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Recent Particle System models have evolved toward accurate representation of elastic stiffness based on continuum mechanics, converging to 
formulations that make them quite analogous to fast Finite Element methods. These formulations usually involve the linearization of tensors that 
help their formulation in the context of linear elasticity. Toward our objective of simulating the nonlinear properties of cloth accurately, we show 
through this work that this linearization can indeed be suppressed and replaced by adapted strain-stress laws relating precisely the nonlinear 
behavior of the material. This leads to very streamlined computations that are particularly efficient for simulating the nonlinear anisotropic tensile 
elasticity of deformable surfaces. Through a simple and efficient implementation using the Particle System formalism, we demonstrate the 
efficiency of this method with examples related to garment simulation. 
 
Categories and Subject Descriptors: I.6 [Computing Methodologies]: Simulation and Modeling; I.3.5 [Computing Methodologies]: Computer 
Graphics - Computational Geometry and Object Modeling - Physically-Based Modeling; J.6 [Computer Applications]: Computer-Aided 
Engineering. 
General Terms: Mechanical Simulation, Cloth Simulation. 
Additional Key Words and Phrases: Particle Systems, Finite Elements. 
              

 

1. INTRODUCTION 

The mechanical properties of cloth materials are highly isotropic and nonlinear: The internal forces in the 

material are not at all proportional to the deformations, and they furthermore vary much with their orientation 

relatively to the thread directions. This anisotropy and nonlinearity still creates significant challenges when it comes 

to define a mechanical simulation system that would accurately reproduce these effects on virtual objects, which 

would also be applicable for actual applications such as accurate CAD systems (Figure 1). At the meantime, 

interactive and Virtual Reality applications require very efficient simulation models that compute quickly enough 

for offering good reactivity to user interaction. 

Combining these requirements is still one of the main challenges of cloth simulation, and we will contribute to 

address this by showing that nonlinearity is indeed not necessarily synonym of complex implementation and slow 

computation, and that the way-too-often unconsidered hyperelastic St.Venant-Kirchhoff materials can indeed be key 

actors in accurate interactive cloth simulation. 

1.1. Existing Simulation Schemes 

Particle Systems have always been of large interest in the field of cloth simulation, and more generally in the 

field of interactive mechanical simulation, as they offer a simple, intuitive and flexible way to model mechanical 

systems. Furthermore, they can be combined with a large range of numerical integration schemes, according to the 



 

 

important features of the simulation context (dynamic accuracy, convergence speed, fast and approximate 

simulation, robustness...). 

Early Particle Systems were grid-based [Breen et al, 1994] [Eberhardt et al, 1996], and already featured 

simulation of nonlinear behavior curves through formulations that made them quite analogous to continuum-

mechanics models. They were however fairly limited accuracy for large deformations, and required quite long 

computation times. Faster models, based on spring-mass grids, have once again become popular since implicit 

integration methods have started to be used for Particle Systems [Baraff and Witkin, 1998], because they allowed a 

simple expression of the Jacobian of the particle forces while requiring only simple computations [Desbrun et al, 

1999] [Meyer et al, 2001] [Choi and Ko, 2002]. Combined with advanced implicit integration methods [Eberhardt et 

al, 2000] [Hauth et al, 2001] [Volino and Magnenat-Thalmann, 2005], these simulation schemes have particularly 

become popular for real-time and interactive applications. Unfortunately, spring-mass systems are quite unable to 

model surface elasticity accurately. Although some techniques have been developed to identify their parameters to 

those of the simulated material, they do not allow full discrimination between deformation modes [Bianchi et al, 

2004], and they remain particularly inaccurate for anisotropic and nonlinear models. Particle Systems, as a whole, 

have inherited this reputation of inaccuracy from them. 

On the other hand, Finite Elements have now acquired a good maturity for mechanical simulation. Their 

traditional field of application is elastic solid or shell modeling for mechanical engineering purposes, a context 

where linear elasticity and small deformations are the rules. These formulations are not so well adapted to very 

deformable objects such as cloth, and early attempts to model cloth using high-order elements [Eischen et al, 1996] 

led to impractically high computation times. 



 

 

 
Figure 1: Accurate simulation of nonlinear anisotropic cloth materials is required for garment prototyping applications. 

Some recent developments have attempted to speed up the computation times required for Finite Elements. 

These have particularly been used for simulating deformable volumes in the context of interactive simulation for 

virtual surgery systems [Debunne et al, 2001] [Hauth et al, 2003]. For instance, pre-inverting the linear system 

matrix (as done by [Desbrun et al, 1999] for Particle Systems) may speed up the computation [Bro-Nielsen and 

Cotin, 1996], but restricts the application field to linear models and very small mechanical systems [James and Pai, 

1999]. “Explicit Finite Elements” [O’Brien and Hodgins, 1999] come close to good computational charge 

compromise by locally approximating the solution of each element [Cotin et al, 1999]. However, these models rely 

on simple linear elasticity which is inappropriate for the large deformations or displacements encountered in cloth 

simulation. Alleviating this problem through the use of a linearized form of the Green Lagrange strain tensor has 

recently led to more accurate models [Debunne et al, 2001] [Etzmuss et al, 2003]. At the meantime, Particle Systems 

have also evolved toward accuracy, and there is indeed a significant convergence in the formulation of accurate 

Particle System models based on continuum mechanics [Etzmuss et al, 2003] with their Finite Element counterparts, 

as both describe accurately surface elasticity through representations of the Green-Lagrange strain tensor with 

various degrees of linearization, and these intermediate approaches allow very efficient simulation [Teschner et al, 

2004]. 

One major drawback remains with these accurate schemes: They are only applicable in the context of linear 

elasticity. In most models, this limitation essentially results from the linearization process commonly used to turn 

the Green-Lagrange tensor into a linear Cauchy tensor. In order to preserve accurately for large deformations, this is 

carried out by rotating the coordinates system of parameter space of the elements so as to match the current 



 

 

eigendirections of the strain tensor, expressing it as a shear-less deformation [Hauth and Strasser, 2004] [Muller and 

Gross, 2000] [Muller et al, 2002] [Etzmuss et al, 2003] [Nesme et al, 2005]. Besides significant additional 

computation, these corotational schemes make it complicated to express anisotropic mechanical behaviors, 

particularly if they are nonlinear. Attempts to avoid the corotational formulation [Volino and Thalmann, 2005] also 

lead to inaccurate approximations of the shear strain and stress for large deformations. 

1.2 St.Venant-Kirchhoff Materials 

Indeed, there is a way to simply describe accurately the strain and stress of materials: Using the Green-Lagrange 

tensor without any linearization. This is the basis of hyperelastic and St.Venant-Kirchhoff materials [Bonet and 

Wood, 1997] [Zhuang and Canny, 2000] [Picinbobo et al, 2003] [Barbic and James, 2005]. 

This approach is less “intuitive”, through the nonlinearity of their strain and stress tensors. Hence, their strain is 

not proportional to the deformation of the material, and the exerted force is not proportional to the stress. Actually, 

with stress linearly related to strain, the tensile force-deformation curve of such a material is rather cubic (Fig.2). 

However, their mathematical definition is indeed the most mathematically “natural” way of expressing strain and 

stress, and indeed the simplest, despite the nonlinearity. 

                  
Figure 2: Tensile elongation force-deformation curve of a St.Venant-Kirchhoff material (red) compared to a linear material (blue), global view 

(left) and close-up (right). On the St.Venant-Kirchhoff material, we can note the “collapse” of the compression force for large compression 
deformation. 

However, the nonlinear native behavior of St.Venant-Kirchhoff materials has a significant adverse effect: Under 

large compression deformation, the tensile compression forces stop increasing, and even revert back to zero (Fig.2 

left). Hence, these materials are prone to “collapse” under large compression, which makes them unsuitable for 

volume simulation [Bonet and Wood, 1997] [Irving et al, 2004]. This is indeed why these materials are usually 

overlooked in mechanical simulation systems, preferring linearized formulations instead. 



 

 

Fortunately, this collapse behavior is usually not an issue in the context of cloth simulation: A cloth surface is 

almost never subject to large compression forces, since weak surface bending forces quickly allow compression to 

relax into buckling. Furthermore, the rapidly increasing tensile forces during extension are a much more realistic 

representation of the behavior of real fabric materials than a simple linear behavior. 

Along this, the most attracting perspective of these materials is the simplicity of their formulation, ensuring 

efficient computation. Furthermore, they can easily be generalized for supporting arbitrary nonlinear strain-stress 

laws, for reproducing accurately the complex behavior of cloth materials through the weft, warp and shear 

deformation modes, a feature that most cloth simulation models lack, and that we intend to provide through this 

work. 

1.3. Our Goal 

Our ultimate goal is to be able to simulate very accurately complex cloth objects, such as complete garments on 

animated characters, with precise reproduction of the nonlinear mechanical behavior of cloth. Unlike what is 

possible to do with most existing cloth simulation models, we intend to reproduce accurately the nonlinear and 

anisotropic strain-stress behaviors, as discussed in Section 2.1, so as to match as closely as possible the actual 

behavior of cloth materials, particularly when it comes to large deformations. Our model should address elasticity as 

well as viscosity, making the model suitable not only for draping applications, but also for dynamic motion 

computations which require mechanical damping. We also want to perform the computation at a reasonable speed, 

possibly compatible with real-time or interactivity. Hence, we cannot afford models much more complicated than 

the simple spring-mass models which are typically used in this context. 

Our new computation scheme should also support arbitrary triangle meshes which are typically generated from 

Delaunay triangulation. On these elements, we express strains and stresses according to the nonlinear Green-

Lagrange tensors, also considering nonlinear strain-stress behaviors for representing accurately the nonlinear 

anisotropic behavior of cloth. Indeed, such use of continuum mechanics makes our scheme equivalent to classic 

tensile Finite Element schemes. However, we take advantage of its simplicity for formulating it in a very simple and 

direct Particle System approach, expressing particle forces directly from their positions. Furthermore, we formulate 

an accurate computation of the Jacobian, allowing high-performance simulation through efficient implicit 

integration methods or relaxation schemes which remain stable and robust even with very large deformations. All 

these developments are expressed without excessive abstract formalisms through “ready-to-implement” expressions 

allowing straightforward integration into computation algorithms. After some definitions on the mechanical 

behavior of cloth in Section 2.1, the computation scheme is detailed in Sections 2.2 and 2.3. We demonstrate the 

accuracy and efficiency of this scheme in Section 4. 

The presented scheme only models tensile elasticity, which deals with in-plane deformations. Meanwhile, 

bending elasticity deals with out-of-plane deformations (surface curvature), and its main visible effect is to limit fold 



 

 

curvature and wrinkle size. However, the resulting internal forces are comparatively very weak, and very often, 

wrinkle size is rather limited by the size of the surface elements, which often bring more bending rigidity than the 

actual physical bending stiffness. Therefore, it can often be ignored in the context of interactive cloth simulation 

using large elements and soft cloth materials. However, for high-accuracy simulations, the presented tensile model 

can easily be complemented by a bending model using the schemes defined by [Grinspun et al, 2003] or [Volino and 

Magnenat-Thalmann, 2006]. 

2. THE SIMULATION SCHEME 

2.1. Tensile Viscoelasticity 

From the theory of elasticity [Timoshenko and Goodier, 1970] [Gould, 1993], the internal tensile deformations 

of a surface are characterized by its strain, measured through a strain tensor, represented by three independent 

values εuu, εvv, εuv to the coordinate system of the material. In dynamic systems, their rate is measured though their 

time derivatives εuu’, εvv’, εuv’. Meanwhile, the internal tensile forces are characterized by its stress, measured 

accordingly though a stress tensor represented by three independent values σuu, σvv, σuv. The strain and stress values 

are related through the current energy per surface unit w of the material by the following relationships, for any 

deformation mode m among (uu,vv,uv): 
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The relationship between strain and stress defines the mechanical behavior of the material. In the most general 

context, this is expressed through the following strain-stress relationship: 
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An isotropic material behaves exactly identically whatever its orientation, and its strain-stress relationship does 

not depend on the orientation of the considered coordinate system. 

In the case of linear viscoelasticity, the strain-stress relationship can be expressed as a linear expression, the 

elastic and viscous stiffness of the material being represented as symmetric matrices E and E’: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′

′

′

′+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

uv

vv

uu

uv

vv

uu

uv

vv

uu

EE

ε

ε

ε

ε

ε

ε

σ

σ

σ

 (3) 



 

 

In the particular case of isotropic linear elasticity, the behavior of the material is only described with two 

parameters: The Young modulus e relates the stiffness of the material while the Poisson coefficient ν relates its 

transverse contraction upon extension (Fig.3). The corresponding matrix is the following: 
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Figure 3: A square piece of cloth attached at two opposite edges (far left), extended at 150% of its initial length. The material is linear isotropic 

(4), with a Poisson coefficient ν of 0 (left), 0.25 (center), 0.50 (right). Colorscale shows transverse compression strain. 

While isotropic materials are well adapted for simulating homogeneous materials, cloth materials are mostly 

made of fibers which are oriented along particular directions. Thus, they are very unlikely to exhibit the same 

stiffness whatever the deformation direction. Therefore, accurate representation of cloth materials require 

anisotropic models (Fig.4). Among them, orthotropic models, which assume stiffness symmetry along orthogonal 

fiber directions (symmetric radial stiffness diagram as in fig.4 far left), are only suited with cloth having orthogonal 

fiber orientations with symmetric weave patterns. 

 
Figure 4: A large square piece of cloth cut along various fiber directions, hanging attached at one edge. The material is linear anisotropic (3), with 
2 Euu,uu = 1 Evv,vv = 8 Euv,uv (radial elongation stiffness diagram far left). This represents typical anisotropy of cloth materials, which usually have 
a much lower shear/elongation stiffness ratio than isotropic materials. Strips show weft fiber direction. Colorscale shows average tensile strain. 



 

 

Many simulation models exist for dealing with linear materials [Etzmuss et al, 2003]. However, through the 

complexity of its structures, cloth materials have very nonlinear behaviors: The internal deformations of the 

materials produce internal forces which are not at all proportional to them. Linear strain-stress models are a very 

rough approximation of the actual behavior of cloth materials, and they quickly show their limits for large 

deformations (as for instance, the “superelasticity” artifact observed by [Provot et al, 1995]) (Fig.5). Therefore, 

accurate cloth simulation requires nonlinear models for fitting closely the simulated cloth behavior to the actual one, 

usually measured through specific tensile tests (see Appendix). Our main interest is however to address the case of 

nonlinear materials through their most general strain-stress behavior (2), which is needed for representing accurately 

the large-scale behavior of structures which have high small-scale complexity, such as cloth. 

 
Figure 5: A large square piece of cloth, hanging attached at two corners. The material is isotropic, with linear (left) (red curve far left) and 

nonlinear (right) (green curve far left) elongation strain-stress behavior. Colorscale shows average tensile stress (back) and strain (front). In both 
cases, there is a high concentration of stress around the attachment points which support the weight of the whole cloth. With a linear strain-stress 

behavior, this creates locally high strain, and therefore unrealistically large deformations in these areas. Meanwhile, a nonlinear strain-stress 
behavior smoothes out the strain and the deformations are much more evenly distributed over the cloth. 

While elastic forces oppose deformation, viscous forces oppose deformation rate. Viscosity does not affect the 

rest geometry of the cloth in static contexts (draping), but it contributes to the damping of the cloth motion through 

energy dissipation. Meanwhile, plasticity results from hysteresis in the stain-stress behavior of the material. It is 

quite significant for cloth materials, and it mainly results from the friction between the textile fibers. Like viscosity, 

the main noticeable effect of plasticity is also the cloth motion damping caused by energy dissipation. 

Our model can be extended for modeling plasticity through an adequate processing of the strain-stress behavior. 

The easiest solution, derived from [Breen et al, 1994] is to modify the rest strain of the strain-stress laws according 

to the current strain-stress state of the system, simulating the solid friction between the fibers. More advanced 

models, which take into account time-dependent evolution of the rest strain, could take advantage on models based 

on Prony series [Soussou et al, 1970]. However, a precise modeling of plasticity requires an accurate knowledge of 

the possibly time-dependent strain-stress behavior inside the hysteresis envelope (not only the envelope itself) and 

this requires measuring the tensile properties of the cloth materials with more sophisticated procedures than the 



 

 

single load-unload cycle usually performed (Fig.6). The complete study of plasticity and its simulation is a topic on 

its own, far beyond the scope of this work. Furthermore, the numerical simulation is itself quite unpractical and very 

expensive due to the numerical problems caused by the high nonlinearity of hysteresis. This is why not many cloth 

simulation systems do actually support accurate simulation of plasticity. 

 
Figure 6: Weft (left) and warp (right) elongation tensile test of a cloth material with several load-unload cycles of various amplitude. The precise 

evaluation of material plasticity requires a complex study of strain-stress hysteresis, far beyond the evaluation of the hysteresis envelope only. 

While unnecessary in the context of cloth draping applications, the accurate dynamic reproduction of cloth 

motion along time requires significant damping for avoiding unrealistically “bouncing” materials. Whereas viscosity 

cannot be explicitly measured in cloth materials through simple and standard test procedures, it is nevertheless a 

simple solution for reproducing the global dissipative behavior caused by plasticity along viscosity. In this context, 

some techniques attempt to identify viscous parameters of cloth materials by experimentally matching the simulated 

damping of its motion to actual samples [Bhat et al, 2003]. 

In the following, we formulate our model for the context of general nonlinear anisotropic tensile viscoelasticity 

(2). Adequate simplifications may then be carried out according to the actual simulation context. 

2.2. Computational Details 

Our algorithm processes triangle elements of the mesh describing the surface (Fig.7 left). The mesh does not 

need to have grid regularity, and may be obtained on arbitrary surface regions by processes such as Delaunay 

triangulation. Each element is described by its 2D parametric coordinates (ua,va),(ub,vb),(uc,vc) of its vertices, 

referring to an orthonormal parametric coordinate system (in the context of cloth simulation, aligned to the weft and 

warp fiber directions). The current position of the deformed element is defined by the 3D world coordinates Pa,Pb,Pc 

of its vertices, and possibly velocity coordinates P’a,P’b,P’c. The weft and warp vectors are expressed in 3D world 

coordinates as U and V, which are not necessarily orthonormal anymore because of material deformation (fig.7 

right). In the following, these vectors will be used for measuring the deformation state of the element, as well as 

expressing any vector value related to the element in world coordinates. 
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Figure 7: A triangle element is defined in 2D parametric coordinates (left), and deformed in 3D world coordinates (right). 

Our goal is to compute the deformation state of a triangle element directly from the positions of its vertices. For 

this, we express the parametric coordinates the weft and warp orthonormal vectors (1,0) and (0,1) as weighted sums 

of the parametric coordinates of the three vertices (ua,va), (ub,vb), (uc,vc), leading to the following linear systems: 
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Solving these linear systems leads to the following weights, to be precomputed: 
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During the simulation, these values are the weights for computing the current 3D vectors U and V directly as a 

weighted sum of the current vertex positions Pi as follows: 
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When viscosity has to be considered in the context of dynamic simulations, the current evolution rates of the 

coordinate vectors U’ and V’ can be computed as well from the current vertex velocities P’i: 
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Our model is based on the Green-Lagrange strain tensor, which allows the rotation-invariant description of 

internal surface strain in the context of large displacements. This symmetric tensor G is defined by the coordinate 

vectors as follows, I being the identity matrix representing the rest state: 
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From this tensor, we can extract the weft warp and shear strain values, which respectively measure the 

elongation deformations along weft warp directions and the shear deformation between them, as follows: 
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At this point, we can note that the strain is a quadratic expression of the vertex positions. We do not attempt to 

perform any linearization of these expressions. 

Similarly, if viscosity is considered, the strain rate values are computed accordingly: 
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Having computed the strain state of the triangle surface, we can now obtain the stress state by using the strain-

stress relationship (2) that characterizes the material of the surface. 

The Green-Lagrange strain tensor is associated to the second Piola-Kirchhoff stress tensor through (1). 

Therefore, the forces Fj exerted on the vertex j is computed by derivation of the weft, warp and shear components of 

the total elastic energy W of the triangle relatively to the particle position Pj. Since we assume linear deformation of 

the triangle element, we have constant strain and stress and therefore surfacic energy w over its surface of area |d|/2 

(6), and we have, for any j among (a,b,c): 
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With explicit expression of the derivatives of the Green-Lagrange strain values (9) using (7), we obtain: 
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Direct implementation of (7), (9), (2), (11) can be the basis of an accurate Particle System model integrated with 

explicit numerical methods, such as Runge-Kutta [Eberhardt et al, 1996]. 

2.3. Computing the Jacobian 

The Jacobian of the forces is necessary for implementing implicit numerical integration methods [Baraff and 

Witkin, 1998] [Eberhardt et al, 2000] [Hauth et al, 2001] [Volino et al, 2005], and any other relaxation schemes 

based on Newton iterations. Its accurate evaluation is necessary for good convergence and stability of state-of-the-

art simulation systems. 

This Jacobian is computed from (10) and (2) as follows, for any i and j among (a,b,c): 
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Considering viscosity, the following contribution has to be considered as well: 
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With explicit expression of the derivatives of the Green-Lagrange strain values (9) using (7), we obtain (for 

simplicity, here written without the contributions of the cross-dependencies between the deformation modes): 
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Considering viscosity: 
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This Jacobian, which is globally symmetric thanks to the symmetric strain-stress laws (2), has a fairly simple 

structure, and the numerical solving algorithm should take advantage of this for numerical solving or sparse storage. 

The expression of the elasticity Jacobian (12) (13) has two components: 

* A stiffness component, which depends on the strain-stress stiffness ∂σ/∂ε. 

* A geometric component, which depends on the stress value σ. 

The expression of the viscosity Jacobian (12’) (13’) has only a stiffness component. 

It can be noted that in the context of linear viscoelasticity (3), the terms ∂σ/∂ε and ∂σ/∂ε’ and are simply the 

elements of the elastic stiffness matrices E. and E’. 

The stiffness component represents how the strain-stress stiffness of the material acts in the relationship between 

particle forces and positions. It is usually the most important component of the Jacobian. Meanwhile, the geometric 

component represents the particle force changes which result only from the evolution of the element geometry. For 

instance, it relates the rotation of the particle forces as the element rotates. 

In the context of small deformations, it would make sense to ignore the geometry component of the Jacobian, 

assuming that the vectors U and V do not evolve far from their initial state. This is typically the approach done in 

approaches which use a linear approximation of the Green-Lagrange tensor, possibly addressing larger deformations 

through the corotational approach [Etzmuss et al, 2003]. However, as pointed out by [Choi and Ko, 2002] in the 

context of spring-mass systems, the full evaluation of the Jacobian is important for the stability of the simulation in 



 

 

the context of large deformations such as cloth simulation, where elements may exhibit large orientation changes 

within few iterations. Fortunately, through the use of the simple, non-linearized expression of the Green-Lagrange 

tensor, the expression of the geometric component is quite simple, and furthermore isotropic (it does not directly 

depend on the current values of U and V). Therefore, this approach is the best for performing stable simulations of 

highly deformable nonlinear materials through the use of a Jacobian accurately matching the actual deformed state 

of the mechanical system, whatever the amount of deformation (Fig.8). 

 
Figure 8: An accurate Jacobian is necessary for stable simulation of very large deformations without compromising convergence speed. 

A potential problem related to this expression results from the possible negative eigenvalues that the isotropic 

Jacobian component might introduce in numerical linear system matrix of the integration scheme. While this is not 

an problem in the context of the accurate linear system solving schemes used in most Finite Element models, this 

could potentially bring trouble if the Conjugate Gradient method is used, such as with most implicit Particle System 

integration methods. There is no much worry to have about this concerning the stiffness component, where positive 

eigenvalues are ensured by the physical plausibility of the material (where usually forces monotonously oppose 

deformations). However, the geometric component is more likely to generate negative eigenvalues, particularly 

when material compression state creates negative eigenvalues in the stress tensor. While, in the context of cloth 

simulation, this is not much an issue as surface buckling quickly absorbs large tensile compression, this still needs to 

be addressed for obtaining an instability-proof simulation system (transitionally highly compressed elements can 

always occur during simulation). While filtering out negative eigenvalues from the global Jacobian is not a 

computationally practical option, a formal, fairly conservative solution would be to filter out the negative 

eigenvalues of the stress tensor through adequate projection of the σuu, σvv, σuv values to be used in the computation 

of the geometric component (similarly to what [Choi and Ko, 2002] does with spring-mass systems). In practice, we 

have experimented that a sufficient approximation for ensuring stability is to use null values of σuu or σvv if they are 

negative, thus avoiding any eigensystem computation. 



 

 

2.4. Algorithm Summary 

The simple computational process can directly be formulated in a ready-to-implement manner through the 

Particle System formalism, summarized as follows: 

Precomputation 

* On each element, evaluate and store the vertex distribution factors using (6): 

Computation 

* On each element, evaluate the current material referential U and V from Pa, Pb, Pc using (7). 

* From this, compute the strain values εuu, εvv, εuv using (9). 

* And compute the stress values σuu, σvv, σuv using the mechanical behavior of the material (2). 

* Then compute the corresponding particle force contributions Fa, Fb, Fc using (11). 

* If needed, compute the Jacobian contribution using (13) with the partial derivatives of (2). 

3. CONSIDERATIONS 

3.1. St.Venant-Kirchhoff Materials 

Considering a linear strain-stress relationship (3), the material is a hyperelastic St.Venant-Kirchhoff material, 

which has a cubic tensile force-deformation relationship (Fig.2). This nonlinear behavior is indeed much more 

representative of the nonlinear tensile behavior of usual cloth materials than a linear tensile force-deformation 

behavior. 

The largest interest of such a model is the simplicity of its computation, and the computation of (7), (9), (11), 

(13) can also be carried out with additions and multiplications only, without the need of square roots (no vector 

normalizations) or trigonometry (no coordinate rotations). Hence, it is possible to implement a very simple 

simulation system suited for real-time or interactive applications. Furthermore, there are also no discontinuities or 

singular configurations, and this makes such model very appropriate for robust interactive systems. 

3.2. Mass Lumping 

In our Particle System scheme, the mass given to each particle should be exactly one third of the mass of all 

triangle elements adjacent to that particle in the mesh. Obviously, the mass of an element is the surfacic mass of the 

cloth material times the area |d|/2 of the triangle. 

A significant difference between Finite Elements and Particle Systems is that while the former considers 

accurately the mass of the mechanical system distributed over the surface of the elements, the latter condensates the 

mass of the elements on the discrete particle locations. Hence, the mass of a uniform triangle element is distributed 

equally on its three vertices. As a side effect, the rotational inertia of the element around its mass center becomes 

four times larger. In most contexts however, this is not a significant issue since the rotational inertia of small 



 

 

elements is usually not significant compared to their translational inertia. As a major benefit of this approximation, 

the inertia matrix only contains diagonal elements, and this drastically simplifies the mechanical computations. This 

is why this approximation, known as mass lumping, is also often considered in usual Finite Element models. 

4. PERFORMANCE 

This model has been integrated in a cloth simulation system that allows interactive editing of cloth objects and 

collision processing, for the creation and simulation of complete garments. 

In our implementation, the mechanical model accepts independent weft, warp and shear elastic strain-stress 

curves modeled as polynomial splines of any order. Possible cross-dependencies among these modes are also 

accepted by our system, for instance modeling transverse contraction. Viscosity is also modeled in the same way. 

External forces include gravity, anisotropic viscous aerodynamic drag (wind) and collision effects (friction). 

The Particle System is integrated with Backward Euler, Implicit Midpoint [Volino and Thalmann, 2005] or 

alternatively BDF-2 [Hauth et al, 2001] numerical integration methods for performing dynamic cloth simulations. 

Meanwhile, for cloth relaxation and draping applications, an iterative Newton resolution scheme which finds the 

particle positions that minimize the particle forces through the Jacobian was also implemented. In any of these 

implicit schemes, our implementation uses, for each iteration, the Jacobian of the forces corresponding to the actual 

current state of the system. This variable Jacobian scheme, which captures accurately all the nonlinearities of the 

system, is made possible through on-the-fly evaluation of the Jacobian directly inside the numerical solving of the 

computation iteration, which is performed using the Conjugate Gradient method. 

The computation code is written in standard C++ using double precision floating-point, and the tests are 

performed on a 3GHz Pentium4 PC. 

4.1. Accuracy of the Model 

Our accuracy test consists in simulating a virtual material described by its weft, warp and shear nonlinear strain-

stress curves, modeled from force-displacement curves of a tensile test. Through simulation, we perform a virtual 

tensile test of the material, comparing the resulting force-displacement curves to the experimental ones. 

We have performed this test using a 150g/m2 wool gabardine fabric, which is a fairly nonlinear material, highly 

anisotropic with weak shear stiffness. 

We have first measured the tensile weft, warp and shear (along weft) force-elongation curves using a tensile 

tester on the normalized 20cm×5cm sample. The averages of the load and unload curves, once converted into strain-

stress curves according to the formula given in the Appendix, are then modeled with polynomial splines (3 

segments, 3rd-order for elongation and 2nd-order for shear). 

The virtual simulation of the experimental setup has then been carried out on a virtual sample of 2500 triangles: 

The cloth rectangle is attached along its two longest edges, and the total attachment force along one edge is 



 

 

measured according to its displacement. No other external force is considered and gravity is set to 0. Between each 

state change, the cloth equilibrium was computed using the Newton relaxation method. 

The following force-displacement curves give the comparison between the polynomial model modeling the 

experimental data and the virtual test data (strain-stress curves converted back to force-displacement curves) (Fig.9). 
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Figure 9: Comparing simulated weft, warp and shear force-displacement curves with their counterparts defined in the model. With less than 

0.01% difference, the curves are practically identical. The virtual tensile setup is shown at bottom right. 

From these curves, we can see that the force-displacement behavior our simulation system duplicates very 

precisely the force-displacement model resulting strain-stress polynomial spline model (converted back to force-

displacement). The error remains always below 0.01%, with force differences below 0.01 N whereas total forces 

may exceed 100 N. 

This illustrates the very high accuracy that our model can provide even in the context of nonlinear anisotropic 

materials in the context of large deformations. Such accuracy is indeed expected, since our model represents 

accurately the mechanical constitutive laws of the material model through continuum mechanics without any 



 

 

approximation. Furthermore, since the computation of the Jacobian is also exact, the model converges fairly quickly 

to the theoretical value described by the curve model (in less than 10 iterations to the error specified above, and only 

limited by the numerical floating-point accuracy of the computations). 

4.2. Real-World Accuracy 

In order to verify the validity of our model for simulating cloth in a more “real-world” context, we have set-up 

an experiment for comparing the behavior of the real cloth with the simulated virtual cloth. 

A piece cloth is clamped horizontally on a circular frame (30cm diameter), with as little initial tension as 

possible. Then, a vertical force is exerted on a disk (6cm diameter) on the middle of the cloth. The vertical 

displacement of the disk is measured according to that force (Fig.10). We have chosen a fairly soft terry cloth, so as 

to observe fairly large displacements that can be accurately measured. 

For the real tests, we have performed an average of several measurement sequences, which allow us to assess the 

accuracy of these measurements through the computation of the standard deviation. Observed measurement 

variations (around 10%) would mainly result from variations of the initial tension of the cloth on the frame, as well 

as some possible material plasticity effects of the material between each measurement. For the simulation, strain-

stress curves have been measured accurately using tensile tests (as described in the Appendix), modeled as three 

independent (weft, warp, shear) polynomial splines (14) averaging the hysteresis loop, and implemented in our 

simulation system. 
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Figure 10: The experimental setup (top), and the virtual simulation (bottom left). Depending on the force exerted by the weight on the middle of 

the cloth, the vertical displacement is plotted (bottom right), comparing the simulation (green curve) with the average of several experimental 
measurements (red dots with error bars showing average deviation). 

The measured curve (Fig.10 bottom right) shows that our simulation can reproduce the real cloth with a fairly 

good accuracy. Along inaccuracy causes mentioned above, another could be the approximate modeling of the 

material, not taking into account possible dependencies between weft warp and shear deformation modes, as 

discussed in the Appendix. 

4.3. Computation Time 

Computational timings were performed on the dynamic simulation of a 1m×1m cloth square (Fig.11), initially 

horizontal, attached along one of its edges. Numerical integration was performed using the Inverse Euler integration, 

with constant simulation timesteps of 10 milliseconds. 

For comparison, we have implemented in our simulation system the linearized corotational scheme, obtained by 

rotation of the local element coordinates to the eigendirections of the strain tensor and linearization of the strain and 

stress expressions. It can be noted that the expression of the Jacobian is more complex (because of the linearization) 

and requires approximations (because of the state-dependent rotation). 

We have compared the computation time of our scheme and the linearized corotational scheme for computing 

100 timesteps of the computation with several mesh resolutions. The considered material is a simple isotropic 



 

 

material (3) (4) of Young modulus e = 1000 N/m, null Poisson coefficient ν = 0. We have also compared the 

computation time of a simple spring-mass system (springs defined along mesh edges) having an equivalent stiffness. 
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Figure 11: Computation times required for the iterating the computation of 1m2 of cloth, using various mesh resolutions, using our simulation 

scheme, the linearized corotational scheme and a simple spring-mass scheme. 

From these curves, we can see that our implementation of the model is able to iterate more than 17 500 elements 

per second. Meanwhile, the linearized corotational scheme is about two times slower. This slowdown results not 

only from the computation of the eigensystem for evaluating the rotation, but also from the additional coordinate 

rotations done in the computation. Furthermore, using a linearized scheme also requires additional vector 

normalisations (square roots), as well as a more complex, non-isotropic geometric component in the exact 

expression of the Jacobian (13). It should be noted that the numerical solving process (involving usually between 10 

and 15 iterations of the Conjugate Gradient algorithm for each timestep, depending on the stiffness) also accounts 

for more than half of the total computation time. 

The interesting point is that the simple spring-mass system is only marginally faster compared to our scheme, 

with only 20 000 elements iterated per second. Hence, our simulation scheme offers a huge increase of simulation 

accuracy for only about 15% additional computation. 

Tested in the same conditions with our simulation scheme, the nonlinear anisotropic strain-stress behavior 

defined is the previous section requires roughly 10% additional computation. 

4.4. Application: Virtual Prototyping 

The presented model has been implemented in a virtual prototyping system which allows the design of complex 

garments on mannequins. The efficiency of the model allows the simulation of the accurate mechanical properties of 

cloth on high-resolution meshes as the mannequin moves, allowing the garment designer to assess the stretch forces 

for particular postures (Fig.12). The design of the garment patterns may then be corrected accordingly, with 



 

 

interactive mechanical feedback on the garment drape. The Particle System approach allows complex multilayer 

garments to be processed through an adequate handling of complex collision situations. Through the use of various 

implicit integration schemes, the model can efficiently compute both static drapes and dynamic animations. 



 

 

 

 
Figure 12: Virtual prototyping applications require an accurate representation of cloth material behavior for evaluating precisely the stretch forces 

(color scale) on the garment along particular postures of the character (top). An efficient simulation model is also required for the dynamic 
simulation of high-resolution complex garments involving several layers of cloth. 



 

 

5. CONCLUSION 

Through the presented computation scheme, we have obtained an accurate simulation system which offers high-

accuracy representation of cloth deformation based on continuum mechanics. Through the use of the non-linearized 

Green-Lagrange tensor, this system performs the simulation of hyperelastic St.Venant-Kirchhoff materials, which 

are particularly adapted for representing the behavior of cloth materials. Yet, this scheme is also extended for 

supporting accurately nonlinear and anisotropic representations of weft, warp and shear strain-stress curves, which 

can be obtained from force-deformation curves measured with traditional tensile tests on actual fabric samples. 

The presented scheme is one of the simplest available featuring the accuracy of continuum mechanics. It remains 

accurate for large deformations without the need of complicating the computation process with additional 

transformations, such as corotational formulations. Furthermore, it can be expressed as a classical Particle System 

(with particle forces directly computed from particle positions), offering a high versatility of applications in 

numerous simulation contexts (draping, dynamic simulation, collision response and other geometric constraints, 

etc). The exact Jacobian of the model can also be efficiently computed, offering efficient and stable simulations 

through the use of implicit integration methods (Inverse Euler, BDF-2, etc). 

Through these qualities, this simulation scheme is particularly well adapted for applications that need to combine 

good mechanical accuracy with computation times compatible with interactive applications. It is therefore a very 

good candidate for garment prototyping applications. 

The highly streamlined computational process also opens the doors for parallelization and hardware 

implementation, which, through the rise of dedicated chips, represent the future of high-performance mechanical 

simulation. 
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APPENDIX: TENSILE TESTS FOR MEASURING STRAIN-STRESS CURVES OF CLOTH 

The tensile behavior of cloth materials is usually characterized by its tensile elasticity strain-stress relationship, 

measured through adequate tensile tests. Standard procedures exist for characterizing cloth properties. For instance, 

the Kawabata Evaluation System [Kawabata, 1987] defines normalized hardware and tests for measuring weft warp 

elongation and shear strain-stress curves. It is important to note the material is only considered through independent 

curves relating weft and warp elongation and shear, with no consideration of any possible cross-dependencies 

between deformation modes, and with also no consideration of the deformation rate (which is set to a single standard 

value). Then, the parameters of the cloth are evaluated as a set of characteristic values quantifying the shape of these 

curves. Since our concern is only related to the strain-stress curves of tensile elasticity, we can exploit weft warp 

elongation and shear curves measured by the Kawabata hardware (Fig.13 left), or use other tensile tests that may 

capture more complex behaviors in wider range of deformations. 

According to the Green-Lagrange tensor (8), The simplest and most natural way to integrate measured curves 

into our computation framework is to consider a simplified relationship between strain and stress (2) expressed as 

three decoupled (weft, warp and shear) curves, as follows: 
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However, through the nonlinearity of the Green-Lagrange tensor (8), the weft, warp and shear strain and stress 

values cannot be directly identified to the measured force-deformation curves through a simple linear 

transformation. The purpose of this section is to establish the adequate conversion formulas (Fig.14), which should 

remain valid for large deformations. 

For this, we consider a general tensile test (Fig.13 right) which combines elongation and shear deformation. 

Kawabata tensile measurements for elongation and shear are particular contexts of this general test. Hence, the 

sample size being lu times lv, a displacement of du elongation and dv shear would produce a force of fu elongation 

and fv shear. 
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Figure 13: Kawabata tensile tester (left): Notations for the elongation and shear tensile tests along the weft direction (right). 

Using (9) with the deformed values of U and V, we obtain the conversion formula from displacements to strain 

values: 
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We also obtain the conversion formula from stress values to forces: 
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The forces are converted back to stress values as follows: 
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Figure 14: Converting a tensile force-deformation curve (left) in into a strain-stress curve (right) using the Kawabata standard sample size (lu = 

0.05m, lv = 0.2m). 

It can be noted that such tensile tests are unable to measure compression stiffness of cloth materials, since these 

buckle and exhibit wrinkle patterns upon compression because of their low bending stiffness. Nevertheless, cloth 

materials do have some compression stiffness, which is indeed necessary for their buckling behavior. Therefore, 

realistic cloth simulation requires compression stiffness to be modeled. High-accuracy models are however not 

required, since buckling allows relaxation and limits the actual cloth compression to low values. In practice, as 

compression stiffness is generally not measured, we typically extrapolate elongation strain-stress curves to negative 

values using antisymmetric functions. 

It can also be noted that elongation and shear measurements can be carried out both along weft and warp 

directions (as done in the Kawabata standard), leading to a total of four curves. However, the mathematical 

definition of tensile deformation only allow its description as three independent values, that we have chosen in (14) 

to be weft, warp and shear, as defined by the Green-Lagrange tensor (8) (9). Assuming independence of the two 

elongation modes, the two shear force-deformation curves cannot be unrelated, and they should indeed produce 

identical shear strain-stress curves after conversion (this should also be true in any case in the context of linear 

elasticity). Therefore, a mismatch between them indicates that there is a significant nonlinear dependency between 

the deformation modes. 

More generally, some behaviors of the cloth material cannot be evaluated using curves from the Kawabata tests 

only. These include those resulting from the coupling of deformation modes, as for example transverse shrinking 

(which, in the context of linear elasticity (4), is represented by the Poisson coefficient) (see Fig.3 in Section 2.1). 

Also, non-symmetric cloth behaviors (possibly caused by non-symmetric yarn patterns) need to be modeled with 

coupling between elongation and shear modes. It would be possible to evaluate with better accuracy the nonlinear 

strain-stress behavior of a cloth through more comprehensive force-deformation tests than what is proposed in the 

Kawabata standard, by combining simultaneously various values of elongation and shear deformations. Adequate 



 

 

interpolation functions would then model this data as a general strain-stress relationship (2) to be used as input in the 

proposed simulation scheme. 




