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ABSTRACT 

In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding 

of basic two-phase flow phenomena with heat and mass transfer.  For many reasons, to be 

discussed, there is growing interest in the application of two-phase flow models to provide diffuse, 

but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – 

diffuse interface method (DIM).  Because of its ability to dynamically create interfaces and to 

solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) 

simulations of interfacial flows, we examine the construction of a simple, robust, fast, and 

accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model.  

Though apparently simple, the Kapila et al. model contains a volume fraction differential transport 

equation containing a nonlinear, non-conservative term which poses serious computational 

challenges.  To circumvent the difficulties encountered with the single velocity and single pressure 

Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve 

interface problems with compressible fluids.  In this approach, pressure non-equilibrium is first 

restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of 

the Kapila et al. reduced model.  The apparent complexity introduced with this extended 

hyperbolic model actually leads to considerable simplifications regarding numerical resolution, 

and the various ingredients used by this method are general enough to consider future extensions 

to problems involving complex physics. 

Key Words: diffuse interface methods (DIM), compressible multiphase flow, relaxation methods, 

direct numerical simulation (DNS) 

1. INTRODUCTION

Within the context of multiphase flows, two bubble-dynamic phenomena – boiling 

(heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are 

technologically very important to nuclear reactor systems.  The main difference between boiling 

and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat 

transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by 
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inertial effects in the surrounding liquid.  The flashing process tends to be far more explosive 

(and implosive), and is more violent and damaging (at least in the near term) than the bubble 

dynamics of boiling.  However, other problematic phenomena, such as crud deposition, appear to 

be intimately connecting with the boiling process.  In reality, these two processes share many 

details.

Flashing occurs in flowing liquid systems when the pressure falls sufficiently low in some region 

of the flow, reaching a metastable state where the temperature is higher than the saturated one at 

the reduced pressure of this expanded state.  Then the superheated liquid releases its metastable 

energy (stored as internal energy) very quickly, even explosively, producing either pure vapor 

(bubble) or liquid-vapor mixture at high velocity, [2].  Expansion effects in nuclear reactor 

systems are often due to geometrical effects, as for example in nozzles where flashing appears at 

locations where the pressure is relatively low and the liquid superheated.  In the case of two-

phase blowdown (from the superheated liquid state), bubble collapse is usually not important, 

but the flashing of superheated liquid strongly influences critical flow rates.  In other cases 

however, besides the performance limitations which this cavitation may cause in flow systems, 

subsequent bubble collapse may be responsible for damage to nearby solid surfaces. 

Many nuclear reactor applications rely on convective nucleate boiling to efficiently remove high 

heat fluxes from heated surfaces.  Nucleate boiling is a very effective heat transfer mechanism, 

however it is well known that there exists a critical value of the heat flux at which nucleate 

boiling transitions to film boiling (departure from nucleate boiling (DNB) and boiling crisis), a 

very poor heat transfer mechanism.  In most practical applications it is imperative to maintain the 

operating heat flux below such critical value, which is called the Critical Heat Flux (CHF).  In 

this case, the presence of a nearby solid surface is necessary for the rapid supply of the latent 

heat inherent in the phase change.  The presence of these surfaces is known to modify the flow 

patterns and other characteristics of these multiphase flows, and therefore must be interactively 

coupled with analyses of these phenomena.  And as mentioned above, DNB is believed to play 

an integral role in performance degradation as well as the crud deposition problem.  Our inability 

to accurately predict heat transfer and heat transfer regime transitions (flow topologies) in the 

real nuclear reactor two-phase flow conditions and fuel bundle geometry results in increased 

safety margins and impedes the development of new fuel designs. 

With the advent of increased available computational power and of a new generation of codes (as 

evidenced at the recent international “Two-phase Convective Flow Modelling” workshop [3]) it 

is believed that significant progress can be made by using computational fluid dynamics (CFD) 

for nuclear fuel design thus leading to a drastic reduction in development costs.  In France, CEA, 

EDF, AREVA and IRSN have launched the NEPTUNE project, aimed at providing tools 

describing two-phase flow and heat transfer that are validated in the parameter range of the 

industrial applications, plus others covering the entire spectrum of space and time scales. In the 

U.S. no such unified effort exists, but because it seems necessary to promote collaborative 

research on this subject at the widest scale, the INL has embarked on such a task, though at a 

reduced scale. 

Thus, there are key issues in nuclear reactor safety and optimization that rely on an in-depth 

understanding of basic two-phase flow phenomena with heat transfer and phase change.  The 
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results discussed here derive directly from our current research aimed at developing well-

designed physical/mathematical models along with high-resolution numerical solution methods 

for general multiphase flows.  While that research is directed towards unified physical and 

numerical model development of multiphase mixtures in general, the work described here 

represents a synergistic reduction of those multiphase mixture models to DNS-like (direct 

numerical simulation) simulation of highly resolved interfacial phenomena important to nuclear 

reactor systems – boiling, flashing or cavitation of superheated liquid, and bubble collapse. 

The underlying objective of the present work is the accurate and computationally efficient 

resolution of interface problems in compressible multiphase mixtures in all flow conditions, high 

pressure ratios and high density ratios, as well as the computation of dynamic appearance of 

interfaces, that occur in flashing flow.  These interfaces are often separating pure media but also 

mixtures of phases in which wave dynamics is also important.  The presence of large 

discontinuities of thermodynamic variables and equations of state at interfaces frequently results 

in numerical instabilities, oscillations, and computational failure.  Here a general formulation and 

algorithm will be given to solve interface problems separating compressible media or mixtures in 

extreme conditions. 

The literature is replete with methods purported to circumvent these difficulties, but most can be 

placed categorically into two classes of methods:  (1) Methods that consider the interface as a 

sharp discontinuity, Sharp Interface Methods (SIM), and (2) Methods that consider the interface 

as a diffuse zone, like contact discontinuities in gas dynamics, Diffuse Interface Methods (DIM). 

There are numerous methods in the SIM class, which includes Volume of Fluid (VOF), level set, 

and Ghost Fluid Method.  The reader is referred to [4] for a summary of features/weaknesses.  It 

is important to point out, however, that none of these methods is able to dynamically create 

interface, and to solve interfaces separating pure media and mixtures. 

In the second type of methods (DIM), diffuse interfaces correspond to artificial mixtures, created 

by numerical diffusion, for which determination of thermodynamic flow variables in these zones 

is achieved on the basis of multiphase flow theory.  The challenge is to derive physically, 

mathematically, and numerically consistent thermodynamic relations for the mixture, with the 

key issue of fulfilling correct interfacial conditions within this artificial mixture.  The reader is 

again referred to [4] for a summary.  This second category possesses several advantages: 

The same algorithm is implemented globally in both pure fluids and in mixture zones. An 

extended hyperbolic system is used to solve every location of the flow. 

These models and methods are able to dynamically create interfaces that are not present 

initially.

These methods are also able to deal with interfaces separating pure fluids and fluid 

mixtures. 

Methods in this second category are based on hyperbolic multiphase flow models, consisting of 

two main classes: 

Models for mixtures in total non-equilibrium: Baer and Nunziato model [5] and its 

variants, and 

Models for mixtures in mechanical equilibrium [6, 1]. 
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In this paper, a simple, robust, fast and accurate formulation for single velocity and single 

pressure multiphase flows is given. The Kapila et al. model [1] is of particular interest for the 

computation of interfaces separating compressible fluids, as well as barotropic and non-

barotropic cavitating flows.  Specific numerical schemes have been derived recently in Murrone 

and Guillard [7], Abgrall and Perrier [8], Saurel et al. [9], Petitpas et al. [10]. 

This model is apparently simple. In the context of two fluids it is composed of two mass 

equations, a mixture momentum equation and a mixture energy equation. These equations are 

expressed in conservative form. The closure is achieved by the pressure equilibrium condition 

that results in a differential transport equation for the volume fraction containing a non 

conservative term, involving the velocity divergence and phasic bulk moduli.  However this last 

equation poses serious computational challenges which include: 

Shock computations within the context of a non-conservative model. 

Volume fraction positivity, when dealing with shocks and strong expansion waves. The 

term involving a velocity divergence in the volume fraction evolution equation is 

particularly difficult to approximate [10]. This is particularly important for the dynamic 

appearance of interfaces in cavitating flows. 

Non-monotonic behavior of the sound speed [11] which produces multiple sonic points in 

the numerical diffusion zones at interfaces. As it is very difficult (and  expensive) to 

solve exactly the Riemann problem [10], approximate Riemann solvers are used resulting 

in sampling errors (with multiple sonic points) in the flux computations as well as in the 

non-conservative equation evolution. These difficulties in the Riemann problem solution 

are due to volume fraction variations across shocks and expansion waves. 

Moreover, in order to consider future extensions, with additional physics, within the context of 

multiphysics modeling of continuous media with a multiphase approach, the computational 

efficiency of existing algorithms must be improved.  The present paper doesn’t deal with these 

extensions, but it is clear that such a goal needs simple and robust multiphase formulations, 

which will be demonstrated here. 

The present paper addresses this issue in the context of the simplest version of the Kapila et al. 

model [1].  The main difficulty with this model comes from the pressure equilibrium condition, 

which results in the non-conservative equation for the volume fraction. A conservative 

formulation can be obtained with the help of the entropy equations. However, this conservative 

formulation is untenable in the presence of shocks. 

To circumvent these difficulties, pressure non-equilibrium effects are restored in the Kapila et al. 

model [1]. This results in a 6-equation model with a single velocity but with two pressures and 

associated relaxation terms. This extended model was previously presented as a first reduction of 

the Baer and Nunziato model [5] in Kapila et al. [1], but not considered for the description of 

diffuse interfaces. A seventh equation is added describing the mixture total energy in order to 

guarantee a correct treatment of shocks in the single phase limit. This apparent complexity with 

an extended model actually leads to considerable simplifications regarding numerical resolution. 

Indeed, this model remains hyperbolic with only three characteristic wave propagation speeds, 

volume fraction positivity is easily preserved and multiple sonic points no longer appear during 

hyperbolic evolution. The building of a simple and efficient method for the numerical 
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approximation of this flow model in the context of diffuse interfaces will be described in the 

present paper. 

When relaxation terms are omitted the volume fraction remains constant across acoustic waves 

and the Riemann problem is easily solved with approximate Riemann solvers (acoustic and 

HLLC-type solvers [12]). With this non-equilibrium pressure model, the sound speed has a 

monotonic behavior versus volume fraction and multiple sonic points no longer appear inside the 

numerical diffusion zone at interfaces. This feature provides robustness when considering 

flashing or cavitating flows [13, 14, 10].  This hyperbolic step is then followed by a relaxation 

step that consists in the determination of the asymptotic solution of a differential problem in the 

limit of infinitely fast relaxation. This asymptotic solution results in resolution of an algebraic 

system.  The combination of these two steps (hyperbolic + relaxation) guarantees convergence of 

the method to solutions of the Kapila et al. reduced model [1]. 

2.  SIX-EQUATION, PRESSURE NON-EQUILIBRIUM, SINGLE VELOCITY, 

MULTIPHASE FLOW MODEL 

The single velocity pressure equilibrium model corresponds to the one of Kapila et al. [1]. It has 

been obtained as the asymptotic limit of the Baer and Nunziato model [5] in the limit of both stiff 

velocity and pressure relaxation. In involves 5 partial differential equations, 2 phasic continuity 

equations, mixture momentum, mixture total energy, volume fraction evolution equation which 

is non-conservative.  Its resulting speed of sound corresponds to that of Wood [11] which 

exhibits a non-monotonic variation with volume fraction.  These two difficulties (non-

conservativity and non-monotonicity) present serious computational challenges.  To circumvent 

them, a pressure non-equilibrium 6-equation model is constructed (first reduced model in Kapila 

et al. [1]), also non-conservative, but easier to solve with a relaxation method.  Due to space 

limitations the reader is referred to [4] for details. 

To circumvent these difficulties and develop a simple algorithm able to deal with multiphysics 

extensions, a pressure non-equilibrium is considered. The 6-equation model is also derived from 

the 7-equation model of Baer and Nunziato [5] in the asymptotic limit of stiff velocity relaxation 

only (first reduced model in Kapila et al. [1]). Pressure non-equilibrium effects are maintained.  

The 6-equation model should not be considered as a physical model, but more as a step-model to 

solve the 5-equations model (second reduced model of Kapila et al. [1]).  Indeed, the model with 

6-equations has better properties for numerical approximations than the mechanical equilibrium 

one:

Positivity of the volume fraction is easily preserved, 

The mixture sound speed has a monotonic behavior. 

These two properties are key points for the construction of a simple, robust and accurate 

hyperbolic solver. Moreover, with proper treatment of relaxation terms, solutions of the 5-

equation model will be recovered. 

Flow model 

The 6-equation model is   
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where k , , u, kp , and ke  represent respectively the volume fractions, the mixture density, the 

mixture velocity, the phasic pressures, and the phasic internal energies. 

Each fluid is governed by its own convex equation of state (EOS).  For example, in the case of 

fluids governed by the stiffened gas EOS 

1k k k k k kp e p  ,  (2)  

which allows the determination of the phases’ sound speed, ( , )k k k kc c p .  The mixture 

density is defined as 21 )()( .

The interfacial pressure Ip  is obtained as the asymptotic limit of the interfacial pressure of the 

symmetric non-equilibrium model with 7-equations of Saurel et al. [15].  In the limit of equal 

velocities, this estimate is 

21

2112
I
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p ,

where kkk cZ represents the acoustic impedance of phase k. 

The combination of the two internal energy equations with mass and momentum equations 

results in the additional mixture energy equation 
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 (3)  

where the mass fractions are given by k
k

)(
Y .  This additional equation will be important 

during numerical resolution, in order to correct inaccuracies due to the numerical approximation 

of the two non-conservative internal energy equations in the presence of shocks. 

There is no difficulty to check that the second law of thermodynamics is fulfilled by this model. 

The phasic entropy equations are readily obtained as 
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insuring that the mixture entropy (
2211 sYsYs ) always evolves with positive or null variations. 

This model exhibits a nice feature with respect to the mixture sound speed. The mixture sound 

speed
2
22

2
11

2
f cYcYc

has a monotonic behavior versus volume and mass fractions and represents the frozen mixture 

sound speed.  The model is thus strictly hyperbolic with waves speeds fcu , fcu , and u .

As with the 5-equation model of Kapila et al. [1], the new model is also non-conservative, and 

shock relations have to be prescribed. However, even when shock relations are known or 

accepted for a non-conservative system, it is very difficult to make the numerical solution 
converge naturally to the end shock state solution.  ‘Natural convergence’ means without artifact 

such as artificial heat exchanges [10]. There is thus no need to determine precise shock relations 

for the 6-equation model, in particular since it is intended only to approximate the 5-equation 

model for which shock relations are known.  However, some admissibility conditions have to be 

respected by a given Hugoniot approximate model.  Jump conditions must at least respect [16]: 

Energy conservation of the mixture, 

Tangency of the mixture Hugoniot curve and mixture isentrope, 

Single phase limit for which jump conditions are unambiguously known, 

Symmetry , 

Entropy production. 

Jump conditions for the mass equations are 

1
00

1
0
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Denoting the mixture pressure by 2211 ppp  and the shock mass flow rate by 21 mmm ,

the momentum jump condition can be written  

0)vv²(mpp 00  , 

where 2211 vYvYv  (
k

k

1
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The mixture energy jump condition is 

0)vv(
2
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0

0 ,

with 2211 eYeYe .

In the absence of relaxation effects the volume fraction jump is simply 
0
11 .



Berry, Saurel, and Petitpas

2009 International Conference on Mathematics, Computational  

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 

8/18 

The non-conservative internal energy equations are not adapted to the determination of jump 

conditions. Following the preceding admissibility conditions the following jump conditions are 

proposed:
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The conditions that must be satisfied include: 

Energy conservation
The mass fraction weighted sum of the internal energy jump equations yields 
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With the volume fraction jump relation, this equation becomes 
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This result guarantees that the phasic energy jump conditions are compatible with the 

mixture energy conservation.  

Tangency of the mixture Hugoniot curve and isentrope 
This is a mandatory property for the Riemann problem solution. As the volume fraction is 

constant across shocks and rarefaction waves (in absence of relaxation effects) and the 

phasic Hugoniots are tangent to phasic isentropes, the mixture Hugoniot is necessarily 

tangent to the mixture isentrope. 

Single phase limit 
When one of the phases disappears the energy jump condition of the remaining fluid is in 

agreement with the single phase energy jump. 

Symmetry
Symmetry in the formulation allows an easy extension to an arbitrary number of fluids. 

Entropy production 
As each phase evolves along its own Hugoniot, Eqn. (4), there is no doubt that the 

mixture entropy evolves positively. 

Through application of these relations, the Riemann problem can now be solved. Numerical 

issues pertaining to the Riemann solution are addressed in the next section. Let us insist on the 

fact that jump conditions are not the key to shock computation in multiphase mixtures. It has 

been shown that even when shock relations are known, the convergence of a numerical scheme 

to the exact solution is very difficult. This is due to the lack of definition for cell averages of 

non-conservative variables [10]. 
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Asymptotic limit 

As the method will solve the 6-equation model with stiff relaxation terms, it is important to 

check that in the limit of infinitely fast pressure relaxation the 5-equation model is recovered. 

This proof is given in Appendix B of reference [4]. 

3.  NUMERICAL METHOD 

Numerical resolution of the 6-equation model in the limit of stiff pressure relaxation is addressed 

in the present section. In regular zones, this model is self-consistent. But in the presence of 

shocks the internal energy equations are inappropriate. To correct the thermodynamic state 

predicted by these equations in the presence of shocks, the total mixture energy equation will be 

used. This correction will be valid on both sides of an interface, when the flow tends to the single 

phase limits. The details of this correction will be examined further. For now, the 6-equation 

system is augmented by a redundant equation regarding the total mixture energy. The system to 

consider during numerical resolution thus involves 7 equations,
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.

This system is equipped with the approximate shock relations of the preceding section, in 

particular the relation given by Eqn. (4). 

3.1  HLLC Type Approximate Riemann solver 

The HLLC type approximate Riemann solver is detailed in the context of the Euler equations in 

Toro [12].  Consider a cell boundary separating a left state (L) and a right state (R).  The left- and 

right-facing waves speeds are readily obtained, following Davis [17] estimates as 

RRLLR cu,cumaxS , RRLLL cu,cuminS  , 

where the sound speed still obeys 2 2 2

1 1 2 2c Y c Y c .  The speed of the intermediate wave (or 

contact discontinuity) is estimated using the HLL approximation 
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The volume fraction jump is readily obtained, as in the absence of relaxation effects, the volume 

fraction is constant along fluid trajectories 
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As the volume fraction is constant across left- and right-facing waves, the fluid density is 

determined from the preceding relations to be 
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Equipped with these approximate Riemann solvers, the next step is to develop a Godunov type 

scheme. 

3.2  Godunov type method 

For the sake of simplicity, the method is presented at first-order. In the absence of relaxation 

terms, the conservative part of system Eqns. (1) is updated with the conventional explicit 

Godunov scheme
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where T
21 E,u,)(,)(U  and T
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The volume fraction equation is also updated using the Godunov method for advection equations 
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This scheme guarantees volume fraction positivity during the hyperbolic step. Regarding the 

non-conservative energy equations, there is no hope of determining an accurate approximation in 

the presence of shocks [18].  Therefore, we use the simplest approximation of the corresponding 

equations by assuming the product n

ikp  to be constant during the time step, giving 
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The lack of accuracy in the internal energy computation resulting from the present scheme is not 

so crucial. The internal energies will be used only to estimate the phase’s pressure at the end of 

the hyperbolic step, before the relaxation one. The relaxation step will give a first correction to 

the internal energies, in agreement with the second law of thermodynamics. A second correction 

will be made with the help of the total mixture energy. The details of these two steps are 

described in the next two subsections. 

The method is extended in a straightforward manner to multi-dimensions by a finite volume 

method able to deal with structured and unstructured meshes, see [4] for details.  Dependent 

variables are defined at cell centroids and fluxes, assumed constant along each cell face during a 

time interval, are determined as the HLLC approximate Riemann solution between the “left” and 

“right” cell states separated by the cell face. 

3.3 Relaxation step 

This step is of major importance to fulfill interface conditions in non-uniform velocity and 

pressure flows. It also forces the solution of the 6-equation model to converge to that of the 5-

equation model.  In the relaxation step we must solve 
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After some manipulations the internal energy equations become 
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This system can be written as an integral formulation 

0)vv(p̂ee 0

kkIk

0

kk

where

t

0

k
I0

kk

Ik dt
t

v
p

vv

1
p̂ .

Determination of pressure averages 
Ikp̂  must be done in agreement with thermodynamic 

considerations.  Summing the internal energy equations gives
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The mixture mass equation can be written as 

0)vYvY()vYvY( 0
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0
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 . 

Using these relations the mixture energy equation becomes 

0)vYvY)(p̂p̂(ee 0

11112I1I

0  . 

In order that the mixture energy conservation be fulfilled it is necessary that 
I2I1I p̂p̂p̂ .

Possible estimates are 0

II pp̂  or *

I pp̂ , the initial and relaxed pressures respectively. These 

estimates are both compatible with the entropy inequality [9].  Regarding the choice of one or the 

other estimate, upon computation of the relaxed state the resulting difference in practical 

computations is negligible.  The system to solve is thus composed of equations 
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kv ( 2,1k ) and *p . Its closure is achieved using the saturation 
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Here the k)( are constant during the relaxation process. This system can be replaced by a single 

equation with a single unknown ( *p ). With the help of the EOS Eqn. (2) the energy equations 

become 
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and thus the only equation to solve (for *p )  is 

1)p(v)(

k

*
kk                   (6) 

Once the relaxed pressure is found, the phase’s specific volumes and volume fractions are 

determined.  The relaxed pressure cannot be used to advance the solution to the next time step 

because there is no guarantee that the mixture EOS or the mixture energy be in agreement with 

this relaxed pressure. In order to respect total energy and correct shock dynamics on both sides 

of the interface, the following correction is employed. 
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3.4  Reinitialization step 

As the volume fractions have been estimated previously by the relaxation method, the mixture 

pressure can be determined from the mixture EOS based on the mixture energy which is known 

from the solution of the total energy equation. Because the mixture total energy obeys a 

conservation law, its evolution is accurate in the entire flow field and in particular at shocks. The 

mixture internal energy is defined as 

)p,(eY),p,(eYe 222111 .           (7) 

The mixture pressure p is determined by solving Eqn. (7).  In the particular case of fluids 

governed by the stiffened gas EOS, the resulting mixture EOS is 

11

1

p

1

p
e

),,e,(p

2

2

1

1

2

222

1

111

21  ,   (8) 

which relates mixture energy, density and volume fractions.  This EOS is valid in pure (or nearly 

pure) fluids, and in the diffuse interface zone. The volume fraction has very weak variations in 

nearly pure fluids, so that the computed pressure is nearly exact on both sides of the interface. 

This guarantees correct and conservative wave dynamics on both sides of the interface. Inside 

the numerical diffusion zone of the interface, numerical experiments show that the method is 

accurate too, as the volume fractions used in the mixture EOS Eqn. (8) have a quite accurate 

prediction from the relaxation method.  Once the mixture pressure is determined from Eqn. (8) 

the internal energies of the phases are reinitialized with the help of their respective EOS  

),,p(ee kkkkk
  (9) 

before going to the next time step. 

3.5  Summary 

The numerical method can be summarized as follows: 

At each cell boundary solve the Riemann problem of Eqn. System (5) with favorite 

solver. The HLLC solver of Section (3.1) is recommended. 

Evolve all flow variables with the Godunov type method of Section (3.2) 

Determine the relaxed pressure and especially the volume fraction by solving Eqn. (6). 

The Newton method is appropriate for this task. 

Compute the mixture pressure with Eqn. (8). 

Reset the internal energies with the computed pressure with the help of their respective 

EOS Eqn. (9). 

Go to the first item for the next time step. 

4.  TESTS

Bubble interaction 

Multidimensional finite volume extension of the method described above is first validated 

against shock tube experiments of shock-bubble interaction. The experiment is one of those 

proposed in Layes and Le Métayer [19] where full description of the experimental setup is 

provided. The configuration under study consists in a shock wave propagating at Mach number 

1.5 into air at atmospheric conditions and interacting with a helium bubble. The initial density of 
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air is 3
1.29

air
kg m and the initial density of helium is 3

0.167
helium

kg m . In the simulation 

both fluids are considered as ideal gases with polytropic coefficients 1.4
air

 and 1.67
helium

.

The initial configuration is represented in Figure 1. Computed results are compared with 

experimental ones in Figure 2. 

Figure 1: Initial configuration of the interaction shock - bubble. 

Figure 2: Shock-bubble interaction test. Experimental results (left) and computed results 

(right) are compared at different times. Because of the difference in gas properties, the 

transmitted shock wave is faster than the incident one in air. Pressure and density 

gradients induce vorticity generation which develops at long time scale. 

Shock wave 

propagation

t = 134µs 

t = 274µs 

t = 344µs 

t = 554µs 

t = 137µs 

t = 291µs 

t = 350µs 

t = 577µs 
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Cavitating Richtmyer-Meshkov 

instability (RMI) 

To further illustrate the methods 

capabilities a 2D test involving a RMI 

is considered. As the liquid is not pure, 

new interfaces will appear during the 

development of the instability, due to 

cavitation effects. The shape of the 

resulting interface and the entire flow 

field show a non-conventional 

behavior, that was never computed 

before, as the model and method must 

deal with liquid gas interfaces and 

dynamic appearance of gas pockets in 

severe conditions.  The left part of the 

computational domain is filled with 

nearly pure water and the right part 

with nearly pure gas. They are initially 

separated by a curved interface. It is a 

portion of circle with 0.6 meter radius 

centered at x = 1.2 m, y = 0.5 m. The 

physical domain is 3 m long and 1 m 

high. The mesh contains 900 cells 

along x-direction and 400 cells along 

y-direction. Both water and gas have 

an initial velocity of -200 m/s. Top, 

bottom and left boundaries are treated 

as solid walls. The initial density of 

water is 3
1000

water
kg m and the 

stiffened gas EOS parameters are 

4.4water  and 8

,
6.10

water
p Pa . The 

initial density of gas is 
3

100
gas

kg m  and EOS parameters 

are 1.8
gas

 and 
,

0
gas

p Pa . The left 

chamber contains a very small volume 

fraction of gas 6
10

gas
and the right 

chamber contains a very small volume 

Nearly pure liquid
610gas

-200 m/s

P0=1 atm 

Nearly pure gas
610liquid

Figure 1. Configuration and 

mixture density contours at 0.0, 1.9, 

3.9, 5.8, and 7.8 ms.  Blue is high 

density, white is low, and others 

colors are intermediate. 
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fraction of water 6
10

water
. The initial configuration and results are presented in Figure 3. 

When the flow impacts the left wall, a right-facing shock propagates in the domain through the 

water/gas discontinuity. A conventional RMI appears first. Then expansion waves are produced 

as the jet elongates. It results in expanded zones near the solid boundary where gas in-

homogeneities grow, producing dynamic appearance of gas pockets. As the pressure is very low 

in these zones, the jet dynamics is modified compared to conventional RMI with pure fluids. The 

various gas pockets near the solid boundary and in the jet core are clearly visible in Figure 4 

where the gas volume fraction is shown. Relaxation terms present in the volume fraction and 

energy equations are responsible for the dynamic appearance of these gas pockets.

Figure 4:  Water-gas Richtmyer-Meshkov instability. Volume fraction contours of gas 

are shown at time t=8.6 ms. The gas volume fraction increase into the liquid jet and near 

the solid wall boundary. The spike shape is also modified. 

The link between the 6-equation model and conventional barotropic cavitating flows that are the 

most popular in cavitation modeling is detailed in [4]. These models are composed of one or two 

mass conservation equations and one momentum equation. They consist in hyperbolic systems of 

conservation laws. These models involve an important difficulty related to the non-monotonic 

behavior of the sound speed versus volume fraction [13, 20, 14]. It is thus interesting to examine 

how the various ingredients developed in the context of the 6-equation model can be used for 

these barotropic models in order to solve this difficulty. 

5.  SUMMARY AND CONCLUSIONS

A relaxation hyperbolic model with 6 equations was presented to solve interface problems, 

flashing or cavitating flows and shocks into multiphase mixtures. This model considerably 

simplifies the numerical approximation of the 5-equation model of Kapila et al. [1]. A simple, 

efficient and robust algorithm was presented to solve the relaxation model. The various 

ingredients employed in this method are general enough to consider future extensions to 

problems involving complex physics such as surface tension and heat and mass transfer between 

the phases. 
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Using the fractional step method to calculate this type of initial value problem consisting of 

different kinds of physics with multiple time-scales, some of which should be treated implicitly, 

requires some precautionary measures to avoid splitting and conditioning errors.  We are led to 

conclude that a fully implicit treatment may be advantageous.  In the future we will investigate 

this approach to allow integration over the fast time scales for slow speed flows.  We anticipate 

that using a Jacobian-Free Newton-Krylov method [21, 22] with physics based preconditioning 

will allow tightly coupled solutions of the multiphysics phenomena inherent in nuclear reactor 

core applications. 
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