 = max� (���������� , 1 ≤ � ≤ �) [−100, 100] 0

Rosenbrock �5 = ∑�−1�=1 [100(��+1 − �2� )2 + (�� − 1)2] [−30, 30] 0

Step �6 = ∑��=1 (⌊�� + 0.5⌋)2 [−100, 100] 0

Quartic with noise �7 = ∑��=1 ��4� + rand[0, 1) [−1.28, 1.28] 0

Schwefel 2.26 �8 = ∑��=1 −�� sin (√|��|) [−500, 500] −12569.5
Rastrigin �9 = ∑��=1[�2� − 10 cos(2$��) + 10] [−5.12, 5.12] 0

Ackley �10 = −20 exp(−0.2√ 1
� ∑��=1 �2�) − exp( 1

� ∑��=1 cos (2$��)) + 20 + / [−32, 32] 0

Griewank �11 = 1
4000 ∑��=1 �2� − ∏��=1 cos( ��√� ) + 1 [−600, 600] 0

Penalized
f 12 = $

�{10sin2(3$8�) + ∑�−1�=1 (8� − 1)2[1 + 10sin2($8�+1)]
+(8� − 1)2} + ∑��=1 �(��, 5, 100, 4)

[−50, 50] 0

Step 3. For each employed bee, generate a new candidate
solution�� according to (5). Evaluate the �tness of�� and use
a greed selection to choose a better one between�� and �� as
the new��.
Step 4. Each onlooker bee calculates �� according to (2).
Step 5. Generate a new �� according to (5) based on �� and
the current solution �� (food source). Evaluate the �tness of�� and use a greed selection to choose a better one between�� and �� as the new��.
Step 6. �e scout bee determines the abandoned ��, if exists
and update it by (3).

Step 7. Update the best solution found so far, and cycle =
cycle + 1.

Step 8. If the number of cycles reaches to the maximum
value MCN, then stop the algorithm and output the results;
otherwise go to Step 2.

Compared to the original ABC algorithm, our approach
NABC does not add extra operations except for the con-
struction of the solution pool. However, this operation does
not add the computational complexity. Both NABC and the
original ABC have the same computational complexity.

5. Experimental Study

5.1. Test Functions. In order to verify the performance of
NABC, experiments are conducted on a set of twelve bench-
mark functions. �ese functions were early used in [29].

According to their properties, they are divided into two
classes: unimodal functions (�1 − �7) and multimodal func-
tions (�8−�12). All functions areminimization problems, and
their dimensional size is 30. Table 1 presents the descriptions
of these functions, where Opt is the global optimum.

�e experiments are performed on the same computer
with Intel (R) Core (TM)2 Duo CPU T6400 (2.00GHz) and
2GB RAM. Our algorithm is implemented using C++ and
complied with Microso� Visual C++ 6.0 under theWindows
XP (SP3).

5.2. Comparison of NABC with ABC. In order to investigate
the e
ectiveness of our new search pattern, this section
presents a comparison of NABC with the original ABC
algorithm. In the experiments, both NABC and ABC use
the same parameter settings. �e population size SN, limit,
and maximum number of cycles (MSN) are set to 100, 100,
and 1000, respectively. �e parameter � is set to 0.1 based
on empirical studies. All results reported in this section are
averaged over 30 independent runs.

Table 2 presents the computational results of ABC and
NABC on the twelve functions, where “Mean” indicates the
mean function value and “Std Dev” represents the standard
deviation. �e best results between ABC and NABC are
shown in bold. From the results, it can be seen that NABC
achieves better results than ABC on all test functions except
for �6. On this function, both the two algorithms can �nd the
global optimum. For �8 and �9, NABC can successfully �nd
the global optimum, while ABC converges to near-optimal
solutions. It demonstrates that the new search pattern used
in NABC is helpful to improve the accuracy of solutions.

In order to compare the convergence speed of NABC and
ABC, Figure 1 lists the convergence processes of them on
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Table 2: Results achieved by the ABC algorithm and NABC.

Functions
ABC NABC

Mean Std Dev Mean Std Dev

�1 3.75/ − 10 2.73/ − 10 4.75e − 16 3.86e − 16

�2 2.29/ − 06 4.26/ − 06 1.79e − 15 2.53e − 15

�3 1.23/ + 04 2.39/ + 03 9.90e + 03 1.67e + 03

�4 3.92/ + 01 1.52/ + 01 1.45e + 01 4.32e + 00

�5 2.83/ + 00 1.79/ + 00 4.50e − 02 2.38e − 02

�6 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

�7 1.91/ − 01 2.33/ − 01 1.56e − 02 3.24e − 02

�8 −12332.4 1.57/ + 02 −12569.5 1.23e − 10

�9 2.90/ − 09 5.31/ − 09 0.00e + 00 0.00e + 00

�10 3.93/ − 06 2.78/ − 06 3.97e − 14 5.12e − 15

�11 4.52/ − 09 3.81/ − 09 1.13e − 16 3.39e − 16

�12 1.04/ − 11 2.43/ − 11 3.19e − 16 3.26e − 16

some representative functions. As seen, NABC shows faster
convergence speed than ABC. It con�rms that the new search
pattern can accelerate the convergence speed.

5.3. Comparison of NABC with Other Algorithms. To further
verify the performance of NABC, this section compares
NABC with other population-based algorithms, including
some recently proposed ABC algorithms.

5.3.1. Comparison of NABC with Evolution Strategies. �is
section focuses on the comparison of the NABC algorithm
with Evolution Strategies (ES).�e versions of the ES include
classical evolution strategies (CES) [30], fast evolution strate-
gies (FES) [30], covariance matrix adaptation evolution
strategies (CMA-ES) [31], and evolutionary strategies learned
with automatic termination (ESLAT) [32].

�eparameter settings of CES, FES, CMA-ES, andESLAT
can be found in [32]. For NABC, the population size and the
maximum number of �tness evaluations are set to 20 and
100000 (it means that the MSN is 2500), respectively. �e
parameter limit is set to 600 [5]. �e parameter � is set to
0.1 based on empirical studies. All algorithms are conducted
on 50 runs for each test function.

Table 3 presents the comparison results of CES, FES,
CMA-ES, ESLAT, and NABC. Results of CES, FES, CMA-
ES, and ESLAT were taken from Table 20 in [5]. Among
these algorithms, the best results are shown in bold. �e
last column of Table 3 reports the statistical signi�cance
level of the di
erence of the means of NABC and the best
algorithm among the four evolution strategies. Note that here
“+” represents the < value of 49 degrees of freedom which is
signi�cant at a 0.05 level of signi�cance by two-tailed test,
“⋅” indicates the di
erence of means which is not statistically
signi�cant, and “NA”means not applicable, covering cases for
which the two algorithms achieve the same accuracy results
[33].

From the results, it can be seen that NABC outperforms
CES and FES on eight functions, while CES and FES achieve
better results on three. For �6, CES, FES, and NABC �nd

the global optimum, while ESLAT and CMA-ES fail to solve
it. NABC performs better than ESLAT on ten functions,
while ESLAT outperforms NABC for the rest of the two
functions. CMA-ES achieves better results than NABC on
three functions, while NABC performs better for the rest
of the nine functions. �e comparison results show that
the evolutionary strategies perform better than NABC on
unimodal functions, such as �1 − �4. NABC outperforms the
evolutionary strategies on all multimodal functions (�8−�12).
5.3.2. Comparison of NABC with Other Improved ABC Algo-
rithms. In this section, we present a comparison of NABC
with three recently proposed ABC algorithms. �e involved
algorithms are listed as follows.

(1) �best-guided ABC algorithm (GABC) [8].

(2) Improved ABC algorithm (I-ABC) [14].

(3) Hybridization of GABC and I-ABC (PS-ABC) [14].

(4) Our approach NABC.

In the experiments, the population size SN is set to 40,
and limit equals 200. �e maximum number of cycles is set
as 1000. Other parameter settings of GABC, I-ABC, and PS-
ABC can be found in [14]. �e parameter � used in NABC
is set to 0.1 based on empirical studies. All algorithms are
conducted 30 times for each test function, and the mean
function values are reported.

Table 4 presents the comparison results of NABC with
three other ABC algorithms. Results of GABC, I-ABC and
PS-ABC were taken from Tables 4 and 5 in [14]. �e best
results among the four algorithms are shown in bold. From
the results, NABC outperforms GABC on all test functions
except for �2. On this function, GABC is slightly better than
NABC. I-ABC achieves better results than NABC on �ve
functions, while NABC performs better on six functions.
For the rest of �9, I-ABC, PS-ABC, and NABC can �nd the
global optimum. PS-ABC obtains better results than NABC
on six functions, while NABC outperforms PS-ABC on �ve
functions. Both I-ABC and PS-ABC achieve signi�cantly
better results on three unimodal functions, such as�1,�2, and



6 Mathematical Problems in Engineering

Table 3: Comparison of NABC with evolution strategies.

Functions
CES FES ESLAT CMA-ES NABC

Signi�cance
Mean Mean Mean Mean Mean

�1 1.70e − 26 2.50/ − 04 2.00/ − 17 9.70/ − 23 2.88/ − 16 .

�2 8.10e − 20 6.00/ − 02 3.80/ − 05 4.20/ − 11 1.37/ − 15 .

�3 3.38/ + 02 1.40/ − 03 6.10/ − 06 7.10e − 23 6.86/ + 03 .

�4 2.41/ + 00 5.50/ − 03 7.80/ − 01 5.40e − 12 4.30/ − 01 .

�5 2.77/ + 01 3.33/ + 01 1.93/ + 00 4.00/ − 01 2.62e − 01 +

�6 0.00e + 00 0.00e + 00 2.00/ − 02 1.44/ + 00 0.00e + 00 NA

�7 4.70/ − 02 1.20e − 02 3.90/ − 01 2.30/ − 01 1.38/ − 02 +

�8 −8000 −12556.4 −2300 −7637.1 −12569.5 +

�9 1.34/ + 01 1.60/ − 01 4.65/ + 00 5.18/ + 01 0.00e + 00 +

�10 6.00/ − 13 1.20/ − 02 1.80/ − 08 6.90/ − 12 3.25e − 14 +

�11 6.00/ − 14 3.70/ − 02 1.40/ − 03 7.40/ − 04 1.11e − 16 +

�12 1.46/ + 00 2.80/ − 06 1.50/ − 12 1.20/ − 04 2.52e − 16 +

Table 4: Comparison of NABC with other ABC algorithms.

Functions
GABC I-ABC PS-ABC NABC

Signi�cance
Mean Mean Mean Mean

�1 6.26/ − 16 0.00e + 00 0.00e + 00 5.43/ − 16 .

�2 9.36/ − 16 0.00e + 00 0.00e + 00 6.24/ − 15 .

�3 1.09/ + 04 1.43/ + 04 6.11e + 03 8.44/ + 03 .

�4 1.26/ + 01 1.27/ − 197 0.00e + 00 5.79/ + 00 .

�5 7.48/ + 00 2.64/ + 01 1.59/ + 00 1.45e − 01 +

�6 2.49/ − 09 3.84/ − 10 5.72/ − 16 0.00e + 00 +

�7 1.56/ − 01 1.96/ − 02 2.15/ − 02 1.72e − 02 +

�8 −12407.3 −12251.03 −12564.2 −12569.5 +

�9 3.31/ − 02 0.00e + 00 0.00e + 00 0.00e + 00 NA

�10 7.78/ − 10 8.88e − 16 8.88e − 16 1.07/ − 13 .

�11 6.96/ − 04 0.00e + 00 0.00e + 00 1.11/ − 16 .

�12 5.85/ − 16 7.11/ − 12 5.53/ − 16 4.67e − 16 +

�4. On these functions, they can �nd the global optimum,
while GABC and NABC only �nd near-optimal solutions
except for �4. For �4, both GABC and NABC fall into local
minima. I-ABC and PS-ABC successfully �nd the global
optimum on �11, while GABC and NABC fail. For function�10, I-ABC and PS-ABC are slightly better than NABC. For
other two multimodal functions �8 and �12, NABC performs
better than other three ABC algorithms. Compared to I-ABC
and PS-ABC, our approach NABC is simpler and easier to
implement.

6. Conclusions

Arti�cial bee colony is a new optimization technique which
has shown to be competitive to other population-based
stochastic algorithms. However, ABC and other stochastic
algorithms su
er from the same problems. For example, the
convergence speed of ABC is typically slower than PSO and
DE. Moreover, the ABC algorithm easily gets stuck when

handling complex multimodal problems. �e main reason
is that the search pattern of both employed and onlooker
bees is good at exploration but poor at exploitation. In order
to balance the exploration and exploitation of ABC, this
paper proposes a new ABC variant (NABC). It is known that
DE/best/1 mutation scheme is good at exploitation. Based
on DE/best/1, a new search pattern called ABC/best/1 with
solution pool is proposed. Our approach di
ers from other
improved ABC algorithms by hybridization of DE/best/1 and
ABC.

To verify the performance of our approach, a set of
twelve benchmark functions are used in the experiments.
Comparison of NABC with ABC demonstrates that our
new search pattern can e
ectively accelerate the convergence
speed and improve the accuracy of solutions. Another com-
parison demonstrates that NABC is signi�cantly better or at
least comparable to other stochastic algorithms. Compared to
other improvedABC algorithms, our approach is simpler and
easier to implement.
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Figure 1: �e convergence processes of ABC and NABC on some functions.
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