
A Simple Approach for Adapting Continuous

Load Balancing Processes to Discrete Settings∗†

Hoda Akbari‡ and Petra Berenbrink§ and Thomas Sauerwald¶

Abstract

We consider the neighbourhood load balancing problem. Given a network of

processors and an arbitrary distribution of tasks over the network, the goal is to

balance load by exchanging tasks between neighbours.

In the continuous model, tasks can be arbitrarily divided and perfectly balanced

state can always be reached. This is not possible in the discrete model where tasks

are non-divisible.

In this paper we consider the problem in a very general setting, where the tasks

can have arbitrary weights and the nodes can have different speeds. Given a con-

tinuous load balancing algorithm that balances the load perfectly in T rounds, we

convert the algorithm into a discrete version. This new algorithm is deterministic

and balances the load in T rounds so that the difference between the average and

the maximum load is at most 2d ·wmax, where d is the maximum degree of the

network and wmax is the maximum weight of any task. For general graphs, these

bounds are asymptotically lower compared to the previous results.

The proposed conversion scheme can be applied to a wide class of continuous

processes, including first and second order diffusion, dimension exchange, and

random matching processes.

For the case of identical tasks, we present a randomized version of our algo-

rithm that balances the load up to a discrepancy of O(
√

d logn) provided that the

initial load on every node is large enough.

1 Introduction

In this paper we consider the problem of neighbourhood load balancing in arbitrary

networks. The networks are modelled by a graph with n nodes. The nodes of the graph

represent processors or other resources and the edges of the graph communication links

between them. We assume that in the beginning m tasks are arbitrarily distributed

over the nodes of the network. The tasks can have arbitrary weights; the weight of

∗This paper is an extended version of [6].
†The second author’s work was supported by an NSERC Discovery Grant “Analysis of Randomized

Algorithms”.
‡Simon Fraser University, Burnaby, Canada
§Simon Fraser University, Burnaby, Canada
¶University of Cambridge, Cambridge, UK

1

task i is wi. The weights can be used to model the runtime of tasks, or their resource

requirements. We also allow the processors to have different speeds to model situations

in which the processors in the network have different processing rates. The speed of

processor i is denoted by si.

In this general setting the load of a resource is the total weight of the tasks assigned

to it. We define the makespan of a resource as its load divided by the speed of the

resource. The goal of neighbourhood load balancing is to minimize the makespan dif-

ference over all nodes. Note that in a perfectly balanced state the load of each resource

is proportional to its speed. In other words, the ratio of load to speed (makespan) should

be equal for all the nodes.

Neighbourhood load balancing algorithms usually work in synchronous rounds. In

every round each node is allowed to compare its load with all or a subset of its neigh-

bours. Then it calculates for every neighbour the amount of load and the subset of its

tasks that it will send to it. One distinguishes between discrete and continuous set-

tings of the problem. In the discrete case the tasks are atomic and cannot be broken

into smaller tasks. Hence, nodes can only forward whole tasks to their neighbours.

Continuous load balancing relaxes the problem by assuming that tasks can be split into

arbitrarily small pieces, and hence load can be balanced perfectly. Most continuous

balancing algorithms are well-understood, there exist tight bounds on the number of

rounds they need to balance the load completely [34]. Discrete load balancing algo-

rithms are quite often not able to balance the load perfectly, especially in the case of

weighted tasks and resources with speeds. The common approach to analyze a discrete

algorithm is to consider a closely related continuous version of the algorithm and to

bound the deviation between the two processes. For an overview we refer the reader to

Section 2.2 where we elaborate on discrete load balancing algorithms that use random-

ized or deterministic rounding techniques.

One also distinguishes between diffusion load balancing where every node balances

its load with every neighbour in every round, and dimension exchange models where

nodes balance only with one neighbour per round. In the latter case it is often assumed

that a partial matching is chosen randomly (random matching model), or that a set of

perfect matchings that cover every edge of the graph is given. These matchings are

then used periodically (periodic matching model).

As an example for neighbourhood load balancing let us consider the so-called stan-

dard diffusion load balancing algorithm with unweighted tasks and uniform resources.

Here all the nodes balance their load with all their neighbours. Both in the discrete and

in the continuous case every node u will calculate the load difference fv between its

own load and the load of each neighbours v. If the difference is positive, u will divide

fv by its own degree d. In the continuous case u will send fv/d tokens to v. Since fv/d

is not necessarily an integer this might not be possible in the discrete case. Hence u has

to round fv/d to one of the nearest integers. It is easy to see that this rounding may lead

to a load difference that is a function of the diameter and the degree of the network.

Neighbourhood load balancing strategies have many advantages compared to strate-

gies where nodes are allowed to balance their load by routing it toward any node in the

network. First, they do not need any global knowledge since the load balancing actions

are determined by the load of direct neighbours. This keeps the balancing algorithm

simple and scalable. Neighbourhood balancing algorithms also have the tendency to

2

keep the tasks close to their initial location which is beneficial if the tasks originated

on the same resource have to exchange information.

1.1 New Results

We present two results in this paper. In Section 4 we present a general framework (Al-

gorithm 1) that translates a continuous load balancing process into a discrete version.

In every round the discrete algorithm imitates the continuous algorithm as closely as

possible by trying to send the same amount of load over every edge as the continuous

algorithm. To be more detailed, let f c
e (t) and f d

e (t), respectively, be the total load sent

over edge e during the first t rounds of the continuous process and its discrete version.

Then the discrete version of the algorithm tries to send a load of ⌊ f c
e (t)− f d

e (t− 1)⌋1
over e in round t. Note that it might not be possible for the discrete algorithm to send

the required amount of load over all the edges since the load of the nodes might not

be sufficiently large. In that case the node will create some dummy tokens to fulfil all

demands. This is done by assuming that each node has an infinite source of dummy

tokens to be generated on demand. The dummy tokens will be regarded as “normal”

tokens for the rest of the balancing process. At the end of the balancing process they

will be eliminated, which reduces the makespan of the resources who were holding

some of the dummy tokens at the end of the process. See Algorithm 1 for details. Note

that in actual implementation, we do not need to create and transfer workload units and

consume communication bandwidth for each dummy token. That would incur com-

munication overhead proportional to the number of dummy tokens. Instead, we can

communicate only the amount of dummy workload that should be forwarded to each

neighbour.

Let d be the maximum degree and wmax the maximum task weight. Let the max-

min discrepancy be defined as the difference between the maximum and minimum

makespan. The max-avg discrepancy is defined as the difference between the maxi-

mum and the average makespan. Furthermore, let T be the time it takes for the contin-

uous process to balance the load (more or less) completely (see Section 3 for details).

Then we show that the following holds for the discrete version of the continuous pro-

cess, using Algorithm 1 (see Theorem 3 for details).

(1) At time T the max-avg discrepancy is O(d ·wmax).

(2) If the initial makespan of any node is at least d ·wmax, then the above bound holds

on the final max-min discrepancy as well.

Our general framework can be applied to a wide and natural class of continuous

algorithms that we called additive terminating algorithms (see Definition 2 and Defini-

tion 3).

An additive algorithm, starting with a load distribution D = D1 +D2, transmits the

same amount of tasks over every edge as the sum of the amounts it would transmit in

1The discrete version of the algorithm has to know the continuous flow f c
e (t) for every edge e = (u,v).

This knowledge is easy to gather by simulating the continuous load balancing process in parallel on every

node.

3

the case that it were started with D1 and D2. A terminating algorithm does not do any

load balancing actions on a completely balanced load distribution. The class of sup-

ported algorithms includes first and second order diffusion algorithms [34], dimension

exchange algorithms (where the nodes balance their load only with one neighbour cho-

sen deterministically per round), and random matchings models [27] (where in each

round the balancing actions are restricted to the edges of a random matching).

While being very simple, our work is the first to analyze a discretization scheme

supporting such a wide class of continuous algorithms. The analysis holds for arbi-

trary graphs, weighted tasks and resources with speed, whereas most existing papers

consider only discrete algorithms in the uniform task model. Also, except a few pub-

lications [2, 21] the majority of the previous results assume uniform resource speeds

(see Section 2.2 for more details).

Tables 1 and 2 in the appendix compare our algorithms with previous results. For

easier comparison, our results are translated to the case of uniform tasks and speeds.

Table 1 compares our algorithms with other diffusion algorithms. Algorithm 1 achieves

a final max-min discrepancy independent of n and graph expansion, and in particular,

the only algorithm achieving constant max-min discrepancy for all constant-degree

graphs. In the matching model (Table 2), Algorithm 1 is the only algorithm that

achieves final max-min discrepancy independent of n for an arbitrary, possibly non-

regular graph.

Our second result is a transformation based on randomized rounding (see Algo-

rithm 2 in Section 5). Again, let f c
e (t) and f d

e (t), respectively, be the total load sent

over edge e during the first t rounds of the continuous process and its discrete version.

Then, according to Algorithm 2, the discrete version of the algorithm sends either

⌊ f c
e (t)− f d

e (t−1)⌋ or ⌈ f c
e (t)− f d

e (t−1)⌉ tasks over edge e in round t.

Algorithm 2 reaches a max-avg discrepancy of

d

4
+O(

√
d logn)

after T steps. (Theorem 8). If the initial makespan of every node is at least d/4+
O(
√

d logn), then the result improves to a max-min discrepancy of O(
√

d logn). For

large values of d these bounds improve the results of the deterministic transformation

presented above.

Algorithm 2 improves over diffusion algorithms of [9, 26, 37] by reaching a max-

min discrepancy independent of graph expansion for arbitrary graphs (see Table 2).

Similarly, in the matching model, Algorithm 2 achieves max-min discrepancy bounds

independent of graph expansion, thus giving improved bounds compared to [24, 37, 38]

for low-expansion graphs.

In comparison to the existing results on non-uniform speeds [2, 21], both Algo-

rithm 1 and Algorithm 2 achieve max-min discrepancy bounds independent of global

graph parameters while previous bounds depend on the expansion [2, 21] or the diam-

eter [2].

It should be noted that in both our deterministic and randomized algorithms, the

max-min discrepancy results hold under the condition that the initial load of each node

is sufficient (see part (2) of Theorems 3 and 8). Otherwise, we only provide bounds on

max-avg discrepancy. Though such conditions were not necessary in previous works,

4

we do not consider this as a major drawback. The reason is in the load balancing

context usually what matters is the maximum completion time of all the jobs. In other

words, the main concern is to minimize the maximum load rather than minimizing the

difference between the maximum and the minimum load. When this is the case, max-

avg discrepancy bounds serve equally as well as max-min discrepancy bounds. On

the other hand, when resource utilization is the concern max-min discrepancy bounds

provide better guarantees.

2 Existing Algorithms and Techniques

There is a vast amount of literature about load balancing. In this section, we give an

overview of the results on continuous (Section 2.1) and discrete neighbourhood load

balancing (Section 2.2) only. There are many related models such as selfish load bal-

ancing [1, 3, 10, 11, 22, 23], deterministic random walks [13, 14, 16, 25, 32], periodic

balancing circuits [7, 37], and token distribution [4, 28, 33]. We will not consider these

models here any further.

When not stated otherwise, the results are for the uniform case without speeds and

weights. In the following we will consider the results both in the discrete and the

continuous settings.

2.1 Continuous Load Balancing

The first diffusion algorithm (also called first order schedule, FOS) was independently

introduced by Cybenko [15] and Boillat [12]. Their results were later generalized to the

case of non-uniform speeds in [20]. To introduce the FOS process we first need some

additional notation. Let xi(t) be the load of resource i at the beginning of round t > 0

of the process. We define x(t) = (x1(t), . . . ,xn(t)) as the load vector in the beginning

of round t. For an arbitrary node i let N(i) be the set of neighbours of i. Furthermore,

let di be the degree of node i and recall that si is the speed of resource i. For j ∈ N(i)
let yi, j(t) be the (positive) amount of load transferred from node i to node j in round t.

For j 6∈ N(i), we let yi, j(t) to be zero. Then the FOS process is defined as follows.

yi, j(t) =
αi, j

si

· xi(t), (1)

xi(t +1) = xi(t)− ∑
j∈N(i)

αi, j

(
xi(t)

si

−
x j(t)

s j

)
, (2)

where αi, j = α j,i are parameters to be chosen with the restriction that for all i, we must

have ∑ j∈N(i) αi, j < si. Common choices for αi, j are 1/(2max(di,d j)) or 1/(max(di,d j)+
1). The process can also be defined using a so-called diffusion matrix P, where for all i

we have Pi,i = 1−∑ j αi, j/si and for j ∈ N(i), we have Pi, j = αi, j/si. Other entries of P

are set to zero. Then

x(t +1) = x(t) ·P. (3)

P is a stochastic matrix that can be viewed as the transition matrix of an ergodic Markov

chain with a unique steady-state distribution (s1/S, . . . ,si/S, . . . ,sn/S). Hence, repeat-

5

edly applying Equation (3) leads to the perfectly balanced state. Let K denote the initial

discrepancy and λ the second-largest eigenvalue in absolute value of the diffusion ma-

trix. Here and throughout, we use the variable T to denote the balancing time of various

continuous processes. When not clear from the context, we redefine T explicitly. Then

[20, 34, 37] use the above approach to show that

T = O

(
log(Kn)

1−λ

)
,

where the result of [20] is for the case of non-uniform speeds.

Muthukrishnan et al. [34] introduced the second order schedule (SOS). Later, the

SOS was generalized by Elsässer et al. [20] to the case of non-uniform speeds. The SOS

method is inspired by a numerical iterative method called successive over-relaxation.

In SOS, the amount of load transmitted over each edge depends on the current state

of the network as well as the load transferred in the previous round. The first round

equation is similar to FOS Equations (1) and (2), and subsequent rounds are defined by

yi, j(t) = (β −1) · yi, j(t−1)+β · αi, j

si

· xi(t), (4)

where αi, j’s are as in Equation (1) and 0 < β 6 2. This leads to the following round

equation with diffusion matrix P defined as in FOS2:

x(t +1) = β · x(t) ·P+(1−β) · x(t−1).

For some choices of β SOS converges faster than FOS [34]. The optimal choice

for β is known to be 2/(1+
√

1−λ 2) [20, 34], which leads to

T = O

(
log(Kn)√

1−λ

)
,

2Derivation steps can be found below (see also [34, Lemma 3]). We use [n] to denote {1, . . . ,n}:

xi(t +1) = xi(t)+ ∑
j∈[n]

(y j,i(t)− yi, j(t))

= (1−β +β) · xi(t)+ ∑
j∈[n]

(
(β −1) · y j,i(t−1)+β ·Pj,i · x j(t)

)

− ∑
j∈[n]

(
(β −1) · yi, j(t−1)+β ·Pi, j · xi(t)

)

= (1−β) ·
(

xi(t)− ∑
j∈[n]

(y j,i(t−1)− yi, j(t−1))

)
+β · xi(t)−β · ∑

j∈[n]
xi(t) ·Pi, j

+β · ∑
j∈[n]

x j(t) ·Pj,i

= (1−β) · xi(t−1)+β · xi(t)−β · xi(t) · ∑
j∈[n]

Pi, j +β · ∑
j∈[n]

x j(t) ·Pj,i

= (1−β) · xi(t−1)+β · ∑
j∈[n]

x j(t) ·Pi, j

where the last equation holds since we have ∑ j∈[n] Pi, j = 1. Translating to the matrix form, this yields the

desired round equation.

6

where the result of [20] is for the case of non-uniform speeds.

For SOS it can happen that the total outgoing demand ∑ j∈N(i) yi, j exceeds the load

xi, which results in so-called negative load.

The dimension exchange model is motivated by single-port architectures as op-

posed to the diffusion model which necessitates multi-port communication [15, 27, 28,

37]. In the matching based models every node balances its load with only one neigh-

bour. More formally, the load transfer in each round is restricted to a – not necessarily

perfect – matching of the underlying graph. Let (i, j) be an edge in the matching of

round t. Then resource i and resource j calculate yi, j and y j,i such that their makespans

are equalized. This can be done by the following equations, which can be regarded as

a special case of the Equations (1) and (2)).

yi, j(t) =
αi, j

si

· xi(t), (5)

xi(t +1) =
si

si + s j

·
(
xi(t)+ x j(t)

)
,

where αi, j = α j,i = sis j/(si + s j).
Similar to the diffusion load balancing, the process can be defined using a sequence

of matrices {P(0),P(1), . . .}, where P(t) represents a modification of the adjacency

matrix of the matching that is used in step t, as follows. If (i, j) is in the matching

of the round t then Pi, j(t) = αi, j/si and Pi,i(t) = 1−Pi, j(t). If i is not matched then

Pi,i(t) = 1. All other entries are zero.

Several publications assume that a fixed set of matchings (usually roughly maxi-

mum degree many) is given and the matchings are used periodically. Hence, for all t

we have P(t) = P(t mod d̃) where d̃ is the length of the period. The model was orig-

inally introduced in [30], together with a distributed edge-colouring algorithm (see

also [35, 36]) that can be used to construct the matchings. As far as we know, the al-

gorithms in the matching model have been analyzed only for the case of uniform tasks

and speeds. The analysis for the algorithms using periodic matchings is very similar to

the analysis of FOS. The convergence was first analyzed in [15] for hypercubes and in

[31] for arbitrary graphs. Define

P := P(0) ·P(1) · . . . ·P(d̃−1)

and let λ be the second-largest eigenvalue in absolute value of the matrix P 3. If we

consider a group of d̃ consecutive rounds together, we have x((t+1) · d̃) = x(t · d̃) ·P ,

which is similar to the Equation (3) of the first order diffusion. Consequently, we

have [37]

T = O

(
d̃ · log(Kn)

1−λ

)
.

Another approach is to use in every step t a randomly generated matching. In [27],

3For the case where the matrix P is not symmetric, we need to define λ as the second-largest eigenvalue

in absolute value of the matrix P ·PT (see the discussion in [37] for more details).

7

it is shown that w.h.p.4

T = O

(
d · log(Kn)

γ

)
,

where γ 6 d is the second-smallest eigenvalue of the Laplacian matrix of the original

graph G.

2.2 Discrete Load Balancing

As far as we know, existing papers consider only discrete algorithms in the uniform

task model. Many publications consider uniform processors [8, 9, 18, 19, 24, 26, 27,

34, 37, 38], while a few others incorporate processor speeds into the model [2, 21].

There are two main approaches for analyzing discrete neighbourhood load balancing

processes. The first one is to use potential functions and the second one is to compare

the performance of a discrete process with that of a continuous version of that process.

The first approach is used in [27] for the random matching model and in [34] for the

diffusion model. In both papers the discrete process calculates the amount of load to be

transmitted over every edge as in the continuous process (as in Equations (1) and (2)),

which is then rounded down. The potential function used in [27, 34] is defined as

follows,

Φ(t) := ∑
i∈V

(
xi(t)−

m

n

)2

(6)

It is shown in [34] that in every round of the continuous FOS, Φ(t) drops at least by a

factor of λ 2. Furthermore, in the discrete process, for any choice of parameter ε < 1,

if Φ(t)> 16d2n2/ε2 then Φ(t +1)6 (1+ ε) ·λ 2 ·Φ(t). Thus, the discrete process for

most part behaves similarly to the continuous process as long as the potential is large

enough. More precisely, the authors of [34] show that the potential is reduced to

O

(
d2n2

ε2

)
within O

(
logΦ(0)

1− (1+ ε)λ 2

)
rounds. (7)

For FOS schemes, [34] left it as an open question to analyze the potential drop when

the potential is smaller than O(d2n2). Ghosh and Muthukrishnan [27] consider the

random matching model with the same potential function as defined in Equation (6).

They show that as long as Φ(t) = Ω(dn), the potential drops by at least a multiplicative

factor of Ω(γ/d) per round, where γ is the second smallest eigenvalue of the Laplacian

of the graph. For a smaller potential they were still able to show an additive drop of

Ω(1/d) per round. Using this fact, they prove that the max-min discrepancy is reduced

to

O(diam(G)) within O

(
d logΦ(0)+d2n

γ

)
rounds,

w.h.p. Note that analyzing algorithms in the matching model is easier since in this

model the potential never increases.

4We say an event occurs with high probability (w.h.p) if its probability is at least 1−O(n−α) for some

constant α > 0.

8

The discrete SOS process was first analyzed in [18]. The authors of that paper

measure the distance to the balanced state by the second norm of the difference between

the load vector and the balanced vector. This measure is equal to
√

Φ, where Φ is

defined in Equation (6). The authors show that in sufficiently many rounds
√

Φ(t) is

reduced to O((d ·√n)/(1−λ)).
The above results for FOS and SOS are generalized in [21] to the case of non-

uniform speeds. Note that for non-uniform speeds, the balanced allocation is (W/S) ·
(s1, . . . ,sn), where W := w1 + . . .+wm is the total task weight and S := s1 + . . .+ sn is

the total speed of the processors. Hence, the optimal load of processor i is si ·W/S, and

the potential function defined in Equation (6) becomes

Φ(t) := ∑
i∈V

(xi(t)− si ·W/S)2 .

In [21] the authors measure the distance to the balanced state by the second norm of

the difference between the load vector and the balanced load vector (s1, . . . ,sn)W/S.

They show that after a sufficient number of rounds t,
√

Φ(t) is reduced to O((d ·√
n · smax)(/1−λ)) in an FOS or SOS process.

The second analysis technique was introduced by Rabani et al. [37] and was later

used in [9, 24, 26, 38]. In [37], the authors introduce a framework to analyze a large

class of discrete neighbourhood load balancing algorithms. They transform a continu-

ous algorithm Ac into a discrete version Ad that tries to stay as close to Ac as possible.

Assume we apply both algorithms on a load vector x. Then, for every edge e, both Ac

and Ad calculate the amount of load ye that Ac would send over e. Ac will send exactly

ye tokens over e and Ad will round down ye to an integer y′e. The difference between ye

and the amount of load y′e that is transferred in reality is called rounding error, which

we denote by

∆ye := ye− y′e (8)

They show that the max-min discrepancy at time T is bounded by

O

(
d logn

1−λ

)
.

See Tables 1 and 2 for the results of [37] for different graph classes. Their analysis

framework applies to both FOS and dimension-exchange processes. The results hold

for a wide class of rounding schemes, as long as the rounding errors are bounded by a

constant.

Another technique using the potential function of Equation (6) is proposed in [8],

where the potential drop is estimated using a sequentialization technique. In this tech-

nique, all the edges are assigned weights proportional to their scheduled load transfer.

To estimate the potential drop, they consider a sequentialized version of the process in

which edges are activated sequentially in increasing order of weight. Berenbrink et al.

[8] show that under certain conditions the potential drop of the sequentialized and the

original FOS process differ only by a constant factor. They show that

Φ(t) = O(d3 ·n/γ) within O

(
d

γ
· log

(
Φ(0) · γ

d3 ·n

))
rounds.

9

Adolphs and Berenbrink [2] present a potential function based analysis of FOS for

resources with non-uniform speeds. The analysis has two steps. First the authors show

that

Φ(t) = O

(
d3 · s3

max ·
n

γ

)

after O

(
d · s2

max log(m/n)

γ

)
rounds.

In comparison with the result of [34] (see Equation (7)), they use fewer rounds when m

is small compared to n and the potential bound is better for graphs with good expansion.

In the second step, they use a different potential function to show that the max-min

discrepancy is reduced to

O(diam(G) ·d · smax)

after O

(
n ·d3 · s3

max

γ

)
additional rounds.

Both [8] and [2] employ techniques from spectral graph theory by representing the

potential drop as a function of a quadratic from.

There are also several results showing lower bounds. When the continuous flow

is rounded down, the final discrepancy is Ω(d · diam(G)) for a discrete FOS pro-

cess [26, 27] and Ω(diam(G)) for a discrete process in the matching model [27].

Friedrich and Sauerwald [24] consider the matching model and show that for any graph

the discrepancy is at least Ω(logn/ log logn) after O(logn) rounds if the rounding de-

cisions and the initial load distribution are determined by an adversary.

2.3 Improved Processes for Discrete Load Balancing

The next three subsections discuss three different approaches that were used in order

to reduce the difference (caused by the rounding error) in the load distribution between

discrete and continuous balancing processes.

Random Walk Approach. Algorithms that use this approach [18, 19, 21] have two

phases. The first phase uses the discrete diffusion approach of [37]. In the second phase

it is assumed that the nodes know the average load m/n (which can be easily obtained

by simulating the continuous diffusion algorithm on any node in Phase 1).

The second so-called fine balancing phase is not a simple neighbourhood load bal-

ancing strategy. Every token above α = m/n+ c is marked as a positive token, and

nodes with fewer than α tokens generate a negative token for every hole they have.

The negative and positive tokens then perform one random walk step in each round. In

reality, the movement of a negative token from node i to node j is translated as a token

movement from node j to node i. Hence, whenever a negative token hits a positive

token, both are eliminated. Note that this method can create negative loads when in

one round too many negative tokens move to the same node. The tightest analysis of

the algorithm is due to Elsässer and Sauerwald [19] where the authors achieve constant

max-min discrepancy in O(T) rounds.

10

Randomized Rounding. This technique applies randomized rounding on yi, j in or-

der to improve the bounds on the discrepancy for discrete neighbourhood load balanc-

ing. It was suggested in [39] and first analyzed by [24]. In the latter paper the au-

thors consider a discrete dimension exchange algorithm for the matching model. Every

node i that is connected to a matching edge (i, j) first calculates yi, j as in Equation (5).

If that value is positive, it rounds it up or down, each with a probability one half. The

authors combine the approach of [37] with analysis techniques for randomized algo-

rithms to show improved discrepancy bounds for general graphs. For expanders, they

provide a separate analysis that shows constant discrepancy is achieved by slightly in-

creasing the running time. See Table 2 for a detailed statement of their results.

For arbitrary regular graphs the results of [24] were further improved in [38]. One

of the main ideas of this paper is to show negative dependence [17] among the token

locations, which enables them to use simple Chernoff bounds for their proofs. They

show that a constant final discrepancy can be achieved within O(T) rounds for regu-

lar graphs in the random matching model, and constant-degree regular graphs in the

periodic matching model. Note that the constant hidden in the asymptotic notation

is large and the bounds can be achieved with probability 1− exp(− logc n) for some

constant c < 1. See Table 2 for more detailed results.

A randomized rounding FOS process is considered in [26]. Similar to [24, 38]

the process rounds yi, j up or down, with a probability such that the expected load

forwarded over edge (i, j) is exactly yi, j. Again, the analysis uses the framework of

[37] together with analysis techniques for randomized algorithms. See Table 1 for a

detailed statement of the results. Note that, if a node rounds up for too many edges,

it may not have sufficiently many tokens. This can lead to so-called negative load

on some of the nodes. In contrast, Berenbrink et al. [9] propose an FOS process that

uses randomized rounding but avoids this problem. Again, every node i calculates for

every edge (i, j) the amount of load yi, j that would be transferred in the continuous

case (see Equation (1)) and rounds it down. The remaining ∑ j∈N(i)∪{i} (yi, j−⌊yi, j⌋)
so-called excess tokens are then distributed as follows. Instead of rounding yi, j for

every edge, node i forwards its excess tokens to randomly chosen neighbours (without

replacement).

Note that it is possible to get similar results if the excess tokens are sent to neigh-

bours chosen randomly with replacement or if the neighbours are chosen in a round-

robin fashion with a random starting point [5]. The max-min discrepancy results of

the randomized algorithms in [9, 26] are further improved by applying the results from

[38], where tighter bounds are obtained for certain graph parameters used in discrep-

ancy bounds of [9, 26]. See Table 1 for more detailed statement of the results.

Deterministic Rounding. Friedrich et al. [26] follow up on the rounding idea sug-

gested in [39], raising the question whether this randomized algorithm can be deran-

domized without sacrificing its performance. Instead of randomized rounding, they

use a deterministic rounding scheme. For each edge (i, j) they define the accumulated

rounding error at the end of round t as

∆̂yi, j(t) :=
t

∑
ℓ=1

∆yi, j(ℓ),

11

where the error ∆yi, j(ℓ) is defined in Equation (8). Then, in round t + 1 each node i

calculates

min
{∣∣∣∆̂yi, j(t)+ yi, j−⌊yi, j⌋

∣∣∣ ,
∣∣∣∆̂yi, j(t)+ yi, j−⌈yi, j⌉

∣∣∣
}
.

If the first term is the minimum, node i sends ⌊yi, j⌋ many tokens over (i, j), otherwise

it sends ⌈yi, j⌉ many tokens. First the authors show that their process has the property

that for every edge and in every round the accumulated rounding error is bounded by a

constant, which they call the bounded-error property. Then they show that for hyper-

cubes and tori, any process with bounded-error property achieves final discrepancy of

O(log3/2 n) and O(1), respectively. Note that this algorithm might also create negative

load on some of the nodes.

3 Notation and Basic Facts

We model the network by an undirected graph G = (V,E), where V = {1, . . . ,n}. N(i)
is the set of direct neighbours of node i, and d is the maximum degree.

Initially there are in total m tasks which are assigned arbitrarily to the n nodes of

the graph G. Tasks may be of different integer weights and the maximum task weight

is denoted by wmax. W is the total weight of the tasks, i.e., the sum of the weights of all

tasks. When tasks are identical, they are called tokens.

si > 1 is an integer denoting the speed of the resource i. Note that we can always

assume (by means of proper scaling) that the minimum speed is 1. We define S =
s1 + s2 + . . .+ sn as the capacity of the network. The load xi of resource i is defined as

the total weight of its tasks. Recall that the makespan of a resource i is defined as the

total weight of its tasks divided by its speed, i.e., xi/si. The makespan of an assignment

(x1, . . . ,xn) is the maximum makespan of any resource. The max-min discrepancy of an

assignment is defined as the difference between the minimum and maximum makespan.

The max-avg discrepancy is defined as the difference between the maximum makespan

and W/S, which is the makespan of the balanced allocation.

Recall that for a fixed process, x(t) = (x1(t), . . . ,xn(t)) denotes the load vector in

the beginning of round t > 0 of the process, so x(0) is the load vector that describes the

initial distribution of the m tasks. Recall that yi, j(t) represents the non-negative load

transferred from node i to node j at round t > 0 , and that each node has an infinite

source of dummy tokens to be generated on demand when the outgoing demand is

more than the available load. If i does not use its infinite source in round t, then we

have:

xi(t +1) = xi(t)− ∑
j∈N(i)

(yi, j(t)− y j,i(t)). (9)

We define fi, j(t) as the total load transferred from i to j by the end of the round t, which

is

fi, j(t) =
t

∑
τ=0

(yi, j(τ)− y j,i(τ)).

We assume fi, j(−1) = 0. To distinguish between the processes we will use the names

of these processes as superscript in the above definitions. We will use A for a con-

tinuous algorithm and D(A) for its discrete counterpart (following the transformation

12

introduced by Algorithm 1 or Algorithm 2, depending on the context). We define

ei, j(t) = f A
i, j(t)− f

D(A)
i, j (t)

as the difference in the flow forwarded over the edge (i, j) by A and D(A) at the end of

the round t. Note that

ei, j(t) =−e j,i(t)

and

fi, j(t) =− f j,i(t).

The balancing time of a continuous algorithm A is the time it takes for the algorithm

until every node has a load that is very close to its load in the ideally balanced state;

that is

T A = T A(x(0)) = min{t : ∀i, |xi(t)−W · si/S|6 1}.
In the following, we follow up with a few definitions to be used in the statement of

our new results.

Consider a continuous process A. For the transformations introduced by Algo-

rithm 1 and Algorithm 2, we require initial load vectors that do not lead to negative

load in the continuous case; that is, we need to ensure that when executing A, the

outgoing demand of a node never exceeds its available load. The definition below

formalizes this property:

Definition 1. We say A does not induce negative load on x when the following holds:

If xA(0) = x, then for all i ∈V and t > 0 we have:5

xA
i (t)− ∑

j∈N(i)

yA
i, j(t)> 0.

Note that among the processes mentioned in Section 2, only SOS may induce neg-

ative load, depending on the given graph structure and load distribution.

Our framework works for additive and terminating processes, as defined below.

For brevity, we will not repeat these requirements throughout in the statement of the

results. A balancing process is terminating when starting with a balanced load vector,

the net load transfer over each edge is always zero. One can see that this is a very

natural property of a load balancing process.

Definition 2 (Terminating). We say A is terminating when for any ℓ > 0, if xA(0) =
ℓ · (s1, . . . ,sn) then yA

i, j(t) = 0 for all nodes i, j and round t.

Definition 3 (Additive). Consider a load balancing process A. Let x′, and x′′ be non-

negative load vectors. Let x = x′+x′′, and suppose we start three instances of A with

x,x′, and x′′, and that A does not induce negative load on x, x′, or x′′. Let yi, j(t), y′i, j(t),
and y′′i, j(t), respectively, be the amount of load transferred from i to j in the round t of

the three instances of the process.

Then A is said to be additive if the equation yi, j(t) = y′i, j(t)+ y′′i, j(t) holds for all

nodes i, j and round t > 0 regardless of the choice of x′, x′′.6

5For randomized processes such as the random matchings model, the statement should hold w.h.p. over

the probability space.
6For randomized processes, the three runs are coupled with the same sequence of outcomes.

13

The next lemma shows that the class of additive terminating processes includes

several well known existing processes.

Lemma 1. The following processes as defined in Section 2 are both additive and ter-

minating:

– First order diffusion

– Second order diffusion

– Matching-based processes (using periodic/ random matchings)

Proof. Consider a sequence of matrices 〈P(0),P(1), . . .〉 and 0 6 β 6 2. Observe that

all the processes listed in the observation can be described by the following general

equations (see Equations (1), (4), and (5)):

yi, j(0) = Pi, j(0) · xi(0) (10)

yi, j(t) = (β −1) · yi, j(t−1)+β ·Pi, j(t) · xi(t) for t > 1, (11)

where in diffusion cases, for all t > 0 we have P(t) = P.

Proof of Additivity. Let x′, x′′ be arbitrary load distributions. Let x(t), x′(t), and x′′(t)
denote the load vector at round t starting A from x = x′+x′′, x′, and x′′ respectively.

Let y, y′, and y′′ denote their corresponding load transfer variables.

By induction on t, we prove that the following hold for arbitrary nodes i, j and

round t:

(a) xi(t) = x′i(t)+x′′i (t).

(b) yi, j(t) = y′i, j(t)+y′′i, j(t)

For t = 0, (a) holds because of the assumptions, and consequently (b) holds by Equa-

tion (10).

Suppose that for some t > 0 both x(t) = x′(t)+x′′(t) and y(t) = y′(t)+y′′(t) hold

for every round 6 t. We show in the following that (a) and (b) must be true for t +1 as

well. To prove (a), we use the fact that A does not induce negative load on x, x′, or x′′

to apply Equation (9) and write for arbitrary i:

xi(t +1) = xi(t)− ∑
j∈N(i)

(yi, j(t)−y j,i(t))

= x′(t)+x′′(t)− ∑
j∈N(i)

(
y′i, j(t)+y′′i, j(t)−y′j,i(t)−y′′j,i(t)

)

= x′i(t)− ∑
j∈N(i)

(
y′i, j(t)−y′j,i(t)

)
+x′′i (t)− ∑

j∈N(i)

(
y′′i, j(t)−y′′j,i(t)

)

= x′i(t +1)+x′′i (t +1). (12)

14

Now, we proceed to prove (b). For arbitrary nodes i, j we have:

yi, j(t +1) = (β −1) ·yi, j(t)+β ·Pi, j(t) ·xi(t +1)

= (β −1) ·
(
y′i, j(t)+y′′i, j(t)

)
+β ·Pi, j(t) ·

(
x′i(t +1)+x′′i (t +1)

)
(13)

= (β −1) ·y′i, j(t)+β ·Pi, j(t) ·x′i(t +1)+(β −1) ·y′′i, j(t)+β ·Pi, j(t) ·x′′i (t +1)

= y′i, j(t +1)+y′′i, j(t +1)

where Equation (13) follows from Equation (12) and the induction hypothesis.

Proof of being Terminating. Suppose for some ℓ we have xi(0) = si · ℓ for every

node i. We prove inductively that yi, j(t) = y j,i(t) and x(t +1) = x(0) for all i, j, and t.

In case of the matching model, we only need to consider the matching edges. For the

remaining of the proof, αi, j is defined as in Equation (1), Equation (4) and Equation (5),

depending on the process. The only property of αi, j’s we rely on here is that αi, j = α j,i

which holds in all three cases.

For t = 0, from Equation (10) we get

yi, j(0) = (αi, j/si) · si · ℓ
= α j,i · ℓ
= (α j,i/s j) · s j · ℓ
= y j,i(0).

Therefore, the load vector remains unchanged and we have x(1) = x(0).
Now suppose that for all 16 τ 6 t−1, we have x(τ+1) = x(0) and yi, j(τ) = y j,i(τ)

for all neighbours i, j. We prove that this yields yi, j(t) = y j,i(t) for all i, j, from which

it follows that x(t + 1) = x(0). From Equation (11), for arbitrary neighbours i, j we

get:

yi, j(t) = (β −1) · yi, j(t−1)+β ·Pi, j(t) · xi(t)

= (β −1) · y j,i(t−1)+β · (αi, j/si) · si · ℓ
= (β −1) · y j,i(t−1)+β · (α j,i/s j) · s j · ℓ
= y j,i(t).

Hence x(t +1) = x(t) = x(0) and the proof follows.

The next lemma establishes a fact which we will later need to show that under

certain conditions our discrete algorithms do not induce negative load.

Lemma 2. Let x′ be an arbitrary load vector on which A does not induce negative load.

Suppose xA(0) = x′+x′′ such that x′′ = ℓ · (s1, . . . ,sn) for some ℓ > 0. Then for i ∈ V ,

t > 0, and any L⊆ N(i) we have:

xA
i (t)−∑

j∈L

(
yA

i, j(t)− yA
j,i(t)

)
> si · ℓ.

15

Proof. By additivity, we have xA
i (t) = x′i(t)+ x′′i (t) and yA

i, j(t) = y′i, j(t)+ y′′i, j(t). Thus,

xA
i (t)−∑

j∈L

(
yA

i, j(t)− yA
j,i(t)

)
= x′i(t)−∑

j∈L

(
y′i, j(t)− y′j,i(t)

)
+ x′′i (t)−∑

j∈L

(
y′′i, j(t)− y′′j,i(t)

)

= x′i(t)−∑
j∈L

(
y′i, j(t)− y′j,i(t)

)
+ x′′i (t) (A is terminating)

= x′i(t)−∑
j∈L

(
y′i, j(t)− y′j,i(t)

)
+ si · ℓ

> x′i(t)−∑
j∈L

y′i, j(t)+ si · ℓ

> x′i(t)− ∑
j∈N(i)

y′i, j(t)+ si · ℓ

> si · ℓ,

where the last equation follows from the fact that A does not induce negative load on

x′.

4 Deterministic Flow Imitation

In this section, we present and analyze an algorithm that transforms a continuous pro-

cess A into its discrete counterpart which we call D(A). To distinguish between the

two processes we will use A and D(A) as superscripts in the definitions of Section 3.

The algorithm (see Algorithm 1) keeps track of the total flow f A
i, j(t) that is sent

over the edge (i, j) by the continuous algorithm. It calculates the difference in the flow

forwarded over the edge by the continuous and the discrete algorithm which we define

as

ŷA
i, j(t) := f A

i, j(t)− f
D(A)
i, j (t−1).

It then tries to find a set Si j of tasks with a total weight |Si j| of that difference. These

tokens will be forwarded over the edge (i, j). In the case of identical tasks, the amount

of load sent from i to its neighbour j is

y
D(A)
i, j (t) =

⌊
f A
i, j(t)− f

D(A)
i, j (t−1)

⌋
.

In the general case of weighted tasks, Si j is chosen in a way that f A
i, j(t)− f

D(A)
i, j (t) 6

wmax.
It might happen that the node i does not contain enough load. In that case the al-

gorithm will create new, artificial tasks and send them to the corresponding neighbours

(or equivalently, we may think of an attached infinite source of tokens from which the

node gets some tokens). Later we will show that this never happens if the initial load

of the resources is large enough. We also note that in actual implementation we do

not need to create and transfer workload units and consume communication bandwidth

for each dummy token. That would incur communication overhead proportional to the

number of dummy tokens. Instead, we can communicate only a number indicating the

amount of dummy workload that should be forwarded to each neighbour.

16

The following theorem states our result about the transformation introduced by

Algorithm 1.

Theorem 3. 7 Suppose the discrete process D(A) is obtained by transforming a con-

tinuous process A using Algorithm 1. Then the following hold:

(1) If A does not induce negative load on xA(0), then for all t > T A, the max-avg

discrepancy of xD(A)(t) is at most 2d ·wmax +2.

(2) If xA(0) = x′+ x′′ such that x′′ = d ·wmax · (s1, . . . ,sn), and A does not induce

negative load on x′, then the max-min discrepancy of xD(A)(t) is at most 2d ·
wmax +2.

Note that among the algorithms mentioned in Section 2, only SOS may induce

negative load. For other algorithms, the result in part (1) of the above theorem au-

tomatically holds, and the condition in part (2) can be translated as having sufficient

initial load.

For the special case of identical tasks, the above theorem gives a bound of 2d + 1

on the max-avg discrepancy. Compared to the deterministic algorithm of [26] that has

been analyzed only for hypercubes and tori, we obtain improved bounds for hypercubes

while our analysis is more general with respect to network topology, and heterogeneity

of tasks and resources. Besides, it also works for the matching-based models and

the second order diffusion. See Tables 1 and 2 for a more detailed comparison of

discrepancy bounds.

Algorithm 1 D(A): Discretized A using flow imitation: the process on node i at round t

for each neighbour j of i

Compute f A
i, j(t)

ŷA
i, j(t)← f A

i, j(t)− f
D(A)
i, j (t−1)

while ŷA
i, j(t)−|Si j|> wmax

if i has no unallocated tasks then

q← a unit weight task generated by the attached infinite source

else

q← arbitrary task removed from the set of unallocated tasks of i

Add q to Si j

y
D(A)
i, j (t)← |Si j|

Before proving the theorem, we need to establish some preliminary results.

Observation 4. As long as the Algorithm 1 is allowed to access the infinite source we

have |ei, j(t)|< wmax for every (i, j) ∈ E and t > 0.

7An earlier version of this result appeared in [6, Theorem 1.1]

17

Proof. Recall that ei, j(t) = f A
i, j(t)− f

D(A)
i, j (t). We observe that ei, j(t) =−e j,i(t). Thus,

it suffices to prove the inequality holds for an arbitrary edge direction. In the following,

we prove that f A
i, j(t)− f

D(A)
i, j (t)< wmax.

Fix an edge (i, j) and observe that

f A
i, j(t)− f

D(A)
i, j (t−1) = (−1) ·

(
f A

j,i(t)− f
D(A)
j,i (t−1)

)
.

Assume f A
i, j(t)− f

D(A)
i, j (t−1)> 0 (otherwise we switch i and j). From the definition of

Algorithm 1, it follows that y
D(A)
j,i (t) = 0 since f A

j,i(t)− f
D(A)
j,i (t−1)6 0. Therefore,

f
D(A)
i, j (t) = f

D(A)
i, j (t−1)+ y

D(A)
i, j (t).

After exiting the loop for node i, we have:

f A
i, j(t)− f

D(A)
i, j (t−1)−‖Si j‖< wmax,

or equivalently,

f A
i, j(t)− f

D(A)
i, j (t−1)− y

D(A)
i, j (t)< wmax,

which yields:

f A
i, j(t)− f

D(A)
i, j (t)< wmax. (14)

Let w be the weight of the last task added to Si j. Before adding this task, the loop

condition was fulfilled. Hence we have:

f A
i, j(t)− f

D(A)
i, j (t)+w > wmax,

and thus:

f A
i, j(t)− f

D(A)
i, j (t)> wmax−w > 0. (15)

Combining Equations (14) and (15), we get

∣∣∣ f A
i, j(t)− f

D(A)
i, j (t)

∣∣∣< wmax,

as needed.

Observation 5. For every (i, j) ∈ E and t > 0 the following holds:

If y
D(A)
i, j (t)> 0, then we have

y
D(A)
i, j (t)6 yA

i, j(t)− yA
j,i(t)+ ei, j(t−1).

Proof. First observe that:

yA
i, j(t)− yA

j,i(t)+ ei, j(t−1) = yA
i, j(t)− yA

j,i(t)+ f A
i, j(t−1)− f

D(A)
i, j (t−1)

= f A
i, j(t)− f

D(A)
i, j (t−1)

= ŷA
i, j(t).

18

It remains to prove y
D(A)
i, j (t)6 ŷA

i, j(t). Let w be the weight of the last task added to Si j

in round t. Before adding this task, the loop condition of Algorithm 1was fulfilled and

we had

ŷA
i, j(t)− (|Si j|−w) > wmax.

After the loop, we have:

y
D(A)
i, j (t) = |Si j|.

Consequently,

ŷA
i, j(t)− y

D(A)
i, j (t)> wmax−w > 0.

The next lemma is used to prove the discrepancy bound assuming no token is bor-

rowed from the infinite source.

Lemma 6. For i ∈V and τ > 0, suppose i does not use its infinite source by the end of

the round τ−1. Then for any t 6 τ the following hold:

(1) x
D(A)
i (t) = xA

i (t)+∑ j∈N(i) ei, j(t−1).

(2)

∣∣∣xD(A)
i (t)− xA

i (t)
∣∣∣< d ·wmax.

Proof. The proof of (1) is by induction on t. For t = 0, we have x
D(A)
i (0) = xA

i (0) and

for all i, j, Ei, j(−1) = 0. Therefore the equation holds.

Suppose for some t > 0 we have

x
D(A)
i (t) = xA

i (t)+ ∑
j∈N(i)

ei, j(t−1).

It remains to prove that the statement holds for t +1 as well. As long as t +1 6 τ , we

can apply Equation (9) to get:

x
D(A)
i (t +1) = x

D(A)
i (t)+ ∑

j∈N(i)

(y
D(A)
j,i (t)− y

D(A)
i, j (t))

= xA
i (t)+ ∑

j∈N(i)

ei, j(t−1)+ ∑
j∈N(i)

(
y
D(A)
j,i (t)− y

D(A)
i, j (t)

)

= xA
i (t)+ ∑

j∈N(i)

(
f A
i, j(t−1)− f

D(A)
i, j (t−1)+ y

D(A)
j,i (t)− y

D(A)
i, j (t)

)

=

(
xA

i (t +1)− ∑
j∈N(i)

(yA
j,i(t)− yA

i, j(t))

)
+ ∑

j∈N(i)

(
f A
i, j(t−1)− f

D(A)
i, j (t)

)

= xA
i (t +1)+ ∑

j∈N(i)

(
f A
i, j(t−1)+ yA

i, j(t)− yA
j,i(t)− f

D(A)
i, j (t)

)

= xA
i (t +1)+ ∑

j∈N(i)

(
f A
i, j(t)− f

D(A)
i, j (t)

)

= xA
i (t +1)+ ∑

j∈N(i)

ei, j(t).

19

This finishes the proof of (1). For (2), we apply (1) to get

∣∣∣xD(A)
i (t)− xA

i (t)
∣∣∣=
∣∣∣∣∣ ∑

j∈N(i)

ei, j(t−1)

∣∣∣∣∣6 ∑
j∈N(i)

|ei, j(t−1)|.

Now, the result can be obtained using Observation 4.

The following lemma shows that if there is initially sufficient amount of load on

each node, then D(A) does not induce negative load on xD(A)(t).

Lemma 7. Suppose x(0) = x′+ x′′ such that x′′ = d ·wmax · (s1, . . . ,sn), and A does

not induce negative load on x′.
Then for all i ∈V and t > 0, the following holds:

x
D(A)
i (t)− ∑

j∈N(i)

y
D(A)
i, j (t)> 0.

Proof. For the sake of contradiction, let us assume there is some round t1 in which we

use the infinite source for the first time. Let i be an arbitrary node with insufficient

load, so that we have x
D(A)
i (t1)−∑ j∈N(i) y

D(A)
i, j (t1)< 0. Define

L := { j ∈ N(i) : y
D(A)
i, j (t1)> 0}

to be the set of neighbours of node i to which i transfers load in the round t1. We get:

x
D(A)
i (t1)− ∑

j∈N(i)

y
D(A)
i, j (t1) = x

D(A)
i (t1)−∑

j∈L

y
D(A)
i, j (t1)

> xA
i (t1)+ ∑

j∈N(i)

ei, j(t1−1)−∑
j∈L

(
yA

i, j(t1)− yA
j,i(t1)+ ei, j(t1−1)

)

(16)

= xA
i (t1)−∑

j∈L

(
yA

i, j(t1)− yA
j,i(t1)

)
+ ∑

j∈N(i)−L

ei, j(t1−1)

= d · si ·wmax + ∑
j∈N(i)−L

ei, j(t1−1) (17)

> d · si ·wmax−|N(i)−L| ·wmax (18)

> d · si ·wmax−d ·wmax > 0, (since si > 1)

where in Equation (16) we use Observation 5 and Lemma 6, and the fact that no infinite

source has been used before the round t1. Equation (17) follows from the Lemma 2

using x(0) = x′+x′′ and the conditions on x′ and x′′ mentioned in the statement of the

lemma, and by setting ℓ= d ·wmax. Also, Equation (18) results from Observation 4.

This contradicts our initial assumption that

x
D(A)
i (t1)− ∑

j∈N(i)

y
D(A)
i, j (t1)< 0,

and the proof follows.

20

We are now ready to prove Theorem 3.

Proof. First we prove part (2). Suppose xA(0) = x′ + x′′ such that x′′ = d ·wmax ·
(s1, . . . ,sn), and A does not induce negative load on x′. Then by Lemma 7 we know

that negative load never occurs. Therefore, no infinite source is used and the total load

remains intact. Hence, by part (2) of the Lemma 6, we have:

∣∣∣xD(A)
i (t)− xA

i (t)
∣∣∣< d ·wmax.

This fact together with the fact that after the balancing time we have
∣∣xA

i (t)−W · si/S
∣∣6

1, yield ∣∣∣xD(A)
i (t)−W · si/S

∣∣∣< d ·wmax +1.

Since si > 1, we have

∣∣∣xD(A)
i (t)/si−W/S

∣∣∣ < d ·wmax + 1, which holds for arbitrary

node i. Hence, for any pair of nodes i, j we get

∣∣∣xD(A)
i (t)/si− x

D(A)
j (t)/s j

∣∣∣ < 2d ·
wmax +2 which gives the desired max-min discrepancy bound.

In the general case, to get the bound of part (1) the algorithm first adds d · si ·wmax

dummy unit weight tasks to each resource i before the process begins. Note that this

does not affect the convergence time of the continuous process, because the extra load

is completely balanced. In the rest of the proof, we use x to refer to the new load

vectors. Let W ′ and W denote the original and the new total load, respectively. We

have:

W =W ′+∑
i

d · si ·wmax

=W ′+d ·S ·wmax.

Hence,

W/S 6W ′/S+d ·wmax

At the end, the dummy tokens can be simply ignored. Nevertheless we can still

use x
D(A)
i (t) as an upper bound on the final load of the node i excluding the dummy

tokens. Following steps similar to the max-min discrepancy case, we get

x
D(A)
i (t)/si−W/S < d ·wmax +1,

as required.

5 Randomized Flow Imitation

In this section we analyze a randomized version of Algorithm 1 that can be applied

for balancing identical tasks. Instead of always rounding down the flow that has to

be sent over an edge, Algorithm 2 uses randomized rounding. The notation we use in

this section is the same as defined in Section 4. We use uppercase letters to express

random variables. As an example f A
i, j(t) is the flow sent over edge (i, j) in round t by

21

the continuous process, while F
D(A)
i, j (t) is the corresponding random variable for the

discrete process.

Algorithm 2 calculates the flow

Ŷi, j(t) := f A
i, j(t)−F

D(A)
i, j (t−1)

that has to be sent over edge (i, j) as before. To calculate the flow that is actually sent,

Ŷi, j(t) is randomly rounded up or down, with a probability depending on the value of

its fractional part. Suppose Ŷi, j(t)> 0 in some round t. Then the discrete flow Y
D(A)
i, j (t)

that is sent over the edge is a random variable determined by the following randomized

rounding scheme. For a real x, we use {x}= x−⌊x⌋ to denote the fractional part of x.

Then

Y
D(A)
i, j (t) =

{
⌊Ŷi, j(t)⌋+1 with probability {Ŷi, j(t)},
⌊Ŷi, j(t)⌋ otherwise.

In Algorithm 2 we use Zi, j(t), which is a zero-one random variable indicating whether

we should round up. Once we know all the random choices in round t, we can calculate

the load of processor i as before using

X
D(A)
i (t +1) = X

D(A)
i (t)− ∑

j∈N(i)

(Y
D(A)
i, j (t)−Y

D(A)
j,i (t)).

Algorithm 2 D(A): Discretized A using randomized flow imitation: the process on

node i at round t

for each neighbour j of i in parallel

Compute f A
i, j(t)

Ŷi, j(t)← f A
i, j(t)−F

D(A)
i, j (t−1)

if Ŷi, j(t)> 0 then

Toss a coin with head probability {Ŷi, j(t)}
Zi, j(t)←

{
1 if head comes up;

0 otherwise.

Y
D(A)
i, j (t)← ⌊Ŷi, j(t)⌋+Zi, j(t)

Send Y
D(A)
i, j (t) tokens to j

if there are not enough tokens then

generate the required amount using the attached infinite source

We will show that with high probability the roundings errors sum up to a small

value. The following theorem states our result about the transformation introduced by

Algorithm 2.

Theorem 8. 8 Suppose the discrete process D(A) is obtained by transforming a con-

tinuous process A using Algorithm 2 and that T A 6 nκ for some constant κ . Then the

following hold:

8An earlier version of this result appeared in [6, Theorem 1.2]

22

(1) If A does not induce negative load on xA(0), then the max-avg discrepancy of

XD(A)(T A) is at most d/4+O(
√

d logn) w.h.p.

(2) If xA(0) = x′+x′′ such that x′′ = (d/4+2c ·√d logn) · (s1, . . . ,sn) for a properly

chosen constant c > 0 and A does not induce negative load on x′, then w.h.p. the

max-min discrepancy of XD(A)(T A) is O(
√

d logn).

Note that among the algorithms mentioned in Section 2, only SOS may induce

negative load. For other algorithms, the result in part (1) of the above theorem au-

tomatically holds, and the condition in part (2) can be translated as having sufficient

initial load.

The next observation provides useful tools for proving the above theorem.

Observation 9. For i ∈V , j ∈ N(i) and t > 0 the following hold:

(1) Ei, j(t) = yA
i, j(t)− yA

j,i(t)+Ei, j(t−1)− (Y
D(A)
i, j (t)−Y

D(A)
j,i (t)).

(2) If Y
D(A)
i, j (t)> 0 then Y

D(A)
j,i (t) = 0.

(3) If Ŷi, j(t)> 0, then we have9:

Ei, j(t) =

{
{Ŷi, j(t)}−1 if Zi, j(t) = 1

{Ŷi, j(t)} otherwise.

Proof. To prove the first statement, recall that Ei, j(t) = f A
i, j(t)−F

D(A)
i, j (t). The right

side of the equation can be simplified as below:

yA
i, j(t)− yA

j,i(t)+Ei, j(t−1)−
(

Y
D(A)
i, j (t)−Y

D(A)
j,i (t)

)

=
(
yA

i, j(t)− yA
j,i(t)+ f A

i, j(t−1)
)
−
(

F
D(A)
i, j (t−1)+Y

D(A)
i, j (t)−Y

D(A)
j,i (t)

)

= f A
i, j(t)−F

D(A)
i, j (t)

= Ei, j(t).

For the second statement, note that if Y
D(A)
i, j (t)> 0 then according to Algorithm 2,

Ŷi, j(t)> 0 must be satisfied; therefore f A
j,i(t)−F

D(A)
j,i (t−1)< 0 which yields Y

D(A)
j,i (t)=

0.

Now we prove the third statement. Since Ŷi, j(t)> 0, we have Ŷj,i(t) =−Ŷi, j(t)< 0

and therefore Y
D(A)
j,i (t) = 0 by part (2) of the observation. Thus, using part (1) we get

Ei, j(t) = yA
i, j(t)− yA

j,i(t)+Ei, j(t−1)−Y
D(A)
i, j (t)

= Ŷj,i(t)−Y
D(A)
i, j (t)

= Ŷj,i(t)−⌊Ŷi, j(t)⌋−Zi, j(t),

where the last equation follows from the way Y
D(A)
i, j (t) is obtained in Algorithm 2,

and the proof follows from the fact that Zi, j(t) can be either zero or one.

9Recall that for a real number a, {a} := a−⌊a⌋

23

Note that part (3) of the Observation 9 shows that Ex [ei, j(t)] = 0.

Now we show that w.h.p. the discrete process does not deviate much from the

continuous process. We identify some undesirable events as listed in the Lemma 10

and show in that each of these events happens only with a small probability. In our

proofs, we make use of Lemma 12 in the appendix which is a simple adaptation of the

Hoeffding’s bound [29] for sums of randomized rounding errors.

Before stating the lemma, we introduce some notation. Define

Hi(t) := { j ∈ N(i) : yA
i, j(t)− yA

j,i(t)+Ei, j(t−1)> 0}

as the set of neighbours of i to which i may send tokens in round t. Let

Li(t) := N(i)−Hi(t)

be the rest of i’s neighbours.

Lemma 10. Suppose there is a constant κ > 0 so that T A 6 nκ . Then for any constant

α > 0 there is a constant c(κ,α)> 0 such that for any node i and round t 6 T A, each

of the following events occurs with probability at most (nα+1 ·T A)−1:

(1) |∑ j∈N(i) Ei, j(t)|> c ·√d logn,

(2) |∑ j∈Hi(t) Ei, j(t)|> c ·√d logn,

(3) ∑ j∈Li(t+1) Ei, j(t)6− d
4
− c · √d logn.

Proof. First we prove statement (1). Define ∆ := ∑ j∈N(i) Ei, j(t).
Assume Ei, j(t−1) is fixed for all the edges (i, j). Then each of the random variables

Ei, j(t) can assume at most two different values and rounding up or down is independent

of other edges (see part (3) of Observation 9). Let the random variable ei(t) be a vector

denoting the error values of the edges connected to i at the end of the round t. By the

law of total probability we have:

Pr
[
|∆|> δ

]
= ∑

Ei

Pr
[
|∆|> δ | ei(t−1) = Ei

]
·Pr
[

ei(t−1) = Ei

]
.

Note that each Ei, j(t) is the random variable indicating the error in the randomized

rounding of Ŷi, j(t) (part (3) of Observation 9). We can apply Lemma 12 in the appendix

to bound ∆, which yields

Pr [|∆|> δ | ei(t−1) = Ei]6 2exp(−2δ 2/d).

Hence,

Pr
[
|∆|> δ

]
= ∑

Ei

Pr
[
|∆|> δ | ei(t−1) = Ei

]
·Pr

[
ei(t−1) = Ei

]

6 ∑
Ei

2exp(−2δ 2/d) ·Pr
[

ei(t−1) = Ei

]

= 2exp(−2δ 2/d).

24

As T A 6 nκ , setting δ = c ·√d logn >
√

d log(2n2T A)/2 for some constant c yields

the desired bound.

The proof of statement (2) is similar to the proof of (1). Here we define

∆ := ∑
j∈Hi(t)

Ei, j(t).

Recall the definition of Hi(t) = { j ∈ N(i) : yA
i, j(t)− yA

j,i(t)+Ei, j(t−1) > 0}. Observe

that |Hi(t)| 6 d. Conditioned on ei(t− 1) = Ei, the set Hi(t) is fixed. Hence we can

apply Lemma 12 to obtain:

Pr [|∆|> δ | ei(t−1) = Ei]6 2exp(−2δ 2/d).

Following the same steps as in (1) we get the desired result.

Now we proceed with the proof of statement (3). Recall that Li(t + 1) = { j ∈
N(i) : yA

i, j(t + 1)− yA
j,i(t + 1) + Ei, j(t) 6 0}, so intuitively the set is biased toward

containing lower values of Ei, j(t). However, we can change the summation and use

different random variables so that we can still apply Hoeffding’s bounds. Define

E−i, j(t) := min{Ei, j(t),0}. We have:

∑
j∈N(i)

E−i, j(t)6 ∑
j∈Li(t+1)

Ei, j(t). (19)

Fix an arbitrary node i, let ∆ = ∑ j∈N(i) E−i, j(t) and pi j = {Ŷi, j(t)}. We have:

Ex
[
E−i, j(t)

∣∣∣ ei(t−1) = Ei

]
=−pi j · (1− pi j)+0 · pi j >−1/4.

The last step follows from a simple minimization of f (pi j) = (1− pi j)+0 · pi j. Con-

ditioned on a fixed ei(t−1), the random variables E−i, j(t) are independent ranging over

intervals of length no more than one. Again, we can apply Hoeffding’s bounds using

δ = c · √d logn >
√

d log(2nα+1T A)/2 with the same constant c as in the previous

parts. Hence,

Pr

[
∆ <−d

4
− c ·

√
d logn

∣∣∣∣ ei(t−1) = Ei

]
6

1

2nα+1 ·T A
. (20)

By Equation (19), we can replace ∆ with ∑ j∈Li(t+1) Ei, j(t) in the Equation (20) to obtain

the desired bound.

The next lemma provides the two main ingredients for proving the Theorem 8.

First, the discrete process stays close to the continuous process; and second, that this

happens without accessing the infinite sources.

Lemma 11. Suppose there is a constant κ > 0 so that T A 6 nκ . Further suppose

xA(0) = x′+x′′ such that x′′ = (d/4+2c ·√d logn) ·(s1, . . . ,sn), and A does not induce

negative load on x′. Then for any constant α > 0 there is a constant c(κ,α)> 0 such

that the following holds:

25

(1) Pr
[∣∣∑ j∈N(i) Ei, j(t)

∣∣6 c ·√d logn holds for all i ∈V and t 6 T A
]
> 1−n−α ,

(2) No infinite source is used, i.e.,

Pr
[

X
D(A)
i (t)−∑ j∈Hi(t)Y

D(A)
i, j (t) > 0 holds for all t 6 T A and i ∈ V

]
> 1−

2n−α .

Proof. To prove statement (1), we choose the value of c as computed by Lemma 10 for

the same value of α and t1 = T A. The proof of the first statement follows by applying

the union bound to part (1) of Lemma 10.

To prove statement (2), we need to show that the load of every node i at the be-

ginning of every round t 6 T A is large enough to satisfy their outgoing demands.

We prove by contradiction, assuming there is a first round t ′ 6 T A in which some

node i has insufficient load. Recall that Hi(t) is defined so that no load is trans-

ferred from i to any of its neighbours not in Hi(t). In the following we prove that

X
D(A)
i (t ′)−∑ j∈Hi(t ′)Y

D(A)
i, j (t ′)> 0, contradicting the initial assumption that i does not

have sufficient load in round t ′.

X
D(A)
i (t ′)− ∑

j∈Hi(t ′)
Y
D(A)
i, j (t ′)

= X
D(A)
i (t ′)− ∑

j∈Hi(t ′)

(
yA

i, j(t
′)− yA

j,i(t
′)+Ei, j(t

′−1)−Ei, j(t
′)
)

(21)

= xA
i (t
′)+ ∑

j∈N(i)

Ei, j(t
′−1)− ∑

j∈Hi(t ′)

(
yA

i, j(t
′)− yA

j,i(t
′)+Ei, j(t

′−1)−Ei, j(t
′)
)

(22)

= xA
i (t
′)− ∑

j∈Hi(t ′)

(
yA

i, j(t
′)− yA

j,i(t
′)
)
+ ∑

j∈Li(t ′)
Ei, j(t

′−1)+ ∑
j∈Hi(t ′)

Ei, j(t
′)

> si · (d/4+2c ·
√

d logn)+ ∑
j∈Li(t ′)

Ei, j(t
′−1)+ ∑

j∈Hi(t ′)
Ei, j(t

′), (23)

where in Equation (21) we use parts (1) and (2) of the Observation 9, Equation (22)

follows from the part (1) of the Lemma 6 using the fact that no infinite source is used

before the round t ′. Also, Equation (23) is obtained by applying Lemma 2 using ℓ =
(d/4+2c ·√d logn).

To complete the proof, it suffices to consider si > 1 and apply the parts (2) and (3)

of the Lemma 10 to the above equation using the union bound.

We are now ready to prove the Theorem 8.

Proof. First we prove part (2). Suppose xA(0) = x′+ x′′ such that x′′ = (d/4+ 2c ·√
d logn) · (s1, . . . ,sn), and A does not induce negative load on x′. Consider an arbi-

trary constant α > 0, and let c = 2c′ where c′ is the constant computed in Lemma 11

using the same α . Applying the union bound to combine both parts of the Lemma 11

we get with probability of at least 1− 3n−α that no infinite source is ever used and

that |∑ j∈N(i) Ei, j(t)| < c′ · √d logn. As no infinite source is used, by part (1) of the

Lemma 6 10 we also get |XD(A)
i (t)− xA

i (t)|< c′ ·√d logn.

10It is easy to see that Lemma 6 also holds for the randomized scheme.

26

On the other hand, using the definition of the balancing time we get |xA
i (t)−W ·

si/S|6 1. Hence, we can conclude that

|XD(A)
i (t)−W · si/S|< c′ ·

√
d logn+1.

Since si > 1, we have |XD(A)
i (t)/si−W/S| < c′ · √d logn+ 1 which holds for every

node i. Hence, for any pair of nodes i, j we get

|XD(A)
i (t)/si−X

D(A)
j (t)/s j|< 2c′ ·

√
d logn+2,

yielding the desired max-min discrepancy bound.

To get the bound of part (1), the algorithm first adds (d/4+2c ·√d logn) ·si dummy

unit weight tasks to each resource i before the process begins. Note that this does

not affect the convergence time of the continuous process, because the extra load is

completely balanced. In the rest of the proof, we use x to refer to the new load vectors.

Let W ′ and W denote the original and the new total load, respectively. We have: W =
W ′+(d/4+2c ·√d logn) ·S. Hence,

W/S 6W ′/S+d/4+2c ·
√

d logn.

At the end, the dummy tokens can be simply ignored. Though, we can still use X
D(A)
i (t)

as an upper bound on the final load of the node i excluding the dummy tokens. Fol-

lowing steps similar to the max-min discrepancy case, we get X
D(A)
i (t)/si−W/S <

d/4+O(
√

d logn), which yields the desired max-avg discrepancy bound.

References

[1] H. Ackermann, P. Berenbrink, S. Fischer, and M. Hoefer. Concurrent imitation

dynamics in congestion games. In PODC, pages 63–72. ACM, 2009.

[2] C. P. J. Adolphs and P. Berenbrink. Improved bounds for discrete diffusive load

balancing. In IPDPS, pages 820–826. IEEE Computer Society, 2012.

[3] C. P. J. Adolphs and P. Berenbrink. Distributed selfish load balancing with

weights and speeds. In PODC, pages 135–144. ACM, 2012.

[4] W. Aiello, B. Awerbuch, B. Maggs, and S. Rao. Approximate load balancing on

dynamic and asynchronous networks. In STOC, pages 632–641. ACM, 1993.

[5] H. Akbari and P. Berenbrink. Parallel rotor walks on finite graphs and applications

in discrete load balancing. In SPAA, page to appear. ACM, 2013.

[6] H. Akbari, P. Berenbrink, and T. Sauerwald. A simple approach for adapting

continuous load balancing processes to discrete settings. In PODC, pages 271–

280, 2012.

27

[7] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. J. ACM, 41(5):1020–

1048, 1994.

[8] P. Berenbrink, T. Friedetzky, and Z. Hu. A new analytical method for parallel,

diffusion-type load balancing. J. Parallel Distrib. Comput., 69(1):54–61, 2009.

[9] P. Berenbrink, C. Cooper, T. Friedetzky, T. Friedrich, and T. Sauerwald. Random-

ized diffusion for indivisible loads. In SODA, pages 429–439. SIAM, 2011.

[10] P. Berenbrink, M. Hoefer, and T. Sauerwald. Distributed selfish load balancing

on networks. In SODA, pages 1487–1497. SIAM, 2011.

[11] P. Berenbrink, T. Friedetzky, I. Hajirasouliha, and Z. Hu. Convergence to equi-

libria in distributed, selfish reallocation processes with weighted tasks. Algorith-

mica, 62(3–4):767–786, 2012.

[12] J. E. Boillat. Load balancing and poisson equation in a graph. Concurrency and

Computation: Practice and Experience, 2:289–314, 1990.

[13] J. N. Cooper, B. Doerr, J. Spencer, and G. Tardos. Deterministic random walks

on the integers. volume 28, pages 2072–2090. Academic Press Ltd., 2007.

[14] J. N. Cooper, B. Doerr, T. Friedrich, and J. Spencer. Deterministic random walks

on regular trees. Random Struct. Algorithms, 37(3):353–366, 2010.

[15] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J.

Parallel Distrib. Comput., 7:279–301, 1989.

[16] B. Doerr and T. Friedrich. Deterministic random walks on the two-dimensional

grid. Comb. Probab. Comput., 18(1-2):123–144, 2009.

[17] D. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence.

Random Structures & Algorithms, 13:99–124, 1996.

[18] R. Elsässer and B. Monien. Load balancing of unit size tokens and expansion

properties of graphs. In SPAA, pages 266–273, 2003.

[19] R. Elsässer and T. Sauerwald. Discrete load balancing is (almost) as easy as

continuous load balancing. In PODC, pages 346–354, 2010.

[20] R. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on

heterogeneous networks. Theory Comput. Syst., 35(3):305–320, 2002.

[21] R. Elsässer, B. Monien, and S. Schamberger. Distributing unit size workload

packages in heterogeneous networks. J. Graph Algorithms Appl., 10(1):51–68,

2006.

[22] E. Even-Dar and Y. Mansour. Fast convergence of selfish rerouting. In SODA,

pages 772–781. SIAM, 2005.

[23] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to nash equilib-

rium in load balancing. ACM Trans. Algorithms, 3(3), 2007.

28

[24] T. Friedrich and T. Sauerwald. Near-perfect load balancing by randomized round-

ing. In STOC, pages 121–130, 2009.

[25] T. Friedrich and T. Sauerwald. The cover time of deterministic random walks.

Electr. J. Comb., 17(1), 2010.

[26] T. Friedrich, M. Gairing, and T. Sauerwald. Quasirandom load balancing. SIAM

J. Comput., 41(4):747–771, 2012.

[27] B. Ghosh and S. Muthukrishnan. Dynamic load balancing by random matchings.

J. Comput. Syst. Sci., 53:357–370, 1996.

[28] B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Ra-

jaraman, A. W. Richa, R. E. Tarjan, and D. Zuckerman. Tight analyses of two

local load balancing algorithms. SIAM J. Comput., 29(1):29–64, 1999.

[29] W. Hoeffding. Probability inequalities for sums of bounded random variables. J.

Parallel Distrib. Comput., 58(301):13–30, 1963.

[30] S. H. Hosseini, B. E. Litow, M. I. Malkawi, and K. Vairavan. Distributed algo-

rithms for load balancing in very large homogeneous systems. In Proc. of the

1987 Fall Joint Computer Conference on Exploring technology: today and to-

morrow, ACM ’87, pages 397–404. IEEE Computer Society, 1987.

[31] S. H. Hosseini, B. Litow, M. Malkawi, J. McPherson, and K. Vairavan. Analysis

of a graph coloring based distributed load balancing algorithm. J. Parallel Distrib.

Comput., 10(2):160–166, 1990.

[32] S. Kijima, K. Koga, and K. Makino. Deterministic random walks on finite graphs.

In ANALCO, pages 16–25, 2012.

[33] F. Meyer auf der Heide, B. Oesterdiekhoff, and R. Wanka. Strongly adaptive

token distribution. Algorithmica, 15(5):413–427, 1996.

[34] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. First- and second-order diffusive

methods for rapid, coarse, distributed load balancing. Theory Comput. Syst., 31

(4):331–354, 1998.

[35] A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and

network decomposition problems. In STOC, pages 581–592. ACM, 1992.

[36] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an

extension of the chernoff–hoeffding bounds. SIAM J. Comput., 26(2):350–368,

1997.

[37] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of markov chains and

the analysis of iterative load-balancing schemes. In FOCS, pages 694–703. IEEE

Computer Society, 1998.

29

[38] T. Sauerwald and H. Sun. Tight bounds for randomized load balancing on ar-

bitrary network topologies. In FOCS, pages 341–350. IEEE Computer Society,

2012.

[39] R. Subramanian and I. D. Scherson. An analysis of diffusive load-balancing. In

SPAA, pages 220–225. ACM, 1994.

A Hoeffding’s Bound: Adaptation for Randomized Round-

ing

Lemma 12. Let X1, . . . ,Xk be k independent random variables, and p1, . . . , pk be con-

stants where for all i,0 < |pi| < 1. Suppose Xi is pi− 1 with probability pi and pi

otherwise. If we define the random variable X = ∑16i6k Xi, then we have for any δ > 0

that

Pr
[
|X |> δ

]
6 2exp(−2δ 2/k).

Proof. We first note that for each i, we have

Ex [Xi] = (pi−1) · pi + pi · (1− pi) = 0;

Hence, by the linearity of expectation we get Ex [X] = ∑16i6k Ex [Xi]. Also, for each i,

pi−16Xi 6 pi. Therefore, we can apply the Hoeffding’s bound [29] to get Pr
[
|X |> δ

]
6

2exp(−2δ 2/k), as required.

30

B Comparison Tables

Table 1: Final max-min discrepancy of our algorithms compared to other discrete diffusion pro-

cesses for different graph classes. The running time of each process is T = O(logKn

1−λ
).

Discrete Processes
Arbitrary

Graphs

Expanders

with d = O(1)
Hypercubes

r-dim tori

r = O(1)

Deterministic Rounding

Rabani et al. [37] O

(
d logn

1−λ

)
O(logn) O(log2 n) O(n1/r)

Friedrich et al. [26]

(deterministic)
– – O(log3/2 n) O(1)

Alg. 1 (Theorem 3) O(d) O(1) O(logn) O(1)

Randomized Rounding

Friedrich et al. [26]

(randomized)
O

(
d log logn

1−λ

)
O(log logn) – –

Berenbrink et al. [9]

O

(
d log logn

1−λ

)
, and

O

(
d
√

logn+
√

logn logd

1−λ

)
O(log logn) O(logn) O(

√
logn)

The algorithm of [9]

analyzed using [38]
O(d2

√
logn) O(

√
logn) O(log3/2 n) O(

√
logn)

The algorithm of [26]

analyzed using [38]
O(
√

d logn) O(
√

logn) O(logn) O(
√

logn)

Alg. 2 (Theorem 8) O(
√

d logn) O(
√

logn) O(logn) O(
√

logn)

31

Table 2: Final max-min discrepancy of our algorithms compared to other discrete processes in the match-

ing model. The running time of each process is t = T unless otherwise specified.

Discrete Processes
Arbitrary

Graphs

Expanders

with d = O(1)
Hypercubes

r-dim tori

r = O(1)

Periodic Matchings

Round-Down

Rabani et al. [37] O

(
d logn

1−λ

)
O(logn) O(log2 n) O(n1/r)

Randomized Rounding

Friedrich and Sauerwald [24]

O

(
d log logn

1−λ

)
, and

O

(√
d logn

1−λ

) O(log logn), and

O(1)†
O(log3/2 n) O(n1/2r

√
logn)

Sauerwald and Sun [38]
O(logε n)∗, and

O(log logn)¶
O(1)∗ O(logε n)∗ O(1)∗

Random Matchings

Round-Down

Rabani et al. [37] O

(
d logn

1−λ

)
O(logn) O(log2 n) O(n1/r)

Randomized Rounding

Friedrich and Sauerwald [24] O

(√
log3 n

1−λ

)
O(1)† O(log2 n) O(n1/2r logn)

Sauerwald and Sun [38]
O(logε n)∗, and

O(log logn)¶
O(1)∗ O(1)∗ O(1)∗

Periodic/Random Matchings

Alg. 1: Round-Down O(d) O(1) O(logn) O(1)

Alg. 2: Randomized Rounding O(
√

d logn) O(
√

logn) O(logn) O(
√

logn)

∗ Unlike other probabilistic bounds that hold with probability 1−n−Ω(1), these bounds hold with probability 1− exp(−(logn)c), for

some c < 1
† in t = O(T · log3 logn) rounds
¶ in t = O (T · log logn) rounds

32

