
A Simple Approach for Finding
the Globally Optimal Bayesian Network Structure

Tomi Silander and Petri Myllymäki
Complex Systems Computation Research Group (CoSCo)

Helsinki Institute for Information Technology (HIIT)
P.O.Box 68 (Department of Computer Science)

FIN-00014 University of Helsinki, Finland

Abstract

We study the problem of learning the best
Bayesian network structure with respect to
a decomposable score such as BDe, BIC or
AIC. This problem is known to be NP-hard,
which means that solving it becomes quickly
infeasible as the number of variables in-
creases. Nevertheless, in this paper we
show that it is possible to learn the best
Bayesian network structure with over 30 vari-
ables, which covers many practically inter-
esting cases. Our algorithm is less com-
plicated and more efficient than the tech-
niques presented earlier. It can be easily
parallelized, and offers a possibility for effi-
cient exploration of the best networks con-
sistent with different variable orderings. In
the experimental part of the paper we com-
pare the performance of the algorithm to
the previous state-of-the-art algorithm. Free
source-code and an online-demo can be found
at http://b-course.hiit.fi/bene.

1 INTRODUCTION

Inspired by Koivisto & Sood (2004), we set ourselves
to implement an exact Bayesian network structure dis-
covery for complete discrete data. In its beautiful gen-
erality, the original paper concentrates on calculating
the probability of any modular feature in Bayesian net-
works, and hints to the actual structure discovery as
a straight forward modification of the general theory.
Much of the theory and experiments in Koivisto &
Sood (2004) also deals with the cases subject to some
given upper bound for the number of parents in the
Bayesian network.

In this paper we give a much simpler algorithm for
finding the globally optimal Bayesian network struc-
ture without any structural constraints. The algo-

rithm itself could deal with structural constraints, but
that would complicate the presentation. The simplic-
ity of our method will also reveal obvious ways to dis-
tribute the computation to many computers. How-
ever, in this paper, we will not concentrate on the dis-
tributed implementation.

We hope a simple account of our method together
with the freely available software, will rapidly add this
technique to the commonly used data analysis tool-
box. Furthermore, having the tool handy would hope-
fully incite further studies on structure discovery algo-
rithms, different scoring metrics, etc. One could also
wish for healthy competition on the task.

Finding the best Bayesian network structure is
NP-hard (Chickering, Meek, & Heckerman, 2003), so
the techniques presented will be feasible only for small
networks. We present a best network for a data set
with 29 variables, and we conduct our experiments
with 30 data sets with at most 20 variables.

After implementing our method, we learned about the
work of of Singh and Moore (2005). They had come
to similar conclusions about the methods presented in
Koivisto & Sood (2004) and attacked the problem of
structure learning more directly. However, they state
their method, the SM-algorithm, to be feasible for
n < 26 and demonstrate it with n = 22. We claim fea-
sibility for n < 33 and demonstrate with n = 29. Our
method is even simpler than that of Singh and Moore
who deploy an intricate mathematical theorem to pre-
vent unnecessary computations. In the experimental
part of the paper we demonstrate that our method
compares favorably to the SM-algorithm, that we be-
lieve to be (former) state-of-the-art. As we will show,
by not avoiding any computations we can quickly find
the best network consistent with any given variable
ordering.

The rest of the paper is organized as follows: In Chap-
ter 2 we will briefly introduce the Bayesian networks
and other theoretical concepts on which we will build

our approach. The actual method and the algorithms
are explained in Chapter 3. After demonstrating the
capability of our approach in Chapter 4, we end with
some discussion and ideas for future work in Chap-
ter 5.

2 DEFINITIONS

2.1 BAYESIAN NETWORKS

Bayesian network structures (see, e.g., (Hecker-
man, 1996)), or simply networks, for a variable
set V = {V1, . . . , Vn} are directed acyclic graphs
(DAGs) with exactly one node per variable. We
often equate the V by the indices of its variables
V = {1, . . . , n}. A network G can be described as a
vector G = (G1, . . . , Gn) of parent sets: Gi is the sub-
set of V from which there are arcs to Vi. For example,
the network G = ({4}, {1, 3}, {1}, {}) corresponds to
the DAG with arcs {4 → 1, 1 → 2, 3 → 2, 1 → 3}.
We will also use a concept of variable ordering. Or-
dering of the variable set V is simply the variables
of V in some order, e.g. ord = (4, 1, 3, 2). We de-
note the ith element in this ordering by ordi, i.e., in
the example above ord2 = 1. The Bayesian network
G = (G1, . . . , Gn) is said to be consistent with an or-
dering ord when for all i, Gi ⊆

⋃i−1
j=1{ordj}, i.e., when

all the parents of the node precede the node in the
ordering. Our example network G above is consistent
with our example ordering ord.

There is one crucial fact about DAGs we will fre-
quently in the sequel: every DAG has at least one
node with no outgoing arcs, so at least one node is not
a parent of any other node. These nodes are called
sinks of the network. The existence of a sink follows
from the fact that, due to the acyclicity, every directed
path in a DAG must have a finite length, and the end
of a maximally long directed path is necessarily a sink.

2.2 DATA

Bayesian networks are usually used as statistical mod-
els for data. In this paper we concentrate on multi-
variate discrete data where we have many variables
V = {V1, . . . , Vn}, and each variable Vi has a (usually
very) finite number of values (vi1 , . . . , vini

). The vari-
ables are measured in nominal scale, i.e. the ordering
of the values is irrelevant. We often refer to the values
by their indices, so that the values of Vi are taken to
be (1, . . . , ni).

The complete discrete data D = (D1, . . . , DN) is a
collection of N data-vectors Dj = (Dj1, . . . , Djn) in
which the component Dji has one of the values of Vi.
It is customary to think a data-vector as a row in an

N × n data-matrix in which the columns correspond
to the variables.

We also define the projection of a data to a non-empty
variable set. The projection of a data-vector Dj to the
variable set W means selecting the components be-
longing to W from the Dj . We denote this projection
by DW

j . Performing this projection to all the data vec-
tors gives us projected data DW , which corresponds to
picking the columns W from the data-matrix.

To summarize the data, we define the contingency
table CT (W) to be a list the frequencies of differ-
ent data-vectors dW in DW . Our main task, how-
ever, will be to calculate conditional frequency tables
CFT (v,W) that record how many times different val-
ues of the variable v occur together with different vec-
tors dW−{v} in the data.

2.3 SCORES

Our goal is to find the best Bayesian network structure
for the given complete (no missing values), discrete
data. The definition of the “best” is usually formal-
ized by defining a scoring function that, given a data,
attaches a real number to any given network. We take
the problem to be a maximization problem: the better
the network, the greater the score.

The nature of many common scoring functions is such
that several different networks may have equal scores
(Chickering, 1995). Therefore, we often write “a best”
instead of “the best”. During the process of finding a
best network structure, whenever “a best” anything is
selected, it does not matter which one is selected, the
end result will still be a best network. It is worth men-
tioning that, for many popular scores, finding a best
network allows us to easily find other best networks.

In order to use the method to be presented, the
scoring functions have to be modular, i.e., given the
data, the score of a Bayesian network structure G =
(G1, . . . , Gn) for variables V = (1, . . . , n) must be de-
composable to local scores:

score(G) =
n∑

i=1

scorei(Gi) =
n∑

i=1

score(CFT (i, Gi)),

so that the score of the network is the sum of the
local scores that only depend on the conditional fre-
quency table for one variable and its parents. Many
popular scores like BDe, BIC and AIC decompose like
this (Chickering, 1995). We denote the highest scoring
network for a variable set W by G∗(W). We also de-
fine sink∗(W) to be the lowest numbered sink of the
G∗(W) (actually, any random sink would do for our
purposes). Finally, we denote by ord∗(W) an ordering
(again, there may be several) of W that is consistent

with the best network G∗(W).

The local scoring function scorei measures the good-
ness of Vi’s parents. This idea naturally leads to find-
ing the best parents for a variable Vi in any given par-
ent candidate set C:

g∗i (C) = arg max
g⊆C

scorei(g).

3 SIMPLE METHOD FOR FINDING
BEST NETWORK STRUCTURES

We are now ready to present our approach for finding
the best Bayesian network structure. Our method has
five logical steps:

1. Calculate the local scores for all n2n−1 different
(variable, variable set)-pairs.

2. Using the local scores, find best parents for all
n2n−1 (variable, parent candidate set)-pairs.

3. Find the best sink for all 2n variable sets.

4. Using the results from Step 3, find a best ordering
of the variables.

5. Find a best network using results computed in
Steps 2 and 4.

Step 3 of the algorithm is based on the following ob-
servation: The best network G∗(W) must have a sink
s, and that sink must have incoming arcs from its best
possible parents g∗s (W \ {s}). The rest of the nodes
and the arcs must form the best possible network for
the variables W \ {s}.

More formally,

sink∗(W) = arg max
s∈W

skore(W, s), (1)

where

skore(W, s) = scores(g∗s (W\{s}))+score(G∗(W\{s}).

To see this, let us pick an arbitrary sink node s from
the best network G∗(W). Now the subnetwork G−s

of G∗(W) from which the node s and the arcs coming
from g∗s (W \ {s}) to it are removed must be a best
network for W \{s}, since if there were a strictly better
network G† for W \ {s}, augmenting G† with s and
g∗s would yield a network strictly better than G∗(W),
which is a contradiction.

Best sinks immediately yield the best ordering in re-
verse order:

ord∗i (V) = sink∗(V \
|V |⋃

j=i+1

{ord∗j (V)}). (2)

Having ord∗i (V) and g∗i (W) available for all W ⊆ V ,
the step 5 is as easy, since

G∗
ord∗i (V) = g∗ord∗i (V)(V \

i−1⋃
j=1

{ord∗j (V)}), (3)

so that for the ith variable in the optimal ordering, we
simply pick the best parents from its predecessors.

In the following subsections we explain how the steps
1–5 can be accomplished in reasonable time.

3.1 CALCULATING LOCAL SCORES

This is the only step in which the data is needed. It is
also the most time consuming phase of the algorithm.
We start by calculating the contingency table for all
the variables V and incrementally (decrementally) cal-
culate contingency tables for smaller variable subsets
(Figure 1).

Data vectors #
0 1 1 0 1 3
0 1 1 1 0 15
0 1 1 1 1 3
1 0 1 0 0 1
1 0 1 1 0 4
1 0 1 1 1 7

⇒

Data vectors #
0 1 1 1 6
0 1 1 0 15
1 0 1 0 5
1 0 1 1 7

Figure 1: Marginalizing a variable (in bold) out of the
contingency table yields a smaller contingency table.

From each contingency table, we calculate conditional
frequency tables for the variables appearing in the con-
tingency table (Figure 2). These conditional frequency
tables can then be used to calculate the local scores.

Data vectors #
0 1 1 1 6
0 1 1 0 15
1 0 1 0 5
1 0 1 1 7

⇒

Data vectors (F0,F1)
0 1 1 (15, 6)
1 0 1 (5, 7)

Figure 2: Building a conditional frequency table for a
variable (on bold) in a contingency table.

The main procedure, GetLocalScores, (Algorithm 1)
is called with a contingency table ct and the variables
evars to be marginalized from it. Initially, it is called
with a contingency table for all the variables and the
whole variable set V as evars. The algorithm is simply
a depth first traversal of smaller and smaller contin-
gency tables.

The pseudocode of the Algorithm 1 assumes some
helper functions: V ars(ct) returns the set of variables

in the contingency table ct, Ct2ct(ct, v) produces a
contingency table by marginalizing the variable v out
of ct as demonstrated in Figure 1, Ct2cft(ct, v) yields
a conditional frequency table as shown in Figure 2,
and finally, the function Score(cft) calculates the lo-
cal score based on the conditional frequency table. The
algorithm produces a mapping LS from (variable, par-
ent set)-pairs to the corresponding local scores.

Algorithm 1 GetLocalScores(ct, evars)
/* Turn ct to cfts and further to local scores */
for all v ∈ V ars(ct) do

LS[v][V ars(ct) \ {v})]← Score(Ct2cft(ct, v))
end for

/* Recursively call GetLocalScores */
if |V ars(ct)| > 1 then

for all v ∈ evars do
GetLocalScores(Ct2ct(ct, v), {1, · · · , v − 1})

end for
end if

As an implementational note, the local scores do not
have to be kept in the memory, but can be stored on
the disk as soon as they are produced. Therefore, the
memory requirement of this first phase is about |V |
times the size of the initial contingency table.

This procedure also serves as a basis for parallelizing
the algorithm. By initially calling the GetLocalScores
with different contingency tables, the task can be di-
vided to separate subtasks.

3.2 FINDING BEST PARENTS

Having calculated the local scores, finding the best
parents for a variable v from a set C can be done recur-
sively. The best parents in C for v are either the whole
candidate set C itself or the best parents for v from
one of the smaller candidate sets {C \ {c} | c ∈ C}.
More formally,

scorei(g∗i (C)) = max(scorei(C), score1(C)), (4)

where

score1(C) = max
c∈C

scorei(g∗i (C \ {c}))).

This translates directly into an algorithm that goes
through all the candidate sets in lexicographic order,
and evaluates the formula above for each of them. Be-
low, you can find the pseudocode of the Algorithm 2
that takes the variable set V , the variable v and the
previously calculated local scores LS, and finds the
best parent set bps for all the possible parent candi-
date sets of v.

Algorithm 2 GetBestParents(V, v, LS)

bps = array 1 to 2|V |−1 of variable sets
bss = array 1 to 2|V |−1 of local scores
for all cs ⊆ V \ {v} in lexicographic order do

bps[cs]← cs
bss[cs]← LS[v][cs]
for all cs1 ⊂ cs such that |cs \ cs1| = 1 do

if bss[cs1] > bss[cs] then
bss[cs]← bss[cs1]
bps[cs]← bps[cs1]

end if
end for

end for
return bps

A direct calculation shows that the algorithm runs in
time o((n− 1)2n−2). It has to be run for each variable
which naturally can be done in parallel. The algo-
rithm requires 2n−1 scores and parent sets to be held
in memory.

3.3 FINDING BEST SINKS

As mentioned before, a best network for a variable set
W can always be constructed by first finding a best
sink s in W , then constructing the best network for
W \ {s}, and finally picking the best parents for s
from the variables in W \ {s}.

Algorithm 3 GetBestSinks(V, bps, LS)
for all W ⊆ V in lexicographic order do

scores[W]← 0.0
sinks[W]← −1
for all sink ∈W do

upvars←W \ {sink}
skore← scores[upvars]
skore← skore + LS[sink][bps[sink][upvars]]
if sinks[W] = −1 or skore > scores[W] then

scores[W]← skore
sinks[W]← sink

end if
end for

end for
return sinks

Again, this idea translates directly into an algorithm
(Algorithm 3). We go through all the variable sets,
and from each set W we select a sink that yields a
best network for W . To make this selection, the only
thing we need is the scores of the best networks for
W ’s subsets and the local score of each sink candidate
given its best parents in W . The latter information is
calculated in Step 2. By going through the variable
sets in lexicographic order we can guarantee that, for

every set, the scores of the best networks for its subsets
are already calculated.

The algorithm runs in time o(n2n−1) and keeps 2n

scores in memory. The sinks are not needed during
the algorithm, thus they can be stored one by one as
soon as they are produced.

3.4 FINDING BEST ORDERING

The procedure to find the best ordering is simply a
non-recursive implementation of the equation (2).

Algorithm 4 Sinks2ord(V, sinks)
ord = array 1 to |V | of variables
left = V
for i = |V | to 1 do

ord[i]← sinks[left]
left← left \ {ord[i]}

end for
return ord

3.5 FINDING BEST NETWORK

After calculating the best parents, bps, for all the
(variable, parent candidate set)-pairs, as explained in
subsection 3.2, we can use equation (3) to quickly find
a best network consistent with any given ordering of
the variables:

Algorithm 5 Ord2net(V, ord, bps)
parents = array 1 to |V | of variable sets
predecs← ∅
for i = 1 to |V | do

parents[i]← bps[ord[i]][predecs]
predecs← predecs ∪ {ord[i]}

end for
return parents

4 EXPERIMENTS

To demonstrate the capability of our method, we
picked 30 publicly available data sets and conducted
series of experiments that would have been difficult to
perform without our software. As the main purpose
of these experiments was just to illustrate what type
of problems can be studied with this software, more
elaborate empirical studies were left as future work.

4.1 STUDYING MAXIMAL IN-DEGREES

The search for the best network would be feasible for
a much larger number of variables, if we could safely

set an upper limit to the maximum number of par-
ents (in-degree) any node can have. We used our 30
data sets to study the issue. For each of the data
sets, we first constructed a best net using BDe score
(with equivalent sample size 1.0) and a best net using
the BIC score. The maximal in-degrees (D1 for BDe
and D2 for BIC) are reported in Table 1. We also
list the number of variables n, number of data vec-
tors N , and the running times, T1 and T2, required to
find the best networks using BDe and BIC scores re-
spectively. All the experiments were run on 2.20Mhz
Compaq Evo N800w laptop having 1GB of memory
and running Linux 2.6.

Table 1: Maximum in-degrees with BDe(1) and
BIC(2) scores.

Data n N T1 T2 D1 D2

balance 5 625 0 0 1 1
iris 5 150 0 0 2 1
thyroid 6 215 0 0 2 1
liver 7 345 0 0 1 1
ecoli 8 336 0 0 2 1
abalone 9 4177 0 0 3 2
diabetes 9 768 0 0 1 1
post-op 9 90 0 0 0 0
yeast 9 1484 0 0 1 1
bc 10 286 0 0 1 1
shuttle 10 58000 0 0 5 3
tic-tac 10 958 1 0 3 3
bc-wisc 11 699 0 0 2 2
glass 11 214 0 0 4 1
pg-block 11 5473 0 0 3 2
heart-cl 14 303 5 4 1 1
heart-hu 14 294 4 3 4 4
heart-st 14 270 5 4 1 1
wine 14 178 3 3 2 2
adult 15 32561 334 314 4 4
aus 15 690 10 7 2 2
credit 16 690 32 24 2 2
letter 17 20000 603 523 5 4
voting 17 435 77 45 3 3
zoo 17 101 18 11 7 2
tumor 18 339 95 73 3 2
lympho 19 148 171 147 13 2
vehicle 19 846 391 288 4 2
hepatitis 20 155 332 263 13 2
segment 20 2310 774 387 9 17

We notice that while the maximum in-degree is usu-
ally low, this is not always the case. For example, in
Koivisto & Sood (2004) the best network for the zoo-
data was learned using the maximum in-degree bound
of 6, while the best network actually has the maxi-
mum in-degree of 7. Furthermore, it took 42 seconds

for them to find the best network with the in-degree
bound, while in our case it took only 18 seconds to find
a best network without any in-degree bound. While
setting the in-degree bound may prevent finding the
score maximizing network, it may still be that the best
network structure within the bounds is good enough
(or even better) for specific tasks like prediction. This
is one of the future studies that is made possible with
our new tool.

4.2 SPEED COMPARISON

We also compared the running time (Tus) of our al-
gorithm to that of the state-of-the-art SM-algorithm
(TSM). We were able to use four same datasets as
Singh & Moore (2005). The results are presented in
Table 2. While some of the differences may be due to
the different computers used and possibly some other
implementational details, the results clearly show that
our method is competitive. The comparison also con-
firmed that our algorithm and its implementation is
probably correct, since the BDe scores obtained for
these data sets were exactly the same.

Table 2: Comparison of our method and SM.

Data n N TSM Tus

nursery 9 12960 10 1
parity 10 1000000 650 4
adult 15 10000 4050 168
letters 17 20000 13146 532

The faster time for adult-data in this table compared
to the Table 1 is due to the fact that in previous runs
we used double precision floating point numbers for
scores, just in case BIC needs them, while in this run
we used single precision floating point numbers.

4.3 STUDYING THE ROLE OF ESS

As a pretaste of a more meaningful study, we learned
the best network for the yeast data (9 variables, 1484
data vectors) with different values of the equivalent
sample size (ESS). The results in Figure 3 show that
by going form very small values of ESS (2e-20) to very
large values of ESS (34000), it is possible to get any
number of arcs to your “globally optimal” network
structure. For this data set, the network learned with
BIC has 6 arcs, which corresponds to the ESS value of
about 0.02. The results clearly suggests further studies
about the robustness of the MAP structure.

4.4 STUDYING PREDICTION

As an example of the possibility to study the predictive
behaviour of the score maximizing network structures,

 0

 5

 10

 15

 20

 25

 30

 35

 1e-20 1e-15 1e-10 1e-05 1 100000 1e+10

nu
m

be
r

of
 a

rc
s

ESS on logarithm scale

Figure 3: Number of arcs in the optimal network as a
function of ESS.

we started by learning a best network for the shut-
tle data (10 variables, 58000 data vectors) using BDe
score with ESS of 1.0. We then used this network
with its expected parameter values to generate 100
training samples of sample sizes between 10 and 50000,
and tested the predictive performance of the best net-
work structures learned with BDe-score (ESS=1.0)
and BIC-score. The predictive performance was taken
to be the average marginal probability of the hundred
freshly generated test vectors as predicted by the net-
work structures with parameters integrated out (using
the ESS of 1.0 again). We also included the network
structure of the data generating model to serve as a
reference.

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 10 100 1000 10000 100000

pr
ed

ic
tiv

e
pr

ob
ab

ili
ty

 d
if

fe
re

nc
e

to
 g

en
er

at
in

g
ne

t

sample size

BDe
BIC

Figure 4: Average predicted probability difference to
the network of the generating model as a function of
the sample size.

Not surprisingly, the results (Figure 4) show that the
network structure of the generating model is too com-

plex for the small sample sizes, for which the conser-
vative BIC score yields the best results. However, al-
ready with sample size 20 BDe score beats BIC score.
Eventually, the right network structure overcomes the
sampling variance and passes the BIC and BDe opti-
mal networks.

4.5 BUILDING A BIG NET

To demonstrate the feasibility of our approach beyond
the n=25 limit, the maximum feasibility stated for the
SM-algorithm, we built a network of 29 variables (Fig-
ure 5). The data used in this experiment contains in-
formation about 194 nations and their flags. This data
was selected because of its free availability and its suit-
able number of variables. The flag-data can be down-
loaded at http://www.ailab.si/orange/datasets.asp.

Figure 5: A best network structure for the flag-data.

We started by dividing the calculation of the local
scores to 1025 smaller jobs and distributing these
jobs to 4 dual-core computers (dual-3GHz Intel Xeon,
512KB L2 cache, 4GB RAM). Calculating the local
scores took 6 hours and 16 minutes. Step 2, finding
the best parents, took 3 hours, but this task could
be parallelized. Step 3, finding the best sinks, took
20 minutes, and Steps 4 and 5 took less than a second
each, so the whole task of finding a best 29 variable
network was over in about 10 hours. Had we used just
one single processor computer, it would have taken us
50 hours to complete the task. We also run stochas-
tic greedy search for two hours, but in that time the
search was unable to find the optimal network. The
BDe score obtained by the greedy search was 33.7
worse than that of the optimal network. In the fu-
ture, we plan to conduct a proper study of heuristic
search methods.

4.6 STUDY OF ORDERINGS

The question about the plausibility of different order-
ings often arises when we want to speculate about the
causal relations between the variables. Therefore, in
the last experiment, we used the ability to quickly find
the best network for any ordering of the variables.

We picked an optimal ordering of 29 variables con-
structed in the previous experiment, and evaluated the
scores of the best networks consistent with the order-
ings close to the optimal ordering. We first considered
all 28 possible rotations, 14 left and 14 right, of the
optimal ordering. The resulting scores of the best net-
works can be seen in Figure 6. We can clearly see the
tendency that the more we rotate the ordering, the
worse the networks get. The very first rotation right
drops the score by 68 corresponding to the probability
ratio of 1030.

-4660

-4640

-4620

-4600

-4580

-4560

-4540

-4520

-4500

-4480

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Figure 6: Network scores for rotations.

We also studied 29 × 28/2 = 392 possible swappings
of two variables in the optimal ordering. The results
are presented in Figure 7. Dark colors indicate bad
swappings.

It is easy to see how swappings of variables appearing
near each other in the optimal ordering (those close to
the diagonal) often yield the same optimal score, while
swapping variables far from each other often makes
the the score worse. One can also notice, for example,
that swapping the last variable (V8) with almost any
other variable significantly decreases the score. Simi-
larly, the central variable V0 clearly wants to keep its
position in a DAG.

25 25

25

25

12 12

12

12

15 15

15

15

16 16

16

16

26 26

26

26

24 24

24

24

27 27

27

27

11 11

11

11

9 9

9

9

19 19

19

19

28 28

28

28

10 10

10

10

18 18

18

18

20 20

20

20

21 21

21

21

22 22

22

22

6 6

6

6

23 23

23

23

7 7

7

7

2 2

2

2

3 3

3

3

13 13

13

13

0 0

0

0

5 5

5

5

1 1

1

1

4 4

4

4

17 17

17

17

14 14

14

14

8 8

8

8

Figure 7: Network scores for swappings.

5 DISCUSSION AND FUTURE
WORK

We have presented a straightforward method to find
best Bayesian networks and demonstrated its feasibil-
ity. We believe our method to be the current state-of-
the-art.

By the nature of the problem, but also of the method,
this approach will not scale up indefinitely. In
the current implementation, the memory requirement
(2n+2 bytes) is the first factor to constrain the size
of the networks that can be constructed. Currently,
the n=32 is the practical upper limit since it requires
over 16GB of memory. Also the disk-space require-
ment (12n2n−1 bytes) can be restrictive. Distributing
the computation makes the process faster, but in that
case one should ensure that the disk access in a dis-
tributed environment is efficient.

However, this is hardly the end of the road. The mem-
ory intensive steps 2 and 3 have a very regular memory
access pattern, and it is actually possible to get rid of
the the memory requirement and turn it to a (bigger)
disk-space requirement. We have already implemented
this kind of version of the algorithm and we are cur-
rently testing it.

In this paper, we have learned the best networks with-
out any constraints to the maximum number of par-
ents. It is easy to see that the algorithm could be mod-
ified to benefit from in-degree constraints. In the fu-
ture, we will study the benefits of in-degree constraints
in our method and whether some other approaches can
better exploit these constraints.

The computational complexity of our algorithm is
o(n22n−2), while the complexity of the SM-algorithm
is only o(n2n−1). It could be possible to drop the
computational complexity of our method to o(n2n−1)
as well, but with small n, as it will be due to the na-
ture of the problem, this theoretical result is of little
interest. As demonstrated in this paper, the concep-
tual simplicity of the algorithm that allows an efficient
implementation more than compensates the slight (by
the factor of n/2) increase in theoretical complexity.

The experiments in the paper are meant to be exam-
ples of the kind of studies that can be pursued using
this tool. There are many experiments we can think of,
but there are certainly many more experiments other
people can come up with. Our hope is that by offering
the method and its implementation, we can help the
researchers to conduct a wider selection of experiments
of their interest.

Acknowledgements

This work was supported in part by the Academy of
Finland under the projects Prose and Civi, and by the
Finnish Funding Agency for Technology and Innova-
tion under the projects PMMA and SIB, and by the
IST Programme of the European Community under
the PASCAL Network of Excellence, IST-2002-506778.
This publication only reflects the authors’ views.

References

Chickering, D. (1995). A transformational characteri-
zation of equivalent Bayesian network structures.
In Proceedings of the 11th annual conference on
uncertainty in artificial intelligence (UAI-95) (p.
87-98). San Francisco, CA: Morgan Kaufmann
Publishers.

Chickering, D., Meek, C., & Heckerman, D. (2003).
Large-sample learning of Bayesian networks is
NP-hard. In Proceedings of the 19th annual con-
ference on uncertainty in artificial intelligence
(UAI-03) (p. 124-133). San Francisco, CA: Mor-
gan Kaufmann Publishers.

Heckerman, D. (1996). A tutorial on learning with
Bayesian networks (Tech. Rep. No. MSR-TR-95-
06). One Microsoft Way, Redmond, WA 98052:
Microsoft Research, Advanced Technology Divi-
sion.

Koivisto, M., & Sood, K. (2004). Exact Bayesian
structure discovery in Bayesian networks. J.
Mach. Learn. Res., 5, 549–573.

Singh, A., & Moore, A. (2005). Finding opti-
mal Bayesian networks by dynamic programming
(Tech. Rep.). Carnegie Mellon University.

