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A simple and unified heuristic method for nicely drawing directed, undirected and mixed 
graphs is proposed basing upon a new model called magnetic.spring model which is an 
extension of Eades's spring model. In the new model, the idea of controlling edge orientations 
by magnetic forces is employed. Since the method is conceptually intuitive, it is quite easy to 
understand, implement, tune and improve it. Examples of layouts and results of experiments 
are shown to demonstrate extensive possibilities of the method. 

1 Introduction 

Force-directed placement is a well-known technique for drawing general undirected 
graphs[I,2,3,4]. As one of the early works of the force-directed placement, Eades[2] 
presented an algorithm based upon the spring model. In the model, vertices are 
replaced with steel rings and each edge with a spring to form a mechanical system, 
and repulsive and attractive forces are defined among rings. Then the rings are placed 
in some initial layout and moved iteratively according to the forces so that the system 
reaches a minimal energy state. Finally rings are drawn as points or small circles, 
and each edge as a straight line segment between a pair of rings connected by the 
edge. Kamada[3] proposed a more sophisticated algorithm and Fruchterman & 
Reingold[4] presented an effective modification of the model. 

Aesthetic criteria generally accepted in the force-directed placement approach 
have been[4]: uniforming edge lengths (A1), minimizing edge crossings (A2), 
revealing symmetry (A3), distributing vertices evenly (A4) and conforming to the 
frame (A5). In this paper we introduce a new aesthetic criterion, i.e. conforming 
edges to specified orientations (A6), and propose a method based on a new model 
called magnetic-spring model. In this model, as shown in Fig.l, vertices are replaced 
with rings and edges with magnetic springs, and various types of magnetic fields are 
introduced. With this model we can not only obtain the placement of vertices 
satisfying the generally accepted criteria, but also Can control the geometrical 
orientations of edges by magnetic rotative forces. This can provide us with novel 
capabilities in graph drawing by force-directed placement: This method can draw, in 
a simple and unified manner, not only undirected graphs but also trees, directed 
graphs and mixed graphs (graphs with both directed and undirected edges). 
Moreover, since this method is based upon the idea of simulations of virtual physical 
systems, it is conceptually intuitive and quite easy to be understood, implemented, 
tuned and modified. Therefore, this method might be useful for non-expert users 
who want to visualize graphs flexibly with a drawing tool made by themselves even 
if the visualization is approximate. 

Fig.2 shows an example of mixed graph appeared in the literature[5]. This is an 
issue map in which four types of relationships are used: One of them is uni- 
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directional and the rest three are bi-directional. How to control the orientations of 
these edges and draw the graph is a quite interesting problem. However, such the 
problem has not been considered so far. Our method is specially suitable for drawing 
complicated graphs like the mixed graph shown in Fig.2. 

In the second section a magnetic-spring model is presented. In the third section 
several experiments for showing the possibilities of our method are carried out. 
Experimental results and discussions are shown along seven questions raised on the 
ability of our method by the authors. Finally concluding remarks are made with 
suggestions for future research. 
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Fig.1. Magnetic-spring model. ASF: at~active spring force, RSF: repulsive spring force, 
RF: repulsive force and MF: magnetic force. 

/ 

365 

AssoclJte 

~ e p e n d r  issues 

C ~ e d  issu~ 
from bt+~.-d to specific 

Contradictory issues 

Fig.2. An example of a mixed graph: art issue map. 

2 Model and Algorithm 

In developing a new method, we adopt three principles for graph drawing: 
(1) Vertices connected by an edge should be drawn near each other; 
(2) Vertices should not be drawn too close to each other; and 
(3) Different types of edges should be drawn with different specified orientations. 
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The f'trst two principles are just same as those of Eades[2] and Furuchterman & 
Reingold[4], and the last is our new principle. 

2.1 Magnetic-Spring Model 

A graph G =(V, E ) consists of a set V of vertices and a set E of pairs of vertices. An 
element of E is called an edge. A graph G =(V, E ) is modeled as follows. The 
model does not reflect the natural reality readily or is characterized as a virtual model 
as well as the spring model. 

Rings and Springs 

Every vertex in V is replaced with a steel ring as shown in Fig.1. Edges in E are 
classified into magnetic edges and non-magnetic edges. Magnetic edges are 
replaced with magnetic springs and non-magnetic edges with springs. Magnetic 
springs consist of uni-directional magnetic springs and bi-directionai magnetic 
springs as shown in Fig.3. Usually directed edges are assigned as magnetic edges 
and replaced with uni-directional magnetic springs. Undirected edges are usually 
assigned as non-magnetic edges but sometimes they are assigned as magnetic edges 
and replaced with bi-directional magnetic springs. How to assign such the magnetic 
property of edges substantially depends on applications. 
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Fig.3. Uni-directional spring (left) and bi-directional spring (right), and magnetic forces. 

Fields 

We consider three types of standard magnetic fields: parallel, polar and concentric; 
and two types of compound magnetic fields: orthogonal and polar-concentric (see 
Fig.4). Compound magnetic fields are composed from standard magnetic fields. 
When we put b(x,y) and m(x,y ) as the strength of a magnetic field and the orientation 
vector that expresses the orientation of the field at any point (x,y) respectively, each 
standard magnetic field B (x,y) at (x, y) is given by 

(x,y) = b re(x, y) .  (1) 
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In this paper we consider uniform fields for simplicity and therefore we put b is 
constant at any point (x ,y)  except the origin(0, 0); specially B (0, 0) = 0 in the cases 
of  polar and concentric fields. We put m (x, y ) as follows: 

(1) parallel field 

m ( x , y )  = (0, 1):north; (-1,0):west; (0,-1):south; (1,0):east.  (2) 

(2) polar field 

m (x, y ) = (x ,  y )/l(x , y )l. (3) 

(3) concentric field 

m (x, y ) = (y ,  -x )/l(x, y )1 : clockwise; (-y, x )/l(x, y )1 : anti-clockwise. 
(4) 
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Fig.4. Standard and compound magnetic fields: (a) parallel, (b) polar, (c) concentric, (d) 
orthogonal and (e) polar-concentric. 

Forces 

We consider three types of forces (see Fig.3): 
(1) F s : attractive or repulsive forces exerted by the springs between neighbors; 
(2) Fr : repulsive forces between every pair of non-neighboring vertices; and 
(3)Fro : rotative forces exerted on edges by the magnetic field. 

The ideas of the first two forces are based on Eades's model. The last is calculated as 
forces exerted on the vertices connected by each magnetic edge. Strengths of these 
forces are given by: 
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F~ = c~ log(e/k)  (5) 

Fr = -Cr 1/d 2 (6) 

Fm = c m b d a  O [J (7) 

where d is the distance between a pair of vertices, k is an ideal distance between 
neighbors, 0 (-x < 0 < ~ ) is the angle (radian) from the orientation of the field to the 
orientation of the magnetic edge, and a,  fl, cs, Cr, cm > 0 are parameters for tuning 
the model. In the case of a bi-directional magnetic edge, there can exist two angles 
01(negative) and 02 (positive). We select for 0 the one of which absolute value is 
smaller than the other. Though magnetic forces Fm are exerted on each magnetic 
edge by a magnetic field, we calculate them as two forces (with a same strength and 
reverse orientations) exerted on a pair of vertices connected by the edge. 

Anchors 

We introduce special rings called anchor rings which never be moved even if some 
force is exerted on the rings. We can extend the idea of anchor rings to anchor bars 
and anchor frames, but we do not use them in this paper. 

2.2 Algorithm 

Our algorithm is based upon Eades's algorithm[2] in which the mechanical system is 
simulated. Before starting calculations we should specify natures of forces as F, a 
type of magnetic field as M and types of edges in terms of magnetic responses as R. 

algorithm MAGNETIC_SPRING (G : graph, F : natures of forces, 
M : a type of magnetic field, R : specifications of magnetic responses); 

1. place vertices of G on a circle evenly, of which radius is k IV I/2n, in a random 
order; 

2. repeat n times 
2.1 calculate the force exerting on each vertex by composing three kinds of 

forces according to F, M, R ; 
2.2 move each vertex by 8 x (force on the vertex); 

3. draw the graph on a screen. 

Parameter 8 controls the magnitude of moving steps. Calculations of forces Fs's, 
Fr's and Fin's have O(IEI ), O(IVI 2) and O(IEI] time complexity respectively. An initial 
placement of vertices on a circle can be seen in Fig.5a. 

3 S u m m a r y  o f  E x p e r i m e n t s  

In this section, we show a brief summary of experiments to check the usefulness of 
controlling edge orientations and test the capabilities of our method. A more detailed 
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version can be seen in [6]. In the experiments we randomly generate thirty sample 
graphs, all of which are connected, for various cases such as: 

(1) classes of graphs: rooted trees (RT), acyclic directed graphs (ADG), cyclic 
directed graphs (CDG), edge-bipartite rooted trees (EBRT) and acyclic mixed 
graphs (AMG); 

(2) the number of vertices: 20 and 40; 
(3) mean degree: 2.5 and 3.0 (nearly 2 in the case of tree). 

Then we apply our algorithm to the sample graphs in various magnetic fields shown 
in Fig.4 and calculate the five quantitative values that relate to the several aesthetic 
criteria: the number of crossings(A2), the distribution of angles between edge- 
orientations(A6), the number of error edges of which orientations do not conform to 
the magnetic field(A6), the distribution of edge lengths(A1) and the density of 
vertices distribution(A4). In the experiments default values of parameters are set as 
r ~--1.0, Cs~2.0, Cr =1.0, Cra=l.O and k=l.0. Parameter b is changed between 
0.0 and 16.0 to observe effects due to the strength of a magnetic field. Parameter 8is 
changed between 0.005 and 0.1 so that the larger b is, the smaller 8 is, which is to 
make the length of a moving step equal through simulations. Therefore the number 
of steps diverges from 100 to 1600. In investigating the performance, our interests 
exists in the following questions. 

(Q1) Can rooted trees be drawn without crossings or with a few crossings? 

Both Eades[7] and Fruchterman & Reingold[4] reported the difficulty of drawing 
trees without edge crossings by spring algorithms. However, we can overcome it and 
obtain a good layout by using our magnetic-spring algorithm. Fig.5a shows an initial 
placement of the graph. If there does not exist any magnetic field, we obtain the 
layout shown in Fig.5b where we can not eliminate a crossing, whereas if there exists 
a suong parallel field, we obtain the crossing-free layout shown in Fig.5c. Fig.5c is 
laid out in a tree form, but the diagram is too narrow due to the existence of the 
strong field. Therefore, we further continue the calculation in no magnetic field as 
the next phase and then we get the symmetrical layout presented in Fig.5d. Thus this 
two-phase algorithm is quite effective to obtain good layouts of rooted trees. The 
good performance to reduce the number of crossings in drawing rooted trees by our 
algorithm is also confirmed from statistical experiments. Fig.6 shows a part of the 
experimental results in a parallel field where for rooted trees the expected number of 
crossings is very low and every edge conforms to the orientation of the field when the 
strength of the field is high. 

(Q2) Can downward (or upward) drawings of acyclic directed graphs be easily 
realized? 

With the magnetic-spring algorithm we can realize easily downward (or upward) 
layouts of acyclic directed graphs. Fig.7 shows layouts of an acyclic directed graph 
when the strength of the magnetic field is changed. Fig.7a corresponds to the case of 
no magnetic field and Fig.7c the strongest. We can see from Fig.6 that for acyclic 
directed graphs there is no error edge when the magnetic force is strong. 

(Q3) How about relationships between our method and the feedback edge set 
problem in the case of drawing cyclic directed graphs? 
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(a) (b) 

(c) (d) 

Fig.5. A good result from magnetic-spring algorithm. (a0 initial placement, (b) layout in no 
field, (c) layout in a strong field and (d) layout after two phases. 
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Fig.6. Results of statistical experiments in the parallel field. 
RT(v,e~ices: 40), ADG(vertices: 20), CDG(ve~ices: 20). 
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What is most interesting in drawing cyclic directed graphs in a parallel field is 
whether the number of feedback edges is close to minimal or not. Fig.8 displays a 
good example from our algorithm. In Fig.8c only one edge (0---)4) is pointing 
upward whereas all other edges downward. This means that the minimum feedback 
edge set problem is solved. Of  course, this can not be confirmed by statistical 
experiments in general. However, the number of feedback edges (or error edges) is 
small (about 10% of IEI) in the parallel field as seen in Fig.6. 

V 

(a) b = 0  (b )b=  1 (c) b = 4  

Fig.7. Layouts of an acyclic directed graph in the parallel field. 

(a) b = 0 (d) b = 2 (f) b = 8 

Fig.8. Layouts of a cyclic directed graph in the parallel field. 

(Q4) Is our method effective for h-v drawing of rooted binary trees? 

Fig.9 shows layouts of  edge-bipartite rooted trees that represent h-v drawings[8] of a 
list structure where car-edges are drawn vertically and cdr-edges horizontally. An 
edge-bipartite rooted tree is placed in an orthogonal field and its layouts are 
calculated changing the slrength of the field. Though there is no crossing in Fig.9a, 
we can not always eliminate crossings even if we use the two-phase algorithm. Fig.9b 
shows an example of a larger rooted tree where the orientations of edges conform 
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(a) (b) 
Fig.9. Layouts of an edge-bipartite rooted tree in the orthogonal field. 
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Fig.10. Results of statistical experiments in the orthogonal field. 
EBRT(vertices: 20), AMG(vertices: 20). 

well to the field but there remain several crossings. A part of results of statistical 
experiments for each case is shown in Fig.10. 

(Q5) Can acyclic mixed graphs be drawn in a way that we can easily grasp a global 
structure constituted with different kinds of edges and distinguish them readily? 

In the acyclic mixed graph presented in Fig.2 where there is no directed cycle, uni- 
directional relationships are replaced with uni-directional magnetic springs and three 
types of bi-directional relationships all are replaced with bi-directional magnetic 
springs. Then our algorithm is applied to the graph so that the former relationships 
are drawn downward and the latter horizontally as much as possible. Fig.11 shows 
variations of diagrams of the acyclic mixed graph where we can distinguish uni- 
directional relationships from bi-directional relationships more easily in the case of 
the strong field than in the case of no field. A part of results of statistical experiments 
are shown in Fig.10. 

(Qt) To which kind of problems is a polar field applicable? 
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Flg.ll. Layouts of an aeyclic mixed graph(Fig.2) in the orthogonal field. 

Reggiani and Marchetti[9] found that if a vertex-bipartite graph was drawn as a 
hierarchy with two horizontal levels then its diagram could not avoid many crossings 
(see Fig. 12a), whereas if it was drawn as a hierarchy with two concentric discs then 
its diagram could avoid crossings completely (see Fig. 12b). In order to check this 
ability of our algorithm, we place the same graph in the polar field and apply our 
algorithm to it where an anchor vertex connecting to vertices with numeric labels is 
placed at the origin. Fig.12c is a resulted diagram where the orientation of every 
edge conforms to the orientation of the field, but three crossings can not be 
eliminated. 
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Fig.12. Layouts of a vertex-bipartite graph by several drawing methods. 

(Q7) Can cyclic directed graphs be drawn in a way that it is easy to grasp the global 
flow of the graphs and the existence of cycles? 

Fig.13 shows variations of layouts of cyclic directed graphs obtained from our 
algorithm when the strength of a concentric field is changed. Figs.13a (tetragonal 
pillar) and 13b (.pentagonal pillar) correspond to the cases of no field and Figs.13a' 
and 13b' the strongest. When we increase the field strength, we can obtain 
symmetrical layouts where the conformity to the orientation of the field is attained, 
which bring us the easiness for grasping cycles. We check whether this advantage of 
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Fig.13. Layouts of three cyclic directed graph in the concentric field. 
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Fig.14. Results of statistical experiments in the concentric field. 

our algorithm arises even for more general cases. Figs.13c and 13c' shows variations 
of layouts of a more general cyclic directed graph (same graph as Fig.8) where we 
can recognize cycles easily when the field becomes strong. A part of results of 
statistical experiments are shown in Fig. 14. 
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4. Concluding Remarks 

Since the magnetic-spring method is substantially heuristic, we can not give exact 
answers to the above-stated problems. However, the results of preliminary 
experiments presented in the paper show extensive possibilities of the method, 
especially in problems like (Q1), (Q2), (Q4), (Q5) and (Q7). Also, since this method 
is very simple and applicable to the wide range of graphs, the method might be 
suitable for non-expert users who want to visualize graphs flexibly with a drawing 
tool made by themselves even if the visualization is approximate. Interactive 
environments are desirable for raising the flexibility of the algorithm. 

For future research it is envisaged to analyze more precisely trade-off 
relationships among aesthetic criteria, diversify the idea of fields, extend virtual 
models and sophisticate formulations and algorithms in both theoretical and practical 
senses. 
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