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A Simple Approach to the Perron-Frobenius Theory

for Positive Operators on General Partially-Ordered

Finite-Dimensional Linear Spaces41

By Werner C. Rheinboldt and James S. Vandergraft

Abstract. This paper presents simple proofs of the principal results of the Perron-Frobe-

nius theory for linear mappings on finite-dimensional spaces which are nonnegative relative

to a general partial ordering on the space. The principal tool for these proofs is an applica-

tion of the theory of norms in finite dimensions to the study of order inequalities of the

form Ax S ax, x è 0 where A ^ 0. This approach also permits the derivation of various

inclusion and comparison theorems.

1. Introduction. The results of Perron [1907] and Frobenius [1908]-[1912]

concerning spectral properties of matrices with nonnegative elements have become

an important tool in the study of iterative methods for linear equations in Rn. These

results have been generalized in various ways; see, for example, Krein and Rutman

[1950] and Schaefer [1966] for general extensions to infinite-dimensional spaces and

further references.

Simple proofs of the Perron-Frobenius results for matrices can be found in Varga

[1962] and Householder [1964]. These proofs, however, do not appear to carry over

to the case of linear mappings on a finite-dimensional space which are nonnegative

under a general partial ordering on the space. For this case, it is necessary either to

emulate the infinite-dimensional proofs by using the Brouwer fixed point theorem

(see, e.g., Fan [1958]) or to depend heavily on the spectral theory of finite-dimensional

linear maps and the Jordan form of a matrix (see Birkhoff [1967] and Vandergraft

[1968]).
In this paper, elementary proofs are presented of the principal results of the

Perron-Frobenius theory for general partially-ordered finite-dimensional spaces.

Our basic tools are some results about norms and a consistent use of simple order-

bound concepts. No use is made of the spectral theory of linear mappings. These

proofs are similar in spirit to the cited proofs of Varga and Householder for the

case of the componentwise ordering. They also emulate some techniques of Bohl

[1966] and Schneider and Turner [1972] which were employed by these authors in

connection with discussions of the infinite-dimensional case.

2. Preliminary Results. Let V be a finite-dimensional, normed, real, linear

space, and K E V a. closed, convex, and solid cone. In other words, aK C K for all

a ^ 0, K + K E K, K r\ (-K) = {0}, and the interior K° of K is nonempty. These
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assumptions ensure that the cone is generating, that is, V = K — K. The partial

ordering induced by K is denoted by 2:. Thus, x ^ y means x — y E K, and x > y

stands for x — y E K°. If A E L(V) is a linear mapping of V into itself, then A ^ 0

is defined by Ax E K whenever x E K.

If zz G K°, then the order interval

[-u, u] = {x E  V | -u g x è u}

is closed and convex. Moreover, for any x E V, there exists a t > 0 such that x E

t[—u, u] (absorption property), and, if x E [—u, zz], then ax E [—a, u] for any a

with |a| ig 1 (equilibration property). Thus, a norm on V is defined by

||*||. = inffi ^ 0\xE t[~u, u]\

(see Householder [1964, p. 38]). This norm is monotonie; that is, 0 ^ x ^ y implies

that ||x||u ^ \\y\\u and the induced operator norm

\\A\l=     sup    \\Ax\l,        AEUV),
i iiii.-i

satisfies

\\A\\tt =  || ¿«H., A E LiV), A^O.

Next, for any norm on L(V) induced by a norm on V, we write

riA) = lim sup |M*||V\

Since all norms on V are equivalent, r(/l) is norm-independent. Also, since \\Ak\\ ^

11^411*, it follows that r(A) :g \\A\\ under any norm. We shall not use the well-known

fact that the lim sup is actually a limit, nor that r(A) is the spectral radius of A. The

facts about r(A) which we do need are contained in the following lemma.

Lemma 1.   If A E L(V), then the following statements are equivalent.

(i) r(A) < 1,

(ii) 22k-o Ak converges uniformly to (I — A) 1,

(iii) linv,„ Ak = 0.

Proof, (i) => (ii) From r(A) = lim sup ||/4*||1/* < 1 follows the convergence

of 22k-o 11-4*11 which is exactly the statement that 22 ^* converges uniformly. The

fact that the series represents (/ — A)~1 is a consequence of

(/ + A + A2 + ■ ■ ■ + Am)il - A) = I - Am+1.

(ii) => (iii) If 22 IM*|| converges, then necessarily lim4_„ ||^*|| = 0.

(iii) => (i)   Let ak = \\Ak\\. Then the following facts are obvious:

(a) ak ^ 0, Vfc £ 0,

(b) aQ < 1, for some q > 0,

(c) ak+i g a*«,-, Vfc, j è 0.

Without loss of generality, we may assume that a„ > 0. Now, any integer zzz > 0

can be written as zzz = pq + r, where p ^ 0, 0 ^ r < q. Thus,

«<    /      \p m/q   — r/q ,   \/q\ma
«» = "„t, ^ (ajar = otq   <Xq     ar = (a,   ) ßr

where j3r = a,a-r/*. Hence, ax¿m ^ aJ/a/3'/m and, since there are only finitely many

ßr, it follows that limm^„ ß\/m = 1; that is
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riA) = lim sup a¿m g a\/q < 1.
m-» oo

3. Order Bounds. The theorems in this section are based on order inequalities

of the form Ax :£ ax, for some x ^ 0. Such inequalities play a considerable role in

most of the works cited in the introduction; however, their full value in the finite-

dimensional case does not seem to have been realized. We begin with a convergence

result.
Theorem 2. Let A ^ 0, A E L(V), and suppose that Ax ^ x for some x > 0.

Then lim^œ Akx = x* z% x exists. Moreover, x* = 0 if and only if riA) < 1.

Proof.   Set xk = Akx, k ^ 0; then, by induction,

0 g xk+1 ú xk Ú ■■■ è x1 g x

and hence lim xk = x* exists, and x* f£ x. If riA) < 1, then Lemma 1 implies that

lim^„ Ak = 0, and hence that Hm*-,» A"x = 0. If x* = 0, then

||ii*||. - ||;<**||.-HI**||.- 0,    aszV^œ,

and, thus, linv,«, Ak = 0, which by Lemma 1 implies that r(A) < 1.

The first part of this theorem is a linear version of a lemma of Kantorovich [1939]

which has been used extensively in the study of iterative methods for nonlinear

equations. In order to apply this result, it is necessary to find x > 0 with Ax ^ x.

The next theorem provides such an x.

Theorem 3. Let A 2: 0, A E L(V). Then Ax < ax for some x > 0, and a > 0,

if and only if a > r(A).
Proof. Suppose that a > r(A). Then Â = (l/a)A satisfies r(Â) < 1, and, by

Lemma 1, we have

(/ - AT1 = ± Âk
k-0

and, clearly, (/ — Â)'1 ^ 0 since all terms in the series are nonnegative. If y > 0,

then x = (I — Â)'1 y satisfies (I — Â)x > 0, whence 0 ^ Ax < ax and x > 0. Con-

versely, if Ax < ax for some x > 0, then Ax ¿ (a — e)x for some e > 0, and hence

riA) g \\A\\X = H^IU g (a-e)<«.

The special case a = 1 of this theorem was proved by Vandergraft [1972] using

the Perron-Frobenius theory in partially-ordered spaces. In that paper, a matrix B

such that Bx > 0 for some x > 0 is called A^-semipositive. Hence, Theorem 3 states

that, for A 2: 0, ai — A is A^-semipositive if and only if a > riA).

The next theorem concerns the case when some strict inequalities in the previous

theorem are reduced to simple ones.

Theorem 4. Let A ^ 0, A E L{V). If r(A) ^ a, then there exists an x 7z 0,

x 5¿ 0 with Ax ^ ax. Conversely, if Ax £j axfor some x > 0, then r(A) ^ a; and if

r(A) = a > 0, Zzzezz Ax* = r(/l)x* /oz- some 0 ^ ;c* ^ x, x* ¿¿ 0.

Proo/. If r(^) g a, then r(A) < f* = a + l/k, k = 1, 2, • • • . By Theorem 3,
there exist x* > 0, /c = 1, 2, • ■ • , with Axh g ítx*. These vectors xk can be scaled

so that ||x*|| = 1 for all k, which implies that a convergent subsequence can be

found with a limit x* satisfying Ax* :S ax*, x* £: 0, ||x*|| = 1.
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For the converse, we have r(A) ^ H^H* = \\Ax\\x ^ a; and, if r(A) = a > 0,

then Â = (I/a)A satisfies r(Â) = 1. Now, apply Theorem 2 to Â to find x* ^ 0

with 0 g x* ^ x and Âx* = x*, that is, Ax* = ax* = r(A)x*.

4. A-Irreducibility. Theorem 4 establishes the existence of a vector x 2; 0

such that Ax ^ r(A)x. In order to prove that equality holds for some nontrivial

x 2r 0, it is convenient to impose slightly stronger conditions on A. In the case of

the natural (componentwise) ordering on R", the concept of irreducibility is used

in this connection. Vandergraft [1968] extended this concept to general partial order-

ings by considering the face structure of the cone K. For our purposes, it is expedient

to use a somewhat simpler but equivalent definition.

Definition 5. The mapping A E L(V), A 2t 0, is K-irreducible if Ax ^ ax for

some x 2: 0, x ^ 0, implies that x > 0. Otherwise, it is called K-reducible.

Note that by this definition A 2: 0 is AT-reducible if Ax g ax for some x ^ 0

on the boundary dK of K.

The equivalence of this definition with that given by Vandergraft [1968] follows

from Lemma 2.1 of that paper. In fact, if Ax ^ ax, for x ^ 0, x E dK, then this

lemma ensures the existence of a linear subspace S C V, such that K C\ S is a subset

of bK, and A restricted to S maps KC\ S into itself. This is equivalent to Vandergraft's

earlier definition of AT-reducibility.

Theorem 6. If A E L(V), A 2: 0, is K-irreducible, then Ax* = r(A)x* for some
x* > 0 and r(A) > 0.

Proof. By Theorem 4, we know that Ax ^ r(A)x for some x 2: 0, x ^ 0, and

by AT-irreducibility it follows that x > 0.Now,z-(^) 2; \\Ax\\x = \\A\\X > 0, so Theorem

4 also ensures that Ax* = r(A)x* for some 0 ^ x* ^ x, x* ?¿ 0, which by AT-irreduci-

bility is only possible for x* > 0.

In order to prove a similar theorem for A-reducible A 2; 0, we use a standard

continuity argument. Note first that there are B E L(V) such that Bx > 0 for any

x 2; 0, x ;¿ 0. In fact, if zz > 0 and S 0 span(zz) = V is any decomposition of V,

then the induced projection B from K onto span(w) has this property. Now, let A E

L(V), A 2: 0 be given, and let e > 0. Then, by Theorem 3, Au < (r(A) + í)zz for

some u > 0, and thus,

(1) dA)^  \\A\\U =  \\Au\\u g riA) + e.

Furthermore, the maps Ak = A -\- il/k)B, k 5: 1, are A-irreducible and, hence, we

have Akxk = riAk)xk , where xk > 0, and we may assume that ||x*||„ = 1, for all k.

Since Axk ^ riAk)xk, xk > 0, we have by Theorem 4 and (1), that

(2) z-M) è riAk) ^  \\Ak\\u ^  \\A\\U + l- \\B\\U Ú r(A) + e + | ||B||„.

Let jx*'} be a convergent subsequence, with limit x* 2t 0, x* ^ 0. Then, from (2),

it follows that lim^œ r(Ak) = r(A), and thus Ax* = r(A)x*. This proves the following

result.

Theorem 7. For any A 2: 0, A E L(V) with r(A) > 0, there exists an x* 2: 0,

x* ¿¿ 0, such that Ax* = r(A)x*.

.rv-irreducibility also allows a strengthening of some earlier results. The next

theorem, for example, is a stronger form of the second part of Theorem 4.
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Theorem 8. Let A 2t 0 be K-irreducible, and suppose that Ax g ax, Ax 9e ax

where x > 0, a > 0. Then riA) < a.

Proof. By Theorem 4, riA) 5¡ a. If riA) = 0, then riA) < a; hence suppose

that riA) = a ^ 0. By Theorem 6, Ax* = ax* where x* > 0. Now, if z = \\x*\\x x —

x*, then z E SA and

0 Û   Az =  11**11, Ax -  Ax* ^  ||x*|Uax - ax* = az,

which contradicts the AMrreducibility of A.

As an application of this result, we give a simple proof of the monotonicity of

r(A).
Theorem 9. Let 0 ^ A ^ B where A is K-irreducible and A ¿¿ B. Then riA) <

r(B).

Proof. Clearly, B is also A"-irreducible, and by Theorem 6, r(B) > 0, Bx* =

r(B)x* with x* > 0. But then Ax* ^ Bx* = r(B)x* and Ax* ^ z-(5)x*, which, by

Theorem 8, gives r(A) < r(B).

The remaining statements of the Perron-Frobenius theory can be proven in the

standard way (see, e.g., Vandergraft [1968] and Householder [1964]). We shall not

go into detail here, but rather consider results like those of Section 3 with certain

inequalities reversed. An example of such a theorem is as follows.

Theorem 10. Let A 2t 0, A E L(V) be K-irreducible. If Ax 2t ax, Ax ¿¿ ax

for some x 2: 0, a > 0, then r(A) > a. Conversely, if r(A) > a, then Ax > ax for

some x > 0.

Proof If Ax 2: ax, Ax 9e ax, x 2: 0, a > 0, then Âx 2: x, where Â = (l/a)A,

and, by Theorem 6, Âx* = r(Â)x*, x* > 0. Now HxH*. x* — x 2t 0, and hence

(3) 0 g  Â(\\x\\x. x* - x) ^  IMI,. r(Â)x* - x

or x ^ riÂ) I |x¡ I z, x* which, by definition of | |x| | x, implies that riA) S 1 • But r(Â) = 1

and (3) contradict the A^-irreducibility of A; hence riÂ) < 1; that is, riA) < a. Con-

versely, by Theorem 6, Ax* = r(A)x*, with x* > 0, and thus r(A) > a implies that

Ax* = r(A)x* > ax*.

Using the usual continuity argument, we can drop the A-irreducibility in Theorem

9, and this leads to the following theorem.

Theorem 11. Let A 2; 0, A E UV). Then Ax 2t ax for some x 2: 0, x ^ 0,

a > 0, if and only if r(A) 2: a.
Upper and lower bounds for r(A) can be obtained by combining Theorems 8

and 10 for A'-irreducible matrices, or Theorems 4 and 11 in the AT-reducible case.

We state the result only for the AMrreducible case.

Theorem 12. If A 2: 0, A E L(V), is K-irreducible, then ax ^ Ax ^ ßx, with

equality excluded, for some x 2: 0, x ^ 0, implies that a < r(A) < ß.

This provides a simple proof of a well-known inclusion theorem of Frobenius

[1908]. That is, if A is an irreducible matrix in the classical sense, then applying

Theorem 12 to \A\ = (|a¿,|), with the vector x = (1, 1, • ■ • , l)r and the usual com-

ponentwise ordering, we find that 5 < r(A) < S, where

n n

s = min 22 \aa\>        s = max ^2 \aa\-

Theorem 4 can also be used to prove the following well-known result.
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Theorem 13.   If A 2: 0, A E L(V), then Ax = ax, x > 0, implies that a = r(A).

Proof. By Theorem 4, we have r(A) :£ a. If a > r(A), then a 9e 0, and Â =

(l/a)A satisfies Âx = x. Hence, Âkx = x and \\Âk\\x = \\Âkx\\x = ||x||i = 1, for

all k 2ï 0, which means that {Âk} does not converge to zero. Lemma 1 then states

that z-(^î) 2: 1; that is, r(A) 2: a and, altogether, r(A) = a.

As a final application, we give a simple proof of the Stein-Rosenberg theorem

[1948], and of a theorem of Stein [1952].

Theorem 14. Let Bx 2: 0, Bx j¿ 0, r(Bx) < 1 and B2 2: 0, and assume that B =

Bx + B2 is K-irreducible. Set H = (I — Bl)~1B2. Then one of the following three con-

ditions holds:

if) riH) < riB) < 1,
(ii) r(H) = r(B) = 1,

(iii) r(H) > r(B) > 1.

Proof.   Let p = r(B). Then, by Theorem 6, Bx = px for some x > 0 and hence

(4) B2x + (1 — p)Bxx = px — pBxx.

If p = 1, this implies that Hx = x, x > 0, and hence, by Theorem 13, that r(H) = 1.

In the case p < 1, we have

Hx ^ Hx + il - p)il - Bx)-'Bxx = px,        x > 0,

where Hx 9e px because of Bx 9e 0. Thus, Theorem 8 implies that riH) < p. Finally,

if p > 1, then (4) gives

Hx 2: Hx - (ji - l)il - BxylBxx = px,        x > 0,

where once more Hx 9e- px, and then by Theorem 10, r(H) > p.

Theorem 15. Let A E J-iY) be symmetric and positive definite. If B E L(V) is

such that A — BTAB is positive definite, then r(B) < 1.

Proof. Let V be the space of symmetric linear transformations on R", and let

K be the cone

A" = {TE V | Tis positive semidefinite}.

The linear transformation 03 on V defined by

(B(r) = BTTB

is nonnegative, with respect to this cone, and the hypotheses state that

(&ÍA) < A    where A > 0.

Hence, by Theorem 3, r(($>) < 1. Using the norm

||CB| | =     sup     \\<ñ(T)\U = \\B\\22
nrii,-i

where || • ||2 is the spectral norm on V, we see that also r(B) < 1.

Computer Science Center

University of Maryland

College Park, Maryland 20742

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PERRON-FROBENIUS   THEORY   FOR   POSITIVE   OPERATORS 145

1967. G. Birkhoff, "Linear transformations with invariant cones," Amer. Math.
Monthly, v. 74, 1967, pp. 274-276. MR 35 #5454.

1966. E. Bohl, "Eigenwertaufgaben bei monotonen Operatoren und Fehlerabschätzungen
für Operatorgleichungen," Arch. Rational Mech. Anal., v. 22, 1966, pp. 313-332. MR 38
#2622.

1958. K. Fan, "Topological proofs for certain theorems on matrices with non-negative
elements," Monatsh. Math., v. 62, 1958, pp. 219-237. MR 20 #2354.

1908. G. Frobenius, "Über Matrizen aus positiven Elementen," S.-B. Deutsch. Akad.
Wiss. Berlin, v. 1908, pp. 471-476.

1909. G. Frobenius, "Über Matrizen aus positiven Elementen. II," S.-B. Deutsch. Akad.
Wiss. Berlin, v. 1909, pp. 514-518.

1912. G. Frobenius, "Über Matrizen aus nicht negativen Elementen," S.-B. Deutsch.
Akad. Wiss. Berlin, v. 1912, pp. 456-477.

1964. A. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell,
Waltham, Mass., 1964. MR ,3« #5475.

1939. L. Kantorovic, "The method of successive approximations for functional equa-
tions," Acta Math., v. 71,, 1939, pp. 63-97. MR 1, 18.

1950. M. G. Krein & M. A. Rutman, "Linear operators leaving invariant a cone in
a Banach space," Uspehi Mat. Nauk, v. 3, 1948, no. 1 (23), pp. 3-95; English transi.,
Amer. Math. Soc. Transi. (1), v. 10, 1962, pp. 199-325. MR 10, 256; MR 12, 342.

1907. O. Perron, "Zur Theorie der Matrizen," Math. Ann., v. 64, 1907, pp. 248-263.
1966. H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966. MR

33 #1689.
1972. H. Schneider & R. E. L. Turner, "Positive eigenvectors of order-preserving

maps," J. Math. Anal. Appl., v. 37, 1972, pp. 506-515.
i 948. P. Stein & R. L. Rosenberg, "On the solution of linear simultaneous equations

by iteration," /. London Math. Soc, v. 23, 1948, pp. 111-118. MR 10, 485.
1952. P. Stein, "Some general theorems on itérants," /. Res. Nat. Bur. Standards, v. 48,

1952, pp. 82-83.
1968. J. S. Vandergraft, "Spectral properties of matrics which have invariant cones,"

S1AMJ. Appl. Math., v. 16, 1968, pp. 1208-1222. MR 39 #5599.
1972. J. S. Vandergraft, "Applications of partial orderings to the study of positive

definiteness, monotonicity, and convergence," SIAM J. Numer. Anal., v. 9, 1972, pp. 97-104.
1962. R. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

MR 28 #1725.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


