
Computer Science and Information Technology 7(2): 40-47, 2019
DOI: 10.13189/csit.2019.070202

http://www.hrpub.org

A Simple and Fast Line-Clipping Method as a Scratch
Extension for Computer Graphics Education

Dimitrios Matthes, Vasileios Drakopoulos∗

Faculty of Sciences, Department of Computer Science and Biomedical Informatics, Lamia, 35131, Central Greece, Greece

Copyright c©2019 by authors, all rights reserved. Authors agree that this article remains permanently
open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Line clipping is a fundamental topic in an
introductory computer graphics course. An understanding
of a line-clipping algorithm is reinforced by having stu-
dents write actual code and see the results by choosing a
user-friendly integrated development environment such as
Scratch, a visual programming language especially useful
for children. In this article a new computation method for
2D line clipping against a rectangular window is introduced
as a Scratch extension in order to assist computer graphics
education. The proposed method has been compared with
Cohen-Sutherland, Liang-Barsky, Cyrus-Beck, Nicholl-Lee-
Nicholl and Kodituwakku-Wijeweera-Chamikara methods,
with respect to the number of operations performed and the
computation time. The performance of the proposed method
has been found to be better than all of the above-mentioned
methods and it is found to be very fast, simple and can be im-
plemented easily in any programming language or integrated
development environment. The simplicity and elegance of the
proposed method makes it suitable for implementation by the
student or pupil in a lab exercise.

Keywords Computer Graphics Education, Line Clipping,
Programming Education

1 Introduction and Motivation

Research in Computer Graphics education occurs mainly
around the two following topics: (a) pedagogy and practice
of teaching Computer Graphics, or CG for short, and related
technology, as well as (b) the setup of new and specific cur-
ricula, often in relation with other curricula, such as art and
design; see [20]. The proposition that CG is a form of intro-
duction to computing in Further and Higher Education for stu-
dents from Secondary Education with some knowledge of the
subject is considered in [1].

Fundamental graphics techniques are a core topic in the
computing body of knowledge. Teaching these techniques to
today’s computer science or ICT pupils or students presents

a pedagogical challenge. Course critiques reveal student dis-
satisfaction with the stale nature of theory presented without
“live” examples; see [25]. Teaching computer graphics to se-
condary education or undergraduate students seems to be more
of a brain teaser by many instructors since there is a lot of mat-
hematics involved in drawing even simple shapes. Students
often tend to complain and discomfort, not only because of
the advanced mathematic concepts they have to comprehend
but also because they have to use a programming language to
transform these concepts into graphics. As a result, instruc-
tors often choose to use as simple concepts as possible and a
user-friendly integrated development environment, or IDE for
short.

As far as the IDE is concerned, Scratch usually serves as
the introductory programming language for students to create
interactive programs relatively easy and is used in schools wor-
ldwide. Scratch is a free visual programming language develo-
ped by the Lifelong Kindergarten group at the MIT Media Lab
and is often used in teaching coding (see [4]), computer science
and computational thinking. Its purpose is to aid young people,
mainly for ages 8 and up, to learn programming. Instructors or
educators may also use it as a tool across many other subjects
including math, science, history, geography and art.

An activity for novice students involved in computer
graphics design is line clipping. One purpose of this article is
to describe a simple algorithm for 2D line clipping in Scratch
which is faster than the existing ones. The algorithm derived
from the need of eliminating lines in programming environ-
ments where there are limitations of their graphical user inter-
face, or GUI for short. The Scratch user interface, for instance,
is the environment of the Scratch program which divides the
screen into several panes (Figure 1): From left to right, in the
upper left area of the screen, there is a stage area, featuring the
results (i.e., animations, turtle graphics, etc., everything either
in small or normal size, full-screen also available) and all spri-
tes thumbnails listed in the bottom area. The stage uses x and
y coordinates, with 0,0 being the stage center. The stage is 480
pixels wide and 360 pixels tall, x : 240 being the far right,
x : −240 being the far left, y : 180 being the top, and y : −180
being the bottom; see Figure 2.

The user cannot move or draw out of that area. If a pro-

Computer Science and Information Technology 7(2): 40-47, 2019 41

Figure 1. Scratch 2.0 development environment and its different areas at star-
tup.

Figure 2. Scratch screen coordinates.

grammer decides to draw a line out of the stage area, there is
no way to do that with the tools available. On this stage, the
programmer can move sprites or draw objects using the pen.
Scratch as well as many other programming languages doesn’t
allow to the sprites or to the pen to exceed the screen limits.
For example, if a programmer wants to draw a very long line
that goes beyond these limits, there is no option to override this
limitation with the current commands/tiles. The solution to this
problem comes with the line-clipping technique.

This article has the following structure. In Section 2 the line
clipping as well as the corresponding algorithms are presen-
ted. Section 3 presents the proposed line-clipping algorithm
together with some comments and remarks on their implemen-
tation in Scratch, Section 4 presents the results after comparing
the proposed algorithm with five other line clipping algorithms
(Cohen-Sutherland, Liang-Barsky, Cyrus-Beck, Nicholl-Lee-
Nicholl and Kodituwakku-Wijeweere-Chamikara) in Scratch
together with a lesson plan implemented for teaching line clip-
ping in secondary education, Section 5 discusses the advanta-
ges and disadvantages of the methods and, finally, Section 6
presents the conclusions that derive from the study and the use
of the algorithm in practice as well as suggestions for impro-
vement.

2 On Line Clipping
In computer graphics, any procedure that eliminates those

portions of a picture that are either inside or outside a specified
region of space is referred to as a clipping algorithm or simply
clipping. The region against which an object is to be clipped
is called a clipping object. In two-dimensional clipping, if the
clipping object is an axis-aligned rectangular parallelogram, it
is often called the clipping window or clip window. Usually a
clipping window is a rectangle in standard position, although
we could use any shape for a clipping application. For a three-
dimensional scene it is called a clipping region; see [8].

Figure 3. Region before (left) and after (right) 2D line clipping.

Line clipping is the process of removing lines or portions of
lines outside an area of interest. Typically, any line or part the-
reof which is outside of the viewing area is removed (Figure 3).
Most of the times, this process uses mathematical equations or
formulas for removing the unecessary parts of the line. The
programmer draws only the part of the line which is visible
and inside the desired region by using, for example, the slope-
intercept form y = mx+b, where m is the slope or gradient of
the line, b is the y-intercept of the line and x is the independent
variable of the function y = f(x) or just the vector equation.
The most common application of clipping is in the viewing
pipeline, where clipping is applied to extract a designated por-
tion of a scene (either two-dimensional or three-dimensional)
for display on an output device. Clipping methods are also
used to antialias object boundaries, to construct objects using
solid-modeling methods, to manage a multiwindow environ-
ment, and to allow parts of a picture to be moved, copied, or
erased in drawing and painting programs; see for example [7]
or [3].

2.1 Existing Methods

There are four primary algorithms for line clipping: Cohen-
Sutherland, Cyrus-Beck [2], Liang-Barsky [12] and Nicholl-
Lee-Nicholl [15]. Over the years, other algorithms for line
clipping appeared, like Fast Clipping [24], Skala [21] [22] [23],
Ray [19], but many of them are variations of the first two ones
[18]. In general, the existing line-clipping algorithms can be
classified into three types: the encoding approach (with the
Cohen-Sutherland algorithm as a representative), the parame-
tric approach (with the Liang-Barsky and the Cyrus-Beck al-
gorithms as representatives) and the Midpoint Subdivision al-
gorithms.

The algorithm of Danny Cohen and Ivan Sutherland was de-
veloped in 1967 during the making of a flight simulator. It is
considered to be one of the first line-clipping algorithms in the
computer graphics history. According to this, the 2D space

42 A Simple and Fast Line-Clipping Method as a Scratch Extension for Computer Graphics Education

in which the line resides is divided into nine regions. The al-
gorithm determines first in which regions the two points that
define the line are in and then performs complete, partial or no
drawing of the line at all; see for example [5], p. 113 or [6]
(Figure 4). The method that is used to decide, if a line is suit-

Figure 4. The nine regions of the Cohen-Sutherland algorithm in the 2D space.

able for clipping or not, performs logical AND operation with
the region codes of the line endpoints. After the logical AND,
if the result is not 0000, the line is completely outside the clip-
ping region [9]. The implementation of the Cohen-Sutherland
algorithm in Scratch requires a relatively large number of com-
parisons for determining the regions. In addition, it requires
many bitwise AND operations but this kind of operation is not
embedded in Scratch. This technique is also referred to as En-
coding and Code Checking in [13].

The method of Mike Cyrus and Jay Beck is a general line-
clipping algorithm, but it introduces extra floating point opera-
tions for determining the value of a parameter corresponding
to the intersection of the line to be clipped with each window
edge [10]. It is of O(N) complexity and is primarily inten-
ded for clipping a line in the parametric form against a convex
polygon in two dimensions or against a convex polyhedron in
three dimensions.

Midpoint subdivision algorithm is an extension of the Cyrus-
Beck algorithm and follows a divide and conquer strategy. It
is mainly used to compute visible areas of lines that are pre-
sent in the view port are of the sector or the image. It follows
the principle of the bisection method and works similarly to
the Cyrus-Beck algorithm by bisecting the line into equal hal-
ves. But unlike the Cyrus-Beck algorithm, which only bisects
the line once, Midpoint Subdivision Algorithm bisects the line
numerous times. The Midpoint Subdivision algorithm is not
efficient unless it is implemented in hardware.

On the other hand, You-Dong Liang and Brian Barsky have
created an algorithm that uses floating-point arithmetic for fin-
ding the appropriate end points with at most four computations
[16]. This algorithm uses the parametric equation of the line
and solves four inequalities to find the range of the parameter
for which the line is in the viewport [12]. The method of Liang-
Barsky is very similar to Cyrus-Beck line-clipping algorithm.
The difference is that LiangBarsky is a simplified Cyrus-Beck
variation that was optimised for a rectangular clip window. In
general, the Liang-Barsky algorithm is more efficient than the
Cohen-Sutherland line-clipping algorithm. However, the algo-
rithm in its implementation in Scratch requires also a relatively
large number of comparisons so it is not very efficient after all.

Figure 5. Defining the line for clipping with the Liang-Barsky algorithm.

The Nicholl-Lee-Nicholl algorithm is a fast line-clipping al-
gorithm that reduces the chances of clipping a single line seg-
ment multiple times, as may happen in the Cohen–Sutherland
algorithm. The clipping window is divided into a number of
different areas, depending on the position of the initial point of
the line to be clipped.

In 2013, a fast line clipping algorithm with slightly dif-
ferent approach from the above ones was introduced by
Kodituwakku-Wijeweere-Chamikara [11]. It is newer and per-
forms better than the Cohen-Sutherland and Liang-Barsky al-
gorithms. It checks every boundary of the clipping area (top,
bottom, left, right) and performs line clipping by using the
equation of the line. Moreover, it checks if the line segment
is just a point or parallel to principle axes.

2.2 CG Teaching Approach

Although instructors can choose among the line-clipping al-
gorithms mentioned above, they would find themselves in a po-
sition of discarding some of them as they prove to be unsuitable
for teaching, especially in lower education levels. If we add the
parameter of performance, then we would find that there might
be a need for a new simple but faster algorithm for line clip-
ping to overcome the drawbacks of the existing algorithms that
could be used in educational context. Having this in mind, we
experimented on implementing line clipping by using the ex-
isting algorithms in Scratch, so as to choose the most effective
one for teaching. The results will be described in detail in the
following sections.

Depending on the programming language or IDE, the im-
plementation of each algorithm varies in speed. For instance,
the simplicity and elegance of the classic Cohen-Sutherland 2D
Line-Clipping Algorithm would make it suitable for implemen-
tation by the student in a lab exercise. We have mentioned that
for the Cohen-Sutherland algorithm, a relatively large number
of bitwise AND operations needs to be performed in order to
determine the regions where the line resides. However, bitwise
AND is not embedded in Scratch, so the students have to create
a function for this task which greatly impedes the algorithm.
The Liang-Barsky and the Cyrus-Beck algorithms use advan-
ced mathematical concepts, which makes both algorithms too

Computer Science and Information Technology 7(2): 40-47, 2019 43

complicated to be taught in secondary education, since stu-
dents knowledge of mathematics is not advanced enough. The
Nicholl-Lee-Nicholl algorithm, although it is simple and easy
to comprehend, has an extended code listing and is rather slow
in execution. The Kodituwakku-Wijeweere-Chamikara algo-
rithm is easier to implement but harder to be taught because
it uses many conditions and comparisons (if..then..else.. state-
ments) and thus is difficult for students to code it.

The difficulties of the previous line-clipping algorithms
in Scratch seem to be overcomed by the proposed algo-
rithm. Although it uses the main concept of the Kodituwakku-
Wijeweere-Chamikara algorithm, it avoids many unnecessary
comparisons, like the parallel lines or the dots. It aims at sim-
plicity and speed and does only the necessary calculations in
order to determine whether the beginning as well as the end of
the line are inside the clipping region. Moreover, the source
code listing is very short.

3 Materials and Methodology

3.1 Methodology

Assume that we want to clip a line inside a rectangle re-
gion or window that is defined by the points (xmin, ymax) and
(xmax, ymin). This region is depicted in Figure 6. Given two

Figure 6. Line clipping region.

points (x1, y1) and (x2, y2) on the line that we want to clip, the
slope m of the line is constant and is defined by the ratio

m =
y2 − y1
x2 − x1

. (1)

For an arbitrary point (x, y) on the line, the previous ratio can
be written as

m =
y − y1
x− x1

.

Solving for y

y − y1 = m · (x− x1)⇔ y = y1 +m(x− x1).

By replacing m in this equation with (1)

y = y1 +
y2 − y1
x2 − x1

· (x− x1). (2)

Solving for x, the equation becomes

x = x1 +
x2 − x1

y2 − y1
· (y − y1). (3)

Equations (2) and (3) are two mathematical representations of
the line equation y = mx + b and will be used later by the
algorithm in order to determine the part of the line that is inside
the clipping window.

3.2 The basic steps
Suppose that the line which has to be clipped is defined by

the points (x1, y1) and (x2, y2).
Step 1: The first step of the algorithm checks, if both points are
outside the line-clipping window and at the same time in the
same region (top, bottom, right, left). If one of the following
occurs then the entire line is being rejected and the algorithm
draws nothing (see Figure 7):

x1 < xmin AND x2 < xmin (line is to the left of the clipping
window)

x1 > xmax AND x2 > xmax (line is to the right of the
clipping window)

y1 < ymin AND y2 < ymin (line is under the clipping win-
dow)

y1 > ymax AND y2 > ymax (line is over the clipping win-
dow)

Figure 7. Lines A,B,C,D are rejected according to the first step of the
algorithm.

Step 2: In the second step, the algorithm compares the coordi-
nates of the two points along with the boundaries of the clip-
ping window. It compares each of the x1 and x2 coordina-
tes with the xmin and xmax boundaries respectively, as well as
each one of the y1 and y2 coordinates with the ymin and ymax

boundaries. If any of these coordinates are out of bounds, then
the specific boundary is used in the equation that determines
the line in order to achieve clipping (see Figure 8).

For each of the coordinates of the two points and according
to (2) and (3), the comparisons and changes made are:

• If xi < xmin then
xi = xmin

yi = y1 +
y2 − y1
x2 − x1

· (xmin − x1)

44 A Simple and Fast Line-Clipping Method as a Scratch Extension for Computer Graphics Education

Figure 8. Selecting the points of the line that are inside the clipping area.

• If xi > xmax then

xi = xmax

yi = y1 +
y2 − y1
x2 − x1

· (xmax − x1)

• If yi < ymin then

yi = ymin

xi = x1 +
x2 − x1

y2 − y1
· (ymin − x1)

• If yi > ymax then

yi = ymax

xi = x1 +
x2 − x1

y2 − y1
· (ymax − x1)

where i = 1, 2.
Step 3: The third and final step checks if the new points, after
the changes, are inside the clipping region and if so, a line is
being drawn between them.

3.3 The algorithm in pseudo-code

The representation of the algorithm in pseudo-code follows:

/ / x1 , y1 , x2 , y2 , xmin , ymax , xmax , ymin / /

i f n o t (x1<xmin and x2<xmin) and n o t (x1>xmax and x2>xmax) t h e n
i f n o t (y1<ymin and y2<ymin) and n o t (y1>ymax and y2>ymax) t h e n

x [1] = x1
y [1] = y1
x [2] = x2
y [2] = y2
i =1
r e p e a t

i f x [i] < xmin t h e n
x [i] = xmin
y [i] = ((y2−y1) / (x2−x1))∗ (xmin−x1)+ y1

e l s e i f x [i] > xmax t h e n
x [i] = xmax
y [i] = ((y2−y1) / (x2−x1))∗ (xmax−x1)+ y1

end i f
i f y [i] < ymin t h e n

y [i] = ymin
x [i] = ((x2−x1) / (y2−y1))∗ (ymin−y1)+ x1
e l s e i f y [i] > ymax t h e n
y [i] = ymax
x [i] = ((x2−x1) / (y2−y1))∗ (ymax−y1)+ x1

end i f
i = i + 1

u n t i l i>2
i f n o t (x[1]<xmin and x[2]<xmin) t h e n

i f n o t (x[1]>xmax and x[2]>xmax) t h e n
drawLine (x [1] , y [1] , x [2] , y [2])

end i f
end i f

end i f
end i f

4 Results and Evaluation
The number 100,000 was selected as the number of lines to

be clipped during the evaluation. Scratch is capable of drawing
100,000 lines in an average time of 10 seconds, depending on
the system. The lines were created by each algorithm in every
execution and clipped accordingly. The results are shown in
Table 1.

Table 1. Execution times of each algorithm when creating 100,000 lines in
Scratch

Exec. CS LB CB NLN KWC Prop.
(sec) (sec) (sec) (sec) (sec) (sec)

1 44.349 11.848 19.607 19.807 9.910 6.021
2 44.098 11.501 1.425 1.376 1.224 6.050
3 43.910 11.557 1.471 1.437 1.196 6.038
4 44.018 11.562 1.530 1.446 1.271 6.022
5 44.248 1.263 1.519 1.455 1.297 1.151
6 44.033 1.233 1.418 1.505 1.268 1.216
7 44.120 1.182 1.439 1.427 1.275 1.076
8 43.888 1.205 1.658 1.332 1.223 1.209
9 43.988 1.218 1.423 1.448 1.217 1.214

10 44.141 1.272 1.462 1.450 1.251 1.199
Avg: 1.365 1.256 1.479 1.445 1.244 1.165

Preparation
In order to determine the efficiency of the proposed algo-

rithm we decided to compare it with the five others: Cohen-
Sutherland, Liang-Barsky, Cyrus-Beck, Nicholl-Lee-Nicholl
and Kodituwakku-Wijeweere-Chamikara.

Scratch’s programming environment is advantageous in
comparison to other environments for the following reasons:
a) Scratch has a built-in display area where the visual result of
the algorithm can be viewed directly, b) it has embedded timer
and time commands which make the measurement of the exe-
cution time easy, c) the algorithm is accessible to everyone via
the Internet, d) it allows users to temporarily interfere with the
algorithm for experimentation.

The experiment

The experiment was the following: Each one of the five eva-
luated algorithms would have to create a large number of ar-
bitrary lines in a two-dimensional space. The size of this 2D
space should be four times larger than the Scratch screen for
both environments. Such a space is determined by the points
(-960, 720) and (960, -720). The line-clipping window should
be at the centre of the screen and defined by the points (-100,
75) and (100, -75), in other words 200 pixels in width and 150
pixels in height. As someone may notice, the proportion of the
screen and the clipping window is the same for both horizontal
and vertical axis. The lines would be randomly generated any-
where in the 2D space and each algorithm would have to draw
only the visible part of the lines inside the clipping window
(see Figure 9).

Computer Science and Information Technology 7(2): 40-47, 2019 45

Figure 9. Defining the 2D space for creating random line as well as definition
of the line clipping window.

The time that each algorithm needs to clip and draw this
large number of lines is recorded in every execution. The
whole process is repeated 10 times and at the end the average
time is being calculated.

Hardware and software specifications

For realistic results, an average computer system was used
for the experiment. The hardware as well as the software spe-
cifications were: a) Intel Core2Duo @ 2.60GHz CPU, b) RAM
2GB, c) AMD Radeon HD 5450 GPU, d) Windows 10 Profes-
sional operating system, e) Scratch 2.0.

The Implemented Lesson Plan
As far as the educational procedure is concerned, the pro-

posed algorithm turned out to be a real asset in the classroom
for the ICT teacher. It is simple, easy to comprehend and can
undoubtedly be taught to students in secondary education.

Students prerequisite knowledge is the equation of a straight
line and basic programming experience in using variables in
Scratch. Students become familiar with the first in early secon-
dary school years. As for the latter, they already have expe-
rience in Scratch programming during informatics course. In
other words, this knowledge is already mastered by senior se-
condary school students.

One of the basic problems we encounter today is traditional
attitudes and methods depending on an educational sense of
rote learning. Such teaching attractive methods activating stu-
dents by taking them in the centre should be preferred instead
of usual teacher centred educational methods and techniques.
So we have used student-centred learning followed by inquiry-
based learning. We implemented the following lesson plan in
the second class of a senior high school (students age 16-17)
as part of the thematic sub-module ‘multimedia’ with 23 pu-
pils in the classroom. The lesson took place in our Computer
Lab having twelve PCs for students and one PC for the tea-
cher. The time required to complete the lesson is 45 minutes.
The required materials are a projector, an internet connection,
a whiteboard and a marker.

Instruction (3 minutes)

Firstly, the teacher asks the students to create a new sprite
of dimension 1 × 1 pixels. Students work in groups of two

persons. Then, their assignment is to create a script and, by
using the Pen, to plot three noncollinear points within the stage
and draw a triangle having these points as vertices.

Second activity (4 minutes)

The next activity for the students is to determine three new
noncollinear points outside the borders of the stage, so as to
draw a new triangle having these points as vertices. Students
have enough time to experiment and they are expected to con-
clude that no matter how much they tried, they could not ex-
ceed the boundaries of the stage. The conclusion is the same
for all teams: the triangle cannot have any vertex outside the
window area.

Presentation (8 minutes)

The teacher initiates a discussion between all groups explai-
ning Scratch programming restrictions and limitations. The
discussion will gradually lead to recognising the need for line
clipping. The teacher explains the new term and demonstra-
tes how line clipping looks like. So, he runs the Scratch pro-
gram executing the line-clipping algorithm to show students
what they will soon build.

Development (7 minutes)

Next, the teacher reminds the class of the slope-intercept
form of a line and how we can implement it on the plane. If
necessary, he/she also reminds them of how to create variables
in Scratch.

Generalising (8 minutes)

The teacher introduces the proposed line-clipping algorithm
to the class as a solution to the problem of drawing the triangle,
since the lines can be clipped and the rest of the triangle can be
drawn correctly within the limits of the design area.

Application (12 minutes)

Students are now ready to work on their PC and solve the
initially given problem by applying the new concept. The code
for line clipping is given to them as a ready-to-use tool. Once
they manage to solve the problem with three lines, we ask them
to solve the same problem with four or five lines (square or
pentagon).

Recapitulation (3 minutes)

Finally, students are asked to answer a short online question-
naire, so that the teacher can get feedback from them in order
to determine, whether the lesson was successful or not.

5 Performance and Discussion
In Figure 10 the graph of each case by using all data from

the previous table is illustrated. By using the graph with the
average time of each algorithm executed in Scratch and by

46 A Simple and Fast Line-Clipping Method as a Scratch Extension for Computer Graphics Education

reviewing the results, we notice that the proposed algorithm
is about seven times faster than the Cohen-Sutherland algo-
rithm, almost two times faster than the Liang-Barsky, about
three times faster than both the Cyrus-Beck and the Nicholl-
Lee-Nicholl and, finally, one and a half times faster than the
Kodituwakku-Wijeweere-Chamikara.

Figure 10. Graph with the average time of each algorithm in Scratch (from
lower to higher value).

As mentioned before, each algorithm has advantages and
disadvantages. The Cohen-Sutherland algorithm is the oldest
of all algorithms, it has an average performance comparing to
the other four but it is difficult to implement due to the bitwise
AND operations that it requires. Scratch does not have em-
bedded commands (tiles) for bitwise logic so the programmer
has to create special functions for this purpose. Unfortunately,
these functions require a lot of calculations and make the algo-
rithm remarkably slower.

The Liang-Barsky algorithm looks steady in its performance
and is definitely faster than the Cohen-Sutherland algorithm.
Liang-Barsky’s main drawback is that it is slightly more diffi-
cult than the others to understand since it contains more advan-
ced mathematical concepts.

The Cyrus-Beck algorithm also uses advanced mathematical
concepts, which makes it too complicated to be taught in se-
condary education, since students knowledge of mathematics
is not advanced enough.

The Nicholl-Lee-Nicholl algorithm, though simple and easy
to comprehend, has an extended code listing and is rather slow
in execution.

Finally, the Kodituwakku-Wijeweere-Chamikara algorithm
is the second fastest algorithm, but it uses a lot of conditions
which make the algorithm more complicated and thus slightly
slower than the proposed one.

6 Conclusions

There are many line-clipping algorithms in computer
graphics. Each one has advantages and disadvantages. The
afore-mentioned experimental results indicate that the propo-
sed algorithm is simpler, faster and it certainly performs better
than other known 2D line-clipping algorithms. It is capable of
using only a very small number of variables and it is very easy
to implement in any programming language or IDE. An inte-
resting extension of this algorithm would be clipping in three
dimensions; see [17].

Acknowledgements
An earlier version, written in Greek, of the proposed method

in Scratch was published in the 9th Conference on Informa-
tics in Education 2017 which took place in the University of
Piraeus in Greece [14].

REFERENCES
[1] C. K. Clutterbuck and T. Ishwarwood. Computer graphics

as an introduction to computing. International Journal
of Mathematical Educational in Science and Technology,
5(3–4):463–470, 1974.

[2] M. Cyrus and J. Beck. Generalized two- and three-
dimensional clipping. Comput. Graph., 3:23–28, 1978.

[3] S. C. Dimri. A simple and efficient algorithm for line and
polygon clipping in 2-d computer graphics. International
Journal of Computer Applications, 127(3):31–34, 2015.

[4] V. Drakopoulos. Fractal-based image encoding and com-
pression techniques. Commun. – Scientific Letters of the
University of Žilina, 15(3):48–55, 2013.

[5] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.
Computer Graphics Principles and Practice. Addison-
Wesley, Reading, MA, 2nd edition, 1990.

[6] Atul P. Godse and Deepali A. Godse. Computer
Graphics. Technical Publications Pune, 2001.

[7] D. Hearn and M. P. Baker. Computer Graphics C Version.
Prentice Hall, 2nd edition, 1997.

[8] D. Hearn, M. Pauline Baker, and W. R. Carithers. Compu-
ter Graphics with Open GL. Pearson Education Limited,
Edinburgh Gate, Harlow, Essex CM20 2JE, 4th edition,
2014.

[9] M. S. Iraji, A. Mazandarami, and H. Motameni. An effi-
cient line clipping algorithm based on Cohen-Sutherland
line clipping algorithm. American Journal of Scientific
Research, 14:65–71, 2011.

[10] S. Kaijian, J. A. Edwards, and D. C. Cooper. An efficient
line clipping algorithm. Comput. Graph., 14(2):297–301,
1990.

[11] S. R. Kodituwakku, K. R. Wijeweera, and M. A. P. Cha-
mikara. An efficient algorithm for line clipping in com-
puter graphics programming. Ceylon Journal of Science
(Physical Sciences), 1(17):1–7, 2013.

[12] Y-D. Liang and B. A. Barsky. A new concept and method
for line clipping. tog, 3(1):1–22, 1984.

[13] G. Lu, X. Wu, and Q. Peng. An efficient line clipping
algorithm based on adaptive line rejection. Computers
and Graphics, 26:409–415, 2002.

Computer Science and Information Technology 7(2): 40-47, 2019 47

[14] D. Matthes and K. Kappas. A simple and fast algorithm
for line clipping in scratch. In N. Alexandris, P. Vlamos,
Ch. Douligeris, and V. Belesiotis, editors, 9th Conference
on Informatics in Education 2017, pages 14–26, 2017.

[15] Tina M. Nicholl, D.T. Lee, and Robin A. Nicholl. An
effective new algorithm for 2-d line clipping: Its deve-
lopment and analysis. Comput. Graph., 21(4):253–262,
1987.

[16] Nisha. Comparison of various line clipping algorithms:
Review. International Journal of Advanced Research in
Computer Science and Software Engineering, 7(1):68–
71, 2017.

[17] Nisha. A review: Comparison of line clipping algorithms
in 3d space. International Journal of Advanced Research,
5(1):2377–2379, 2017.

[18] A. Pandey and S. Jain. Comparison of various line clip-
ping algorithms for improvement. International Journal
of Modern Engineering Research, 3(1):69–74, 2013.

[19] B. K. Ray. A line segment clipping algorithm in 2d. In-
ternational Journal of Computer Graphics, 3(2):51–76,
2012.

[20] B. Sousa Santos, J.-M. Dischler, V. Adzhiev, E.F. An-
derson, A. Ferko, O. Fryazinov, M. Ilč´k, I. Ilč´ková,
P. Slavik, V. Sundstedt, L. Svobodova, M. Wimmer, and
J. Zara. Distinctive approaches to computer graphics edu-
cation. Computer Graphics Forum, 37(1):403–412, 2018.

[21] V. Skala. An efficient algorithm for line clipping by con-
vex polygon. Comput. Graph., 17(4):417–421, 1993.

[22] V. Skala. O(lg n) line clipping algorithm in e2. Comput.
Graph., 18(4):517–524, 1994.

[23] V. Skala. A new approach to line and line segment
clipping in homogeneous coordinates. Visual Comput,
21:905–914, 2005.

[24] M. S. Sobkow, P. Pospisil, and Y. Yang. A fast two-
dimensional line clipping algorithm via line encoding.
Comput. Graph., 11(4):459–467, 1987.

[25] David Stahl. A lab exercise for 2d line clipping.
In CGEMS: Computer Graphics Educational Materials
Source, CGEMS, pages 2:1–2:1. The CGEMS Project,
2008.

