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A Simple Approximation of the Aggregate
Interference From a Cluster of Many Interferers
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Abstract—We examine the statistical distribution of the inter-
ference produced by a cluster of many co-channel interferers: e.g.,
a sensor network, or a city full of active wireless devices and access
points. We consider a clustered interferer layout and analyze the
interference as experienced at a given point outside (and not
immediately near to) the interferer area. We model the propaga-
tion paths as experiencing power law attenuation and lognormal
correlated shadowing, with pairwise correlations depending on the
relative positions of the two interferers. It has already been shown
in literature that adding correlation to the shadowing model can
give significantly different, and more realistic, results. Our solu-
tion is mostly analytical, with only a small amount of numerical in-
tegration required. Whereas both simulation and other analytical
methods become very computationally demanding as the number
of interferers grows, our method’s complexity is independent of
the number of interferers, and its precision actually improves
when their number increases.

Index Terms—Sum of lognormals, correlated shadowing, inter-
ference analysis.

I. INTRODUCTION

SCARCE wireless spectrum is in ever-increasing demand,
due to a multitude of emerging rate-hungry applications.

Satisfying this demand will require an increased spatial reuse
of the wireless channel. While in the past wireless systems
were often noise-limited, or experienced only a few co-channel
interferers, we expect future systems to often be significantly
interference-limited, with potentially hundreds of co-channel
interferers. It is therefore of interest to study the statistics of the
total interference power coming from many interferers; in [1],
we examine some properties of this total interference power,
focusing on rapid simulation algorithms for a large number
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of interferers. Whereas shadowing correlation is of secondary
importance in scenarios with only a few interferers (such as
in classical cellular networks), in [1] we demonstrate that
shadowing correlation plays a significant role in the statistical
behavior of the total interference power from a large number of
interferers, and cannot realistically be neglected (as it often had
been before [2]–[8]).

The sum interference power from many transmitters has
received significant interest in recent years [7]–[9], including
scenarios where transmitters are grouped in one or multiple
clusters [10], [11]. Important emerging applications include
machine-to-machine (M2M) networks [12] (including wireless
sensor networks [9]–[11]), ad-hoc networks [10], [11], and
large cities with thousands of devices simultaneously transmit-
ting in unlicensed bands (e.g., WiFi, Bluetooth [11], [13]–[15]);
this results in many possible scenarios where even thousands
of small simultaneous transmitters distributed over a certain
area collectively cause non-negligible interference to receivers
located outside that area (sometimes even tens of kilometers
away [14], [15]).

Despite this growing importance of modeling the interfer-
ence from many devices, the channel models used in the
analysis literature are inadequate to the task (most likely due to
the analytical difficulty of the problem): lognormal shadowing
is not always considered, and furthermore, to the best of our
knowledge, only our work in [1] considers position-dependent
correlation among shadowing paths. Work on interference with
correlated shadowing has been relatively scarce. The study of
the distribution of the sum of correlated lognormal random
variables (RVs) has received some interest [16]–[21] (see also
some references therein). This type of work, however, presup-
poses deterministic interferer positions, which are needed to ob-
tain the pairwise correlation coefficients; it is not immediately
evident how to extend those methods to a random interferer
placement. Furthermore, there is some difficulty in scaling
these methods, due to their computational complexity and a
possible deterioration in accuracy as the number of interferers
increases. Recent works [22], [23] examining sum interference
with correlated shadowing consider only a small number of
interferers (at most 6) and assume constant pairwise correlation,
with the constant value chosen more or less arbitrarily. But
actually, there exist many models for shadowing correlation
[24], and in this work we allow for any reasonable shadowing
correlation function. We study the case of hundreds of individ-
ual interferers, and allow their positions to be random according
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to some spatial distribution. Indeed, it may be simpler and more
credible to describe a large number of positions statistically
rather than deterministically.

In this paper, we continue the work in [1] with roughly the
same problem statement, and provide a very simple and ac-
curate analytical approximation to the sum interference power
distribution for a particular subset of possible interferer layouts,
specifically what we call a cluster, i.e., from the vantage point
of the receiver, all the interference signals arrive from within a
narrow angle spread. In this case, the total interference power is
shown to follow an approximately lognormal distribution, as
long as the number of interferers is large enough. A simple
analytical solution is interesting in that it gives insight into
the effect of various system and channel parameters on the
total interference power distribution; also, correlation makes
the problem computationally very expensive for a large number
of shadowing paths. This paper complements our work in [1],
which is a partly-simulation-based method that we recommend
for non-cluster geometries to which the approximations pre-
sented here do not apply.

In Section II, we describe the physical problem and its math-
ematical model, after having introduced some necessary mathe-
matical concepts. The problem statement is a slightly simplified
version of the one we used in [1]. We derive a simple lognormal
approximation to the total interference power distribution in
Section III, with details of the derivation in the Appendices. We
demonstrate the accuracy of our approximation against Monte
Carlo simulations in Section IV. In Section V, we conclude and
give some ideas on how to extend our method to more detailed
system and channel models.

II. PROBLEM STATEMENT

Our problem statement is novel for its combination of shad-
owing with spatially-dependent correlation, random interferer
positions according to any spatial distribution, and a large
number of interferers. We used a similar problem statement,
with minor variations, in [1], [25], [26].

A. Mathematical Tools

We first introduce some mathematical concepts that will be
needed for describing and analyzing our problem.

The theory of exchangeable RVs was introduced by de Finetti
[27]–[29]. Intuitively, a set of exchangeable RVs is simply one
for which the index assignment is arbitrary, i.e., all permuta-
tions of the RVs have the same joint distribution.

Definition 1: A finite set of RVs {Xi}Ni=1 is said to be ex-
changeable if the vectors [X1, X2, . . . , XN ] and [Xp(1), Xp(2),
. . . , Xp(N)] have the same joint distribution for any permutation
p(i) on the vector [1, 2, . . . , N ].

Theorem 1: (Hewitt-Savage Generalization of de Finetti’s
Theorem [30]). For any exchangeable set {Xi}Ni=1, there exists
a single RV Z such that all Xi’s are conditionally independent
on Z. Equivalently, there exists a set of independent and iden-
tically distributed (iid) RVs {Yi}Ni=1 such that, for all i, Xi can
be written as a function of Z and Yi.

Fig. 1. Example of a clustered layout, used for the simulations in this paper.
The interferers are distributed uniformly and independently over the circular
region of radius 1 km, and the victim receiver RX is located at d � 1 km from
its center.

Definition 2: Consider a set {Xi}Ni=1 of (jointly) Gaussian

RVs. We say that the RVs {eXi}Ni=1 are jointly lognormal.
Definition 3: A sequence X1, X2, . . . , XN of RVs with cu-

mulative distribution functions (cdfs) F1(x), F2(x), . . . , FN (x)
converges in distribution [31] to an RV X with cdf F (x) if

lim
N→∞

FN (x) = F (x), ∀x ∈ R.

We then write: XN
D−→ X as N → ∞.

B. System Model

We consider N interferers, randomly distributed according
to a density function g(�r), such that the victim receiver RX
experiencing the interference is defined to be located at the
origin. This can model interferer layouts of any shape, such
as those found in literature: circles or rings [1, and references
therein], hexagonal or circular cellular layouts [2], [23], [32]–
[34], or even detailed densities of urban areas [14], [15],
whereas networks of infinite size such considered in [7], [8]
are merely mathematical simplifications of finite networks.

The locations �ri of the interferers are iid; we write ri = ‖�ri‖.
We assume each interferer transmits with equal constant power.

We will further assume a clustered layout of the interferer
density g(�r), meaning that:

1) Most if not all of g(�r) is located far enough away from
the RX (in its far field).

2) The RX sees most of g(�r) inside a fairly narrow angle, so
that the average correlation between shadowing paths is
high.

Fig. 1 gives an illustrative cluster layout scenario. The dis-
tance scale is an example only, as the problem can be scaled
to be smaller or larger. Notably, in [14], [15], whole cities with
thousands of WiFi devices are located tens of kilometers away
from a weather radar [14] or television receivers [15] to which
they cause interference.

C. Channel Model

The channel model is described by the distance-dependent
pathloss and by the spatially correlated shadowing. We do not
consider small-scale fading.

We assume power law pathloss with exponent β. A constant
power law can be justified as long as the interferers are not
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located too close to the RX; e.g., in [35] the pathloss is modeled
as approximately proportional to r−4

i for ri > 200 m.
We also assume lognormal shadowing, with constant dB

spread σs. Again, the constant dB spread can be justified if the
interferers are not located very close to the RX; e.g., in [36] the
shadowing spread is approximately 10 dB for ri > 200 m.

The interference power received at the RX produced by a
single interferer i is then a RV, which can be written

Ii = Kr−β
i eλSi , (1)

where λ = 0.1 ln 10, Si is a zero-mean Gaussian RV with
variance σ2

s , and K is a constant common to all interferers that
includes factors such as interferer transmit power, pathloss at a
reference distance, transmit and receive antenna gains, etc.

This, however, is not a full characterization of the interfer-
ence powers Ii, since they are in fact correlated through the
correlation of the shadowing terms Si. We construct a vector
�S = [Si]

N
i=1 that is (jointly) Gaussian when conditioned on

�r1, . . . , �rN . The vector is fully described statistically by the
quantities

E{Si} =0,

E
{
S2
i

}
=σ2

s ,

E{SiSj |�ri, �rj} =σ2
sh(�ri, �rj), i �= j, (2)

where h(�ri, �rj) is the shadowing correlation model, which must
satisfy the following conditions:

1) −1 ≤ h(�ri, �rj) ≤ 1.
2) h(�ri, �ri) = 1.
3) h(�ri, �rj) = h(�rj , �ri).
4) The correlation matrix of �S must always be positive

semidefinite (psd). This can be guaranteed only by certain
functions h(�ri, �rj) that have the “positive semidefinite”1

property [24], [37].

It should also be remarked that, once the conditioning on the
set {�ri} is removed, the set {Si} is no longer jointly Gaussian,
though each Si is still individually Gaussian.

We examined shadowing correlation models in [24], where
we justified the choice of the following model (which is in-
spired by [38]):

h(�ri, �rj) = max{1− θ/θ0, 0} ·max{1−R/R0, 0}, (3)

where θ = |∠�ri − ∠�rj | ∈ [0◦, 180◦] is the angle of arrival sep-
aration, and R = (10/ ln 10)| ln ri − ln rj | is the ratio (in dB)
of the propagation path lengths. The model has two tunable
parameters: 0◦ < θ0 ≤ 180◦ and R0 > 0.

We choose this model among many others for the following
reasons:

1) We show in [24] that this model always yields psd cor-
relation matrices. This is not the case for several of the
existing models [24].

1This time, a property of shadowing correlation models. Positive semidefinite
functions h(�ri, �rj) are those that always yield psd correlation matrices, for
any N .

Fig. 2. Shadowing correlation function (3) with θ0 = 60◦ and R0 = 6 dB:
the correlation coefficient between two shadowed paths beginning at the base
of the arrow. One path ends at the tip of the arrow, while the other is located
anywhere on the plane. The correlation function is invariant under rotation and
scaling.

2) Furthermore, we argue in [24] that, from among all
models that always give psd correlation matrices, this
model seems most physically plausible. In particular, we
contrast this model with those expressible in the form
h(�ri, �rj) = f(‖�ri − �rj‖), notably with f(x) = e−x/d0

[39]. We argue that these models are difficult to reconcile
with the propagation arguments for correlation in shad-
owing given in [32], [38], [40].

3) The selected model has two tunable parameters, and can
therefore approximate a wide range of correlation models
with reasonable accuracy, as shown in [38].

4) The mathematical form of this model lends itself partic-
ularly well to fast simulation using shadowing fields, as
we demonstrate in [1].

We choose the values θ0 = 60◦ and R0 = 6 dB, which are
realistic values based on [38]. This particular model is illus-
trated in Fig. 2. Again, this is only one possible model, and our
analysis is independent of the form of h(�ri, �rj).

Adding correlation to shadowing represents an important
increase in the accuracy of the physical model, in the difficulty
of the analysis, and in the computational cost of simulation. The
addition of correlation significantly broadens the distribution of
I by increasing its variance, as we have shown in [1] through
analysis and simulation examples.

D. Sum Interference

It is often assumed [16], [41] that the total interference power
at the RX is the sum of the individual interference powers; this
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is justified by the incoherent addition of interfering signals. The
total interference power is then given by

I =
N∑
i=1

Ii = K
N∑
i=1

r−β
i eSi . (4)

It is this RV I that we wish to study.
In [1], we study the moments of I and some of its asymptotic

properties as N → ∞. We also showed how I can be rapidly
simulated for large N with good accuracy. In this paper,we give
a lognormal approximation to the distribution of I , which we
find to be accurate when N is large and the interferers are in a
clustered layout.

III. ANALYSIS

It would be possible to use direct moment matching of the
first two moments of I with those of a lognormal RV, as done in,
e.g., [17], [34]. However, the moments of I have complicated
integral expressions [1], and moment matching tends to bias the
approximation towards the upper tail of the cdf [41]. Instead,
we develop a two-step approach to solving the problem. In the
first step, we show the convergence in distribution of the sum
of exchangeable joint lognormal (SEJLN) RVs to a lognormal
distribution. In the second step, we argue that the interference
problem is similar (but not identical) to the SEJLN problem,
and we match the parameters of the two problems through log-
arithmic cross-moment matching (in [41], we see that matching
the moments of the logarithm of a sum of lognormal RVs tends
to approximate the middle of the distribution well). Our final
result is a simple expression for the parameters of the lognormal
distribution approximating that of I , requiring only a minimum
of numerical integration involving only the functions g(�r) and
h(�ri, �rj).

A. Limit Theorem on the Sum of Exchangeable Joint
Lognormal RVs

Let [Vi]
N
i=1 be a vector of N jointly Gaussian RVs, each with

the same mean μ, same variance σ2 �= 0, and each pair with the
same correlation coefficient 0 < ρ ≤ 1. Now let

V =

N∑
i=1

eVi . (5)

We say that V follows a SEJLN distribution with parameters μ,
σ2, ρ, and N .

Theorem 2: Let V follow a SEJLN distribution. Then, as
N → ∞, the quantity V/N tends in distribution to a lognormal
RV with parameters (m∞, s2∞) given by

m∞ = μ+
1

2
(1− ρ)σ2, s2∞ = ρσ2. (6)

We prove this theorem in [18]. Appendix A gives a similar
proof, but with a simpler decomposition. This theorem is also
extended to a more general case in [21].

B. Lognormal Approximation of the SEJLN RV for Large N

Given that the SEJLN distribution is lognormal in the limit
as N → ∞, it would also be interesting to examine its behavior
for moderate values of N . We reason that, since for both N =
1 and N → ∞, the SEJLN distribution is lognormal, then it
might be approximately lognormal for intermediate values of
N , particularly large ones.

Matching of the first two moments of V with those of a
lognormal RV with parameters mV and s2V yields [18]

mV =μ+
3

2
lnN − 1

2
ln
(
1 + (N − 1)e(ρ−1)σ2

)
,

s2V =σ2 − lnN + ln
(
1 + (N − 1)e(ρ−1)σ2

)
. (7)

At this point one may note that the construction of the
SEJLN distribution is based on equal means, variances, and
correlation coefficients of the underlying Gaussian RVs. It may
therefore appear that this problem has little to do with finding
the distribution of I in (4), where the means and correlation
coefficients are distinct. Nevertheless, we proceed to show
how this ancillary mathematical result can be used to find an
approximate solution for the distribution of I .

C. Mapping the SEJLN Problem Onto the Sum Interference
Problem

Let us now make some observations about the set {eVi}:

1) It is exchangeable. In fact, for any set of N exchangeable
RVs, each pair must have the same correlation coefficient
ρ ∈ [−1/(N − 1), 1] [29].

2) It is “augmentable”, i.e., adding new terms by increasing
N does not change the distribution of the previous terms,
because we fix ρ not to change with N .

3) The elements are each individually lognormal.
4) They are also jointly lognormal.

Now, let us look at the same properties for the set {Ii}. We
have, respectively:

1) As argued before, it is exchangeable.
2) It is also augmentable. Indeed, adding new interferers

should not affect the joint distribution of the previous
interferers’ powers.

3) The elements are approximately lognormal, as long as the
shadowing spread is large enough.

4) Given the previous point, it may be impossible to consider
jointness if the individual Ii are not even lognormal.
However, even the jointness of the terms Si is not guaran-
teed, since their correlation matrix is random (a function
of {�ri}), and therefore we cannot even know if the Ii’s
are approximately jointly lognormal in any sense.

We observe that the two problems are identical in the first two
properties, but not in the two others. The last two properties
may or may not be fulfilled with any good accuracy, and it is
in these two approximations that the inaccuracy of our method
lies. We observe in simulations in [25], [26] and herein that the
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approximation is particularly good for a clustered layout. This
can be explained as follows:

1) A clustered layout admits only a limited relative spread
for ri, and thus limits the log-variance of r−β

i : it follows
that the shape of Ii is dominated by that of eλSi , and that
therefore Ii is approximately lognormal.

2) A clustered layout imposes a high expected value of the
correlation between any two Si’s, due to the angular
proximity of the propagation paths. This high correlation
may affect the jointness of the Si’s. This can be intuitively
explained thus: the higher the correlation terms, the less
“freedom” for the joint distribution of the RV and thus
perforce the joint distribution must be close to that of a
jointly lognormal set of RVs. In particular, if all the cor-
relation coefficients are identically 1, the joint distribution
would admit no freedom at all: all the RVs would be equal
and, of course, jointly lognormal.

D. Cross-Moment Matching and Solution

The similarities between the SEJLN problem and the inter-
ference problem lead us to attempt to match the two, and to use
the limit result from the SEJLN to construct an approximate
limit result for the distribution of I .

Apart from the number of summands, which is N in both
problems, the SEJLN distribution is characterized by the three
parameters μ, σ, and ρ. We therefore want three equations to
solve for these parameters, and we therefore match the logarith-
mic moments E{ln Ii} and E{ln2 Ii} and the logarithmic cross-
moment E{ln Ii ln Ij}, i �= j. Other moment choices would
also be possible, but these were the most natural ones; a cross-
moment is essential to capture the correlation between the Ii
terms.

The details of the moment matching are given in Appendix B.
We find that I may be approximated by a lognormal RV with
parameters

mI =
3

2
lnN + lnK − βG1 −

1

2
k,

s2I =λ2σ2
s − lnN + β2

(
G2 −G2

1

)
+ k, (8)

where

k = ln
(
1 + (N − 1)e(λ

2σ2
s (Gcor−1)−β2(G2−G2

1))
)
. (9)

For large N , this is well approximated by

mI ≈ lnKN+
1

2
β2

(
G2 −G2

1

)
− βG1 +

1

2
λ2σ2

s (1−Gcor),

s2I ≈λ2σ2
sGcor. (10)

Gn and Gcor are to be found by numerical integration of the
functions g(�r) and h(�ri, �rj):

Gn =

∫ ∫

Ag

lnn(r)d�r,

Gcor =

∫ ∫

Ag

∫ ∫

Ag

h(�r1, �r2)g(�r1)g(�r2)d�r1d�r2, (11)

where Ag is the area over which g(�r) is non-zero. These
integrals are well-behaved and can be well approximated by
a Riemann sum (trapezoidal rule) with a moderate number of
terms. Gn and Gcor are termed “geometric coefficients”, and
are an idea borrowed from [33], [34]. It should be noted that this
numerical integration is inevitable, due to the infinite variety
of possibilities for the expression of the functions g(�r) and
h(�ri, �rj). However, our solution is elegant in that it separates
these integrals from the scalar quantities β, σs, and N , in which
it is purely analytical. For this reason, and the brevity of the final
equations, we believe this solution to be the simplest possible
for this level of modeling accuracy.

E. Interpretation of the Analytical Result

Several previous works [5], [7], [8] involving a large number
of interferers neglect shadowing correlation, and the Central
Limit Theorem is invoked to predict a Gaussian distribution
of power. Our work shows that, when increasing the level
of realism to include shadowing correlation, then I can be
approximated by a lognormal distribution (with non-vanishing
spread).

We may interpret our result through Theorem 1: indeed,
it would seem that each shadowing term is approximately
composed of a lognormal component with spread

√
Gcorσs

common to every path, as well as an additional lognormal
term that is iid for every path. As the paths add, the power
of the common term grows as N2, while the power of the
sum of the iid terms only grows as N and becomes more and
more negligible, relatively speaking. This is analogous to what
happens in our proof in Appendix A. This interpretation is also
consistent with the physical basis for correlation in shadowing
given in [24], [32], [38], [40].

From the analytical expressions (8) and (10), one can directly
observe the effect of the problem parameters on the distribu-
tion of I .

Of particular interest is that only one scalar quantity depends
on the shadowing correlation function h(�ri, �rj), namely Gcor.
This leads us to formulate a guideline: while it is very important
to include correlation in our model, only the scalar Gcor is
actually needed in the analytical approximation. Gcor can be
interpreted as the “average” correlation coefficient between any
two shadowing terms, without conditioning on the positions
{�ri}. Indeed

E{SiSj} = σ2
sGcor, ∀i, ∀j �= i, (12)

which can be contrasted with the conditional correlation in (2).
This scalar Gcor is much easier to measure and estimate than
the entire four-dimensional function h(�ri, �rj). In general, we
think this kind of analysis can point the way for engineers
performing channel measurements to know what statistics are
actually relevant to a particular problem, thus greatly reducing
measurement efforts for particular scenarios.

Our result is based on a limit theorem [18] and therefore is
particularly well-suited for large N . It is less accurate for small
N , for which Monte Carlo simulations or recent results on sums
of correlated lognormal RVs [19], [20], [42] may sometimes
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be more appropriate. These last approaches, however, do not
scale well with N (neither in computational cost nor, perhaps,
in accuracy), and therefore our method complements those
approaches nicely. We see in the next section that our approxi-
mation can predict the results of Monte Carlo simulations well.

IV. SIMULATION

We now compare our proposed approximate solution to
Monte Carlo simulations. We begin by describing the classical
approach for computing the distribution of I , including shad-
owing correlation.

A. Simulation Algorithm

The computational complexity of the Monte Carlo simula-
tion of I principally resides in the generating of the correlated
shadowing values in �S.

The natural approach is first to generate the set of interferer
positions {�ri}, and then the N ×N correlation matrix H with
entries Hi,j = h(�ri, �rj). We then need to find a factorization of
H that satisfies

H = CTC. (13)

This is usually done through Cholesky factorization [38], [43].
The existence of a solution2 for C can be guaranteed when the
correlation model is “positive semidefinite” [24]. Finally, we
need to generate a vector �Z = [Zi]

N
i=1 of independent standard

Gaussian random variables. We can then generate �S from

�S = σs
�ZC. (14)

The above algorithm is exact to within numerical precision
and has a computational time complexity of O(N3) [43], and
a memory complexity of O(N2). In [1], we demonstrated
an approximate algorithm for generating the sets {Si} and
{Ii}, with complexity of O(N) and even of O(1) for high
enough N . For the simulations in this section, we still use the
classical Cholesky factorization approach, which is feasible on
a personal computer for N = 1000, but which requires several
hours to execute per cdf. Each cdf is generated from 1 000 000
independent Monte Carlo trials of I (with new values of both
{�ri} and �S for each trial), and is plotted on “lognormal paper”
[41], where all, and only, lognormal cdf appear as straight lines.

B. Simulation Setup

The simulation parameters are chosen as follows:
• K = 1,
• β = 3.5,
• σs = 9(dB),
• g(�r) as in Fig. 1 with d ∈ [1.1, 6](km),
• h(�ri, �rj) as in (3) with θ0 = 60◦, R0 = 6(dB),
• N variable up to 1000.

2There will generally be many solutions for C, only one of which is the
(upper diagonal) Cholesky factorization. However, any solution for C is equally
valid for generating �S.

Fig. 3. Geometric parameters as a function of d, for the layout in Fig. 1 and
correlation function in Fig. 2.

Fig. 4. Distribution of the total interference power I as plotted on “lognormal
paper” [41]. The interference is measured at distances of d = 6, 4, 3, 2, 1.5,
1.1 km (from left to right) from the center of the interferer field, with N = 500
interferers.

The resulting geometric coefficients, found through numeri-
cal Riemann integration of (11), are given in Fig. 3 for various
values of d. The statistical behavior of I is illustrated in Fig. 4,
with the RX placed at various distances from the interferer field,
and in Fig. 5, with a variable number of interferers distributed
over the same area.

C. Interpretation of Simulation Results

The qualitative behavior of the geometric coefficients as a
function of d (Fig. 3) lends itself to simple interpretation. First,
the quantity Gcor, which is the correlation coefficient between
any Si and Sj , i �= j, increases with d. Indeed, as the RX
moves farther away from the interferer field, this field is seen
by the RX at a smaller angle and relative distance spread. It
follows, not only for the correlation model in (3), but for many
correlation models (studied in [24]), that the typical or average
correlation coefficient between any two shadowing terms Si

would approach 1 as d increases.
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Fig. 5. Distribution of the total interference power I as plotted on “lognormal
paper” [41]. The interference is measured at a distance of d = 2 km from the
center of the interferer field, with N = 1, 10, 100, 1000 (from left to right).

We also observe that the average relative distance G1 =
E{ln ri} of any interferer i increases with d; we can say that G1

captures how far, on average, the interferers are from the RX.
Similarly, G2 −G2

1 = VAR{ln ri} captures the relative spread
of the distance between the RX and the average interferer; this
quantity decreases with d, because the relative spread of ri will
indeed decrease with d and tend to 0 as d → ∞.

In Fig. 4, we observe the effect of the distance between the
RX and a large (N = 500) field of interferers. Our analytical
result can be said to approximate the cdf of I very accurately
for d ≥ 2 km, thus confirming that our approximation requires
a cluster layout, but performs poorly when the RX is close to
(or indeed, inside [1]) the field of interferers. Our results with
other clustered layouts in [25], [26] confirm this.

In Fig. 5, we observe the effect of the number of interferers
on the accuracy of our approximation when the layout can be
said to be clustered (d = 2 km). For a moderate number of
interferers (N = 10), the distribution of I is not quite lognor-
mal. However, it is interesting that this trend does not continue:
as the number of interferers becomes even larger (N = 100,
1000), the distribution of I again becomes close to lognormal.
This behavior is also consistent with simulations in [18] in the
case of exchangeable jointly lognormal RVs.

These results are consistent with the literature: indeed, for
a small number of correlated terms, the sum of lognormals
distribution is not always close to a lognormal [19], [20], [42].
The analysis in [21] indicates that only for certain parameter
choices is the sum of many correlated lognormals close to a
lognormal. Our simulations in [1] show that even for a large (N
up to 10000) number of interferers, the sum interference may
not be close to a lognormal in a non-clustered interferer layout.
In summary, both the clustered layout and the large number
of interferers are required for the lognormal approximation
to hold.

The simulations in Figs. 4 and 5, and others in [25], [26]
confirm that, for a clustered layout and a large number of inter-
ferers, our approximation in (8)–(11) is an accurate method for
quickly approximating the distribution of the total interference
power.

V. CONCLUDING REMARKS

We were able to derive a very simple and accurate approx-
imation for the distribution of the total interference coming
from a large interferer field, given correlated shadowing and
a clustered layout. We found that this distribution is close to
a lognormal, with parameters that are easy to compute for any
number of interferers.

Our method is well-suited for a large number of interferers,
where both Monte Carlo simulation and algorithms for finding
the sum of correlated lognormal RVs can be computationally
costly, if not prohibitive. It is also of interest that the effect of
location-dependent correlation among the shadowing paths can
be captured by a single scalar, a fact which may greatly simplify
the correlation measurements that may be needed in a particular
scenario.

Our approach could be extended to more complex system and
channel models. Possible extensions include:

• Have the number of interferers N be a RV (e.g., Poisson
distributed), rather than deterministic. This could reflect,
for example, interferers being on or off.

• The positions {�ri} of the interferers need not be indepen-
dent, but could include more complex statistical behaviors
(see [10], [44] for examples).

• The interference powers {Ii} in this work are assumed
to be long-term averages. A random small-scale fading
multiplicative term for each interferer could easily be
included.

• Similarly, while we assume all interferer transmit powers
to be equal, it would be equally possible to model the
transmit powers of the interferers as RVs, with some
common distribution based on the transmission proto-
cols used.

• It is also quite simple to model a directional receive
antenna at the RX, simply by weighing the distribution of
the interferers by a function of the angle of arrival. Our
method may in fact be very well-suited for such a scenario:
even if the RX is not in a clustered layout of interferers,
the fairly narrow beam of its directional antenna would
receive interference primarily from one direction, and our
approximation could still apply.

• It may be useful to study the total interference as a random
process in time, particularly in mobility scenarios. Several
models are available for describing the auto-correlation
function of the shadowing on a mobile link [24], [39],
[40], [45].

In [26], we describe in more detail how these extensions
could be made. In most cases exchangeability is maintained,
and our cross-moment matching analysis can be applied, with
minor modifications.

APPENDIX A

In [18] we have given a proof based on a more complicated
decomposition. Here, we give a simpler but essentially similar
proof, inspired by the decomposition in [45]. The more general
result in [21] also independently gives a similar proof.
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Proof: Let Z,Z1, . . . , ZN be iid standard Gaussian RVs.
Then we can write

Vi = μ+ σ
√
ρZ + σ

√
1− ρZi, ∀i (15)

to obtain the same statistical distribution for Vi as described
in Section III-A. This decomposition is along the lines of
Theorem 1, where we see that the exchangeable set {Vi} may be
written as a function of one common term Z, and of individual
iid terms Zi. From (5), we have

V/N = eμ+σ
√
ρZ · 1

N

N∑
i=1

eσ
√
1−ρZi . (16)

Now, from the Weak Law of Large Numbers [31], we have

1

N

N∑
i=1

eσ
√
1−ρZi

D−→ e(1−ρ)σ2/2, (17)

a constant. We may then apply Slutsky’s theorem [31] to obtain

V/N
D−→ eμ+(1−ρ)σ2/2+σ

√
ρZ , (18)

which is a lognormal RV with parameters given by (6). �

APPENDIX B

Here, we derive the correspondence between the parameters
of the SEJLN problem and our interference problem. We first
set the common factor K to 1 to simplify the expressions.

We approximate the statistics of {ln Ii} with those of {Vi}
by matching the cross-moments

E{Vi} =μ,

E
{
V 2
i

}
=σ2 + μ2,

E{ViVj} = ρσ2 + μ2, i �= j, (19)

with the corresponding respective cross-moments

E{ln Ii} =E{λSi − β ln ri} = −βG1,

E{ln2 Ii} =E
{
λ2S2

i + β2 ln2 ri − 2βλSi ln ri
}

=λ2σ2
s + β2G2,

E{ln Ii ln Ij} =E{λ2SiSj + β2 ln ri ln rj}
− βλE{Sj ln ri + Si ln rj}

=λ2σ2
sGcor + β2G2

1, i �= j, (20)

where

Gn =E{lnn ri} and

Gcor =
E{SiSj}

σ2
s

, i �= j (21)

are quantities that need to be evaluated numerically in general.

We now equate (19) with (20), and reintroduce the factor
K, which is a common scaling factor that simply modifies the
logarithmic mean of the lognormal RV:

μ = lnK − βG1,

σ2 =β2
(
G2 −G2

1

)
+ λ2σ2

s ,

ρ =
λ2σ2

s

σ2
Gcor. (22)

We substitute these into (7) and, by equating (mI , s
2
I) =

(mV , s
2
V ), we obtain the solution (8).
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