Turk J Elec Engin, VOL.12, NO.1 2004, © TUBITAK

A Simple and Global Optimization Algorithm for
Engineering Problems: Differential Evolution
Algorithm

Dervis KARABOGA
Department of Computer Engineering, Erciyes University, Kayseri-TURKEY
e-mail:karaboga@erciyes. edu. tr
Selguk OKDEM
Department of Computer Engineering, Erciyes University, Kayseri-TURKEY
e-mail:okdem@erciyes. edu. tr

Abstract

Differential Evolution (DE) algorithm is a new heuristic approach mainly having three advantages;
finding the true global minimum regardless of the initial parameter values, fast convergence, and using
few control parameters. DE algorithm is a population based algorithm like genetic algorithms using
similar operators; crossover, mutation and selection. In this work, we have compared the performance
of DE algorithm to that of some other well known versions of genetic algorithms: PGA, Grefensstette,
Eshelman. In simulation studies, De Jong’s test functions have been used. From the simulation results, it
was observed that the convergence speed of DE is significantly better than genetic algorithms. Therefore,

DE algorithm seems to be a promising approach for engineering optimization problems.
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1. Introduction

In the optimization process of a difficult task, the method of first choice will usually be a problem specific
heuristics. These techniques using expert knowledge achieve a superior performance. If problem specific tech-
nique is not applicable due to unknown system parameters, the multiple local minima, or non-differentiability,
Evolutionary Algorithms (EAs) have the potential to overcome these limitations [1]. EAs are a class of di-
rect search algorithms. A conventional direct search method uses a strategy that generates variations of the
design parameter vectors. Once a variation is generated, the new parameter vector is accepted or not. The
new parameter vector is accepted in the case it reduces the objective function value. This method is usually
named the greedy search. The greedy search converges fast but can be trapped by local minima. This dis-
advantage can be eliminated by running several vectors simultaneously. This is the main idea of differential
evolution (DE) algorithm. The most popular EA is genetic algorithm. Although many genetic algorithm
versions have been developed, they are still time consuming. In order to overcome this disadvantage, the
evolution strategy called DE has been recently proposed by Storn [2, 3]. It has been applied to several

engineering problems in different areas [4, 5, 6, 7]. The main difference between the genetic algorithm and
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DE is the mutation scheme that makes DE self adaptive and the selection process. In DE, all solutions have
the same chance of being selected as parents without dependence of their fitness value. DE employs a greedy
selection process: The better one of new solution and its parent wins the competition providing significant
advantage of converging performance over genetic algorithms.

DE algorithm is a stochastic optimization method minimizing an objective function that can model
the problem’s objectives while incorporating constraints. The algorithm mainly has three advantages; finding
the true global minimum regardless of the initial parameter values, fast convergence, and using a few control
parameters [2]. Being simple, fast, easy to use, very easily adaptable for integer and discrete optimization,
quite effective in nonlinear constraint optimization including penalty functions and useful for optimizing
multi-modal search spaces are the other important features of DE [8, 9].

The convergence speed is one of the main issues indicating the performance of an EA. There have been
some studies to increase the convergence speed of the DE algorithm [8, 9]. In this work, we have applied
the DE algorithm to a number of De Jong’s functions and compared the speed of convergence of the DE
algorithm to that of some popular genetic algorithms such as PGA, Grefensstette and Eshelman algorithms
[10]. In the second section the principles of the DE algorithm are described in detail. Section 3 presents the

test functions used. The simulation results and comparisons are given in Section 4.

2. Differential Evolution Algorithm

The DE algorithm is a population based algorithm like genetic algorithms using the similar operators;
crossover, mutation and selection. The main difference in constructing better solutions is that genetic
algorithms rely on crossover while DE relies on mutation operation. This main operation is based on the
differences of randomly sampled pairs of solutions in the population.

The algorithm uses mutation operation as a search mechanism and selection operation to direct the
search toward the prospective regions in the search space. The DE algorithm also uses a non-uniform
crossover that can take child vector parameters from one parent more often than it does from others. By
using the components of the existing population members to construct trial vectors, the recombination
(crossover) operator efficiently shuffles information about successful combinations, enabling the search for a
better solution space.

An optimization task consisting of D parameters can be represented by a D-dimensional vector. In
DE, a population of NP solution vectors is randomly created at the start. This population is successfully
improved by applying mutation, crossover and selection operators.

The main steps of the DE algorithm is given below:

Initialization
Fvaluation
Repeat
Mutation
Recombination
Fvaluation
Selection
Until (termination criteria are met)

2.1. Mutation

For each target vector x; ¢ , a mutant vector is produced by
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vig+1 = Tic+ K- (g —2ic)+ F - (Tra,¢6 — 2r3,G) (1)

where i,7r1,79,7.3 € {1,2,..., NP} are randomly chosen and must be different from each other. In Eq(1),
Fis the scaling factor which has an effect on the difference vector (z,2 ¢ —r3,¢), K is the combination

factor.

2.2. Crossover

The parent vector is mixed with the mutated vector to produce a trial vector u;; g4+1

Vji,a41 if (Tndj < CR) or j = rn,,
Uji,G+1 = (2)
¢ji,c if (rnd; > CR) and j # rn;

where j= 1,2, ....,D; r; € [0,1] is the random number; CR is crossover constant € [0,1] and rn,; €(1,2,

.,D) is the randomly chosen index.

2.3. Selection

All solutions in the population have the same chance of being selected as parents without dependence of
their fitness value. The child produced after the mutation and crossover operations is evaluated. Then, the
performance of the child vector and its parent is compared and the better one is selected. If the parent is
still better, it is retained in the population.

Figure 1 shows DE’s process in detail: the difference between two population members (1,2) is added to
a third population member (3). The result (4) is subject to the crossover with the candidate for replacement

(5) to obtain a proposal (6). The proposal is evaluated and replaces the candidate if it is found to be better.

parent

5

6
proposal

/ K
Figure 1. Obtaining a new proposal in DE.

3. Test Functions Used in Simulation Studies

Five test functions (F1-F5) presented in Table 1 have been firstly proposed by De Jong [11] to measure the

performance of GAs. After Jong, they have been extensively used by GA researchers and other algorithm
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communities. The test environment includes functions which are convex (F1), non-convex (F2), discontinuous
(F3), stochastic (F4) and multimodal (F5).

Table 1. Test functions.

Function Number Function Limits
3
F1 3 a? —5.12< x; <5.12
=1
F2 100(27 — 29)% + (1 — 11)? —2.048 < z; < 2.048
5
F3 S int(z;) —5.12< z; <5.12
i=1
30 ‘
F4 > iz} + Gauss(0,1) —1.28 < z; <1.28
=1
25
F5 0.002+ Y —5—1——| | —65.536 < x; < 65.536
J=1j+ Z:l (3’37,_074')6

F1 (Sphere) : The first function is smooth, unimodal, strongly convex, symmetric (Figure 2).

F2 (Banana): Rosenbrock’s valley is a classical optimization function, also known as Banana
function. The global optimum is inside a long, narrow, parabolic shaped flat valley. To find the valley
is trivial, however convergence to the global optimum is difficult and hence this problem has been repeatedly

used to assess the performance of the optimization algorithms (Figure 3).

F3 (Step): This function represents the problem of flat surfaces. Flat surfaces are obstacles for
optimization algorithms because they do not give any information as to which direction is favorable. Unless

an algorithm has variable step sizes, it can get stuck on one of the flat plateaus (Figure 4).

F4 (Stochastic): This is a simple unimodal function padded with noise. In this type of function, the
algorithm never gets the same value on the same point. Algorithms which are not good on this test function

will do poorly on noisy data (Figure 5).

F5 (Foxholes): Function F5 is an example of a function with many local optima. Many standard

optimization algorithms get stuck in the first peak they find (Figure 6).

4 o 4

Figure 2. F1 Sphere Function.

56



KARABOGA, OKDEM: An Efficient Algorithm to Determine the Periodic Steady-State...,

Figure 3. F2 Rosenbrock’s Valley Function.

Figure 4. F3 Step Function.

Figure 5. F4 Stochastic Function.
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Figure 6. F5 Foxholes Function.

4. Simulation Results

The DE algorithm has a few control parameters: number of population NP scaling factor F', combination
coefficient K, and crossover rate CR. The problem specific parameters of the DE algorithm are the
maximum generation number Gp.x and the number of parameters defining the problem dimension D.
The values of these two parameters depend on the problem to be optimized. In the simulations, it was
observed that the value of scaling factor significantly affected the performance of DE. This can be seen in
Table 2. In the table, 10000 T represents the number of generations which are higher than 10000. In order to
get the best performance from the DE, the scaling factor value, F, must be optimally tuned for each function.
Of course, this is a time-consuming task. For the simplicity and flexibility, the value of F was randomly
chosen between -2 and 2 for each generation instead of using a constant value. The results produced for this
selection are shown in Table 3.

The average number of generations presented in Table 2-3 provides the minimum function values in
three-digit accuracy. We have compared the performance of the DE algorithm to that of other some well
known genetic algorithms: PGA, Grefensstette and Eshelman [10]. These algorithms were run 50 times and
the DE algorithm was run 1000 times for each function to achieve average results. For each run, the initial
population was randomly created by means of using different seed numbers.

The results belonging to the DE algorithm given in Table 3 were achieved using parameter values that
are 0,8 for CR and 0,5 for K. Parameter NP was chosen 10 for small dimensional and 20 for large dimensional

functions.

Table 2. Average of number of generations for various F values.
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F1(NP=10, | F2(NP=10, | F3(NP=20, | F4(NP=20, | F5(NP=10,
F K=0.5, K=0.5, K=0.5, K=0.5, K=0.5,
CR=0.8) | CR=0.8) | CR=0.8) | CR=0.8) | CR=0.8)

0.2 240 10000 165 1100 10000T
0.4 180 100007 145 1150 100007
0.6 200 10000 140 1750 10000T
0.8 265 830 130 6700 100007
1 360 775 115 10000T 775

1.5 700 1200 100 100007 1520

2 1190 1710 96 10000T 3160
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Table 3. Average of number of generations.

F1 F2 F3 F4 F5
Domain : Domain: Domain: Domain: Domain:

Algorithms [-5.12,5.12] | [-2.048,2.048] | [-5.12,5.12] | [-1.28,1.28] | [-65.536,65.536]

Dim 3 Dim 2 Dim 5 Dim 30 Dim 2
PGA(N=4) 1170 1235 3481 3194 1256
PGA(A=38) 1526 1671 3634 5243 2076
Grefensstette 2210 14229 2259 3070 4334
Eshelman 1538 9477 1740 4137 3004
DE(F:Random Value) 260 670 125 2300 1200

When the results produced by the DE algorithm for all functions were evaluated together, it was
observed that the best of the average of number of generations is obtained when the value of F is randomly
generated between -2 and 2. It is seen in Table 3 that the convergence speed of the DE is significantly better
than GAs although the scaling factor value was randomly produced for each generation without tuning.
From the results it can be concluded that the DE algorithm is usually able to find optimum solutions for
the functions with a less number of generations than other algorithms. The most significant improvement is
with F3, resulting about 14 times smaller average of number of generations than other algorithm producing

the best result for the same function.

5. Conclusion

The DE algorithm is a new heuristic approach mainly having three advantages; finding the true global
minimum regardless of the initial parameter values, fast convergence, and using a few control parameters.
In this work, the performance of the DE algorithm has been compared to that of some other well known
genetic algorithms. From the simulation studies, it was observed that the convergence speed of the DE
is significantly better than the GAs presented in this work. Therefore, the DE algorithm seems to be a

promising approach for engineering optimization problems.
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