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A SIMPLE APPROACH TO THE ANALYTIC CONTINUATION

AND VALUES AT NEGATIVE INTEGERS FOR

RIEMANN'S ZETA-FUNCnON

DAVID GOSS

Abstract. In this paper, the author presents a new approach to the subjects in the

title, putting them in a new light. In fact, only integration by parts is used. This

approach has two advantages: (1) it makes the p-adic theory seem even more

natural, and (2) it is accessible to readers with only one year of basic calculus,

making the subjects reachable in elementary courses.

Many of the deepest properties of the Riemann zeta-function appear (with or

without proof) in the work of Leonhard Euler. Euler's methods (which are sum-

marized quite nicely in [1]) are extremely arithmetic in that they involve power

series manipulations. As such, they are perfect for p-adic use (see N. Katz [4]).

Euler's goal was to compute f(«) for « G Z — {1}. In this he succeeded in finding a

closed form solution for all except the positive odd integers, a still open problem.

It seems the first person to seriously consider f(j) for all positive reals was

Dirichlet, though Euler certainly was in a position to do so had he chosen. It was

Riemann who finally made the crucial step of considering f (s), s complex, in order

to describe f (s) by its zeroes.

Euler computed Ç(-k) by using Abel summation in a very clever way; in fact he

anticipated Abel by many years. This was first made rigorous by Riemann through

complex methods. Here we present an elementary approach to these values that is

rigorous by modern standards, yet could have been used by Euler as further

justification for his computations. In doing so we obtain a simple means of analytic

continuation for f(s) as well as a variety of integral formulas. In fact, we use only

integration by parts. In light of this method, the p-adic theory becomes even more

natural and seems almost forced.

The author thanks Mike Rosen and Steve Galovich for their encouragement.

We begin by recalling Euler's integral for «! (see [2]),

«!= ('(-logxyi/x.
Jo

Legendre set x = e~' to obtain

«!= C tne-' dt;
Jo
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and he set for s > 0

T(s) = f °° e-'ts-x dt,       T(n + 1) = «!. (1)
-/o

This integral makes sense for all s G C with Re(s) > 0, and defines a holomorphic

function there.

Now, we may extend T(s) to all 5 G R (or C), in the following well-known,

simple fashion: Apply integration by parts to (1) to obtain

f

se

°°      1   r<*> 1   r00
+ - |     r V dt = -\     tse-' dt.

o       ■* ■'o J ■'o

But this new integral makes sense for all s > -1 (Re(«) > -1); thus extending T(s)

meromorphically to this region. Integration by parts then extends T(s) to all s with

s > -2, etc. By continuing we cover the whole plane. As a bonus, we obtain

sT(s) = ro + 1).
By analytic continuation the above extension is the extension. Henceforth, we

suppress the complex point of view.

Let f(i) = 2"_i n~s be Riemann's zeta-function. By the standard integral test

this converges for all s G R, s > 1. Euler and Dirichlet proved that

m = n (i - p~r\   * > *•
p prime

It was noticed by Abel for í e N+ - {1} and Riemann for ail j > 1 that T(s)Ç(s)

may be given the following simple integral form: As T(s)n~s = /" ts~xe~"' dt, one

has

T(s)t(s)=[  **-' 2 H<a-/  <s-l-r^dt-
Jo \„ = i        / ^o 1 - e '

We modify this à la Euler (and Katz) by considering the functions for m G N+,

*„(*) = (1 - w,_')ití),       s > 1.

However, it is immediate that <bm(s) converges for all s > 0 by Leibniz's test. In the

fashion just given it is easy to see that for s > 0,

T(s)<bm(s) = (°° t*-xRm(e-) dt,
Jo

where

z + z2 + ■ ■ ■ +zm~x + (1 - m)zm

Rm\z) — \ — zm

I + z + ■ ■ ■ +zm~2 + (1 - m)zm~i

1 - zm

As the numerator and denominator of 7?^, are 0 at 1, we may write

zN (z) m_1

*■<*> =l + z +,-.'    ^(Z) - 2 kzk~K
1   +  Z T   •   •   •    +Z A:=l

Note that 7im(0) = 0. For example, 7?2(z) = z/(l + z).
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Therefore, as t -» 0, Rm(e'') remains bounded; and so we can apply integration

by parts to find

1 "' i-ih)CtSR^tydt
*-(*)-äxö.,#JWO

'fUTTyC^1'^^
where 7^(1, e~') = Rm(e~')'. However, this integral converges for all s with s > -1.

As we have previously extended T(s) to all s, we now can extend <j>m(s) and Ç(s) to

all s with s > -1. Moreover, 7?m(l, e~') also remains bounded and so we can again

apply the process. Continuing in this fashion, we extend <i>m(s) and f(j) to all sGR,

As a conequence we obtain the following: Let s G R and let y'EN with

j > Min(-5, \s\). Then

^^ = TvA,,.r <S+J~lR»>0, e-') dt,
T(s + j) J0

where

d V'     , k
*mt/.z) = (z-y7Uz).

Next we turn to evaluating <¡>m(-k) for A: G N. We show <t>m(-k) = Rm(k, 1),

which will then be equated with Bernoulli numbers, and is Euler's original

computation in terms of Abel summation when m = 2.

Set/ = k + 1 in our formulas above. We find

*"("*) = r(ï)J[  ^»(* + 1'«~')«*

Jo

Now set t = -log v to find

mV   7   4> y Jo y

= f' ■j-Rj.Ky) dy = *„(*, 1) - Rm(k, 0)
Jo  dy

= Rm(k,l),   asRm(k,0) = 0.

Definition. The Bernoulli numbers {Bk} are defined by the power series

F(t) = -^— =  f   Bktk/k\.
e' - 1      k-o

As 7^-0 - 7^(0 = t, we see

Bk = 0,       A: = 2« + 1, « > 0.
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Now,

If we set z = e', then z(d/dz) = d/dt and

,^o\dt) \i - em'   \ 1 -e' f)

,^oWry \ 1 - e'      l- ena)

,^o\dt) \ e-> - i      e-»« _ i/

(/í \*7 °° BtJ~x °° Btj~x \

/c -t- 1

Thus 7ím(0, 1) = -j(l - m). But, if /V is even > 0, then £t + 1 = 0. So, for A: > 0

*m(-k) = Rm(k, i)-^±l(1_M*+.)f

and so £(-&) = -7J¿+ ,/(& +1). This is the standard form for the value.

Finally, we make some remarks of a less elementary nature. The first is that our

methods work also for the partial zeta-functions, i.e., those functions of the form

I (« + ay,
n-l

forO < a < 1.

The second is that the functions R„(j> z) are precisely those that occur p-adi-

cally, see [4]. In fact, the whole p-adic theory is codified by 7?m(z) in that it "is" the

p-adic measure, when (p, «i) = 1.

Lastly, Melhn-inversion (see [3]) gives us a means to invert our formulas so as to

obtain the functions Rm(k, z) as integrals involving the gamma and zeta functions.

Using it, we find

<U-*) = Rm(k, 1) =  lim   f °+'" T(s)<bm(s - k)x" ds,
*->0+ Ja-i"

for any o > 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RIEMANN'S ZETA-FUNCnONS 517

References

1. R. Ayoub, Euler and the zeta-function, Amer. Math. Monthly 81 (1974), 1067-1086.
2. P. Davis, Leonhard Euler's integral: A  historical profile of the gamma function, Amer. Math.

Monthly 66 (1959), 849-869.
3. H. M Edwards, Riemann's zeta-function, Academic Press, New York, 1974.

4. N. Katz, P-adic L-functions via moduli of elliptic curves, Proc. Sympos. Pure Math., vol. 29, Amer.

Math. Soc., Providence, R. I., 1975, pp. 479-506.

Department of Mathematics, University of California at Berkeley, Berkeley, California

94720

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


