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Abstract

In this paper, we propose a simple but effective encoder-

decoder based network for fast and accurate depth estima-

tion on mobile devices. Unlike other depth estimation meth-

ods using heavy context modeling modules, the encoder

with a fast downsampling strategy is employed to obtain

sufficient receptive field and contexts at a faster rate. To

obtain dense prediction, a light decoder is adopted to re-

cover back to the original resolution. Additionally, to im-

prove the representative ability of the light network, we in-

troduce a teacher-student strategy. It relies on a distilla-

tion process ensuring that the student (the proposed light

network) learns from the teacher. The proposed method

achieves a good trade-off between latency and accuracy. We

evaluated the proposed algorithm on the MAI 2021 Monoc-

ular Depth Estimation Challenge and achieved a score of

129.41, ranked the first place, which wins the second by a

large margin (129.41 v.s. 14.51). More specifically, the pro-

posed method achieves a si-RMSE score of 0.28 with 97 ms

on the Raspberry Pi 4.

1. Introduction

Depth estimation from 2D images has been studied in

computer vision for a long time and is nowadays applied

to robotics, autonomous driving cars, scene understand-

ing, and 3D reconstructions. As a consequence, this is

very problematic to many advanced real-world applications,

such as self-driving cars and robot navigation, which des-

perately demand real-time online depth estimation on mo-

bile devices. Thus, research along the line to make depth

estimation run fast while not sacrificing too much quality is

gaining increasing attention.

Estimating accurate depth from a single image is chal-

lenging because it is an ill-posed problem as infinitely many

3D scenes can be projected to the same 2D scene. How-

ever, recent works based on deep convolutional neural net-

works show great progress with plausible results. After the

first learning-based monocular depth estimation work from

Saxena et al. [24] was introduced, considerable improve-

ments [5, 6, 16, 17, 18, 19, 20, 23, 26] have been made

along with rapid advances in deep learning. While most of

the state-of-the-art works apply models based on deep con-

volutional neural networks (DCNNs) in a supervised fash-

ion, some works proposed semi- or self-supervised learn-

ing methods which do not entirely rely on the ground truth

depth data. The convolutional neural networks are gener-

ally composed of two parts: an encoder for dense feature

extraction and a decoder for predicting the desired depth.

In the encoder-decoder schemes, some powerful deep net-

works such as VGG [25],ResNet [7], DenseNet [10] or

ShuffleNet [28], Mobilenet [9] are adopted as encoder and

a series of strided convolution and spatial pooling layers

lower the spatial resolution of transitional outputs, and sev-

eral techniques such as skip connections or multi-layer de-

convolutional networks are adopted to recover back to the

original resolution for effective dense prediction. To ob-

tain sufficient receptive field and contexts for better depth

estimation, the atrous spatial pyramid pooling (ASPP) [3],

pyramid Pooling module (PPM) [29], global convolution

network (GCN) [21] and self-attention module [11] have

been introduced.

As reported by [13, 14, 15], there was a fast development

of the deep learning field, with numerous novel approaches

and models that were achieving a fundamentally new level

of performance for many practical tasks. At the same time,

mobile devices started to get multi-core processors, as well

as powerful GPUs, DSPs and NPUs, well suitable for ma-

chine and deep learning tasks [27]. However, it is also chal-

lenge deploy these networks into mobile devices due to the

huge computation.

In this paper, we introduce a simple but effective

encoder-decoder architecture for fast and accurate depth es-

timation on mobile devices. To obtain the sufficient recep-

tive field and contexts at minimal computational cost, we

choose a light encoder with a fast downsampling strategy,

which could quickly downsample the resolution of input

images from 480 × 640 to 4 × 6. To recover the spatial

details, the light decoder is introduced, which consists of a

few convolutional layers and upsampling layers. To further

improve the representative ability of the light network, we
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Figure 1. The proposed network architecture.

introduce a teacher-student strategy. It relies on a distilla-

tion process ensuring that the student (the proposed light

network) learns from the teacher. The proposed method

achieves a good trade-off between latency and accuracy. We

evaluated the proposed algorithm on the MAI 2021 Monoc-

ular Depth Estimation Challenge and achieved a score of

129.41, ranked the first place, which wins the second by a

large margin (129.41 v.s. 14.51). More specifically, the pro-

posed method achieves a si-RMSE score of 0.28 with 97 ms

on the Raspberry Pi 4.

2. Method

The overall network architecture with the encoder and

decoder sub-networks is visualized in Figure 1. We will

introduce more details of the architecture and the training

process in the next sections.

2.1. Network Architecture

We design a vanilla encoder-decoder style architecture

for fast and accurate depth estimation on mobile devices.

We use modified mobilenet-v3 [9] as the feature extractor,

which has fewer channels than the original version. To re-

duce the computation, we insert a Resize layer at beginning

of mobilenet-v3 to resize the high-resolution input image

from 480 × 640 to 128 × 160, then the resized images are

fed into the convolution layers, which is denoted as Fast

Downsampling Strategy. The features extracted from the

encoder is with the shape 128

32
×

160

32
and equipped with suf-

ficient receptive field and contexts. Thus, we do not need to

build a heavy context modeling model on the top of the en-

coder and it is crucial to achieving high performance. The

Fast Downsampling Strategy makes it possible to extract

features with sufficient receptive field and rich contexts, at

a fast rate. However, the excessive downsampling layers

also lose the majority of the spatial details which is also

crucial to the depth estimation task. Following the common

practices [22, 21], we use the light decoder to gradually re-

covery the spatial details by fusing the deep features and

shallow features. The decoder consists of several decoding

stages. At each decoding stage, a Feature Fusion Module is

applied to concatenate features from the neighboring blocks

in the encoder, which has spatial resolutions of 1/16, 1/8,

1/4, and 1/2. Since we insert a Resize layer at beginning of

mobilenet-v3, another Resize layer is appended to the de-

coder for resizing the depth map into 480× 640.

2.2. Distillation Process

Knowledge Distillation, introduced by Hinton et al. [8],

refers to the training paradigm in which a student model

leverages “soft” labels coming from a strong teacher net-

work. This is the output vector of the teacher’s softmax

function rather than just the maximum of scores, which

gives a “hard” label. Bucila et al. [2] propose an algorithm

to train a single neural network by mimicking the output

of an ensemble of models. Ba and Caruana [1] adopt the

idea of [2] to compress deep networks into shallower but

wider ones, where the compressed model mimics the ‘log-

its’. Such training improves the performance of the student

model. We choose the ViT-Large [4] as the teacher’s back-

bone and the proposed light network as student’s backbone

because larger networks tend to have better performance un-

der proper training since they have ample network capacity.

Next, we train ViT-Large on the training set first using Ima-

geNet pretrained parameters as initialization. In the training

of the distillation process, we fix the trained teacher net-

work and fed images into the light network and the teacher

simultaneously. Because there is no softmax function in the

network, we use the features before the last activation layer

for knowledge distillation. The L2 distance is used as the

distillation loss. The student network is trained to optimize

the combination of the distillation loss and depth estimation

loss [18].



Table 1. Ranking results in the Mobile AI 2021 Monocular Depth Estimation Challenge. All results are evaluated on the online test server.

The best results are labeled in red color.

Team si-RMSE↓ RMSE↓ LOG10↓ REL↓ Runtime(ms)↓ Score↑

Ours 0.2836 3.56 0.1121 0.2690 97 129.41

KX SMART 0.2602 3.25 0.1043 0.2678 1197 14.51

dujinhua 0.2408 3.00 0.0904 0.2389 1933 11.75

root12321 0.2449 3.02 0.0963 0.2648 2130 10.08

Jacob.Yao 0.2902 3.91 0.1551 0.4700 1275 8.98

helloworld3 0.3128 3.89 0.1242 0.3228 958 8.74

jey 0.2761 9.68 2.3393 0.9951 2531 5.5

zhyl 0.2332 2.72 0.0831 0.2189 6146 4.11

weichi 0.4659 7.56 0.4493 0.5992 582 1.72

shayanj 0.3543 4.16 0.1441 0.3862 3466 1.36

fanhuanhuan 0.2678 5.96 0.3300 0.5152 26494 0.59

faustChok 0.3737 9.08 0.9605 0.8573 9392 0.38

Table 2. The effect of the model size and distillation process.

Model id Flops si-RMSE runtime (ms) score

1 27.7M 0.4019 54 4.51

2 48.8M 0.3621 89 5.09

3 90.0M 0.3304 99 6.63

4 189.0M 0.3005 176 5.64

3+dist 90.0M 0.3141 99 8.31

3. Experiments

3.1. Datasets

The total dataset for the MAI challenge [12] contains

7385 pairs of RGB and grayscale depth images. We use

7000 pairs for training and the rest 385 pairs as the local

validation set. The original image size is in VGA resolution

(480 × 640), then is resized to 128 × 160 in the training

phase.

3.2. Evaluation Metrics

In this challenge, each submission is validated based on

the following two metrics: 1) The quality of the recon-

structed results, measured by the invariant standard root

mean squared error (si-RMSE). 2) The runtime of the model

on the actual target mobile platform, a Raspberry Pi 4 is

used in the challenge. The exact scoring formula used in

this challenge is provided below:

Score(si−RMSE, runtime) =
2−20∗si−RMSE

C ∗ runtime
. (1)

where C is a constant normalization factor that does not de-

pend on the submission.

3.3. Implementation details

We train the proposed model on the open-source ma-

chine learning library Pytorch. For training, we use Adam

optimizer with betas = (0.9, 0.999) and eps=1e-3 , learning

is scheduled via polynomial decay from base learning rate

8e-3 with power p = 0.9. The total number of epochs is 500

with batch size = 32 on four NVIDIA V100 GPUs, which

takes around 4 hours to train a model. We use mobilenet-v3

as backbone (pretrained on ImageNet), and the decoder part

is trained from scratch.

3.4. Model Optimization and TFLite Conversion

The model is trained in PyTorch and converted from Py-

Torch to tflite. The converting path is PyTorch → ONNX →

Keras → tflite. Since we don’t use the full size of the orig-

inal images, the tflite model contains two resize layers (one

to resize the input image to 128 × 160, another to enlarge

the depth map to 480 × 640), which take around 20ms on
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Figure 2. The visualization results of the proposed methods.

raspberry 4. The total runtime of TfLite model on raspberry

4 is shown on Table 1 and Table 2.

3.5. Experimental Results

As shown in Table 1, our proposed method achieves an

overall score of 129.41 on the challenge test set and ranks

first place. The proposed method achieves 0.2836 si-RMSE

with 97 ms on the Raspberry Pi 4. The runtime is substan-

tially lower than the other methods and the performance si-

RMSE is comparable to the best performance achieved by

the team zhyl.

3.6. Ablation Study

To study the effect of the model size and the distillation

process, we show some quantitative results in Table 2. The

si-RMSE is measured on the val set which is split by our-

selves. The runtime is measured on the online Raspberry

Pi 4 provided by the organizers. As shown in Table 2, with

increasing the channel numbers in the encoder, the compu-

tation cost also increases, and si-RMS decreases gradually.

When the computation cost is 90.0M Flops, the model #3

achieves the best score which makes a good trade-off on

performance and speed.

To further improve the representative ability of the light

network, we introduce a teacher-student strategy. It relies

on a distillation process ensuring that the student (the pro-

posed light network) learns from the teacher. Here, we

choose model #3 as the student. In Table 2, the model #3

with distillation is denoted as “3+dist” and achieves better

performance without introducing extra computation.

3.7. Visualization

To get an intuitive understanding of the proposed, we vi-

sualize the prediction results of the proposed methods as

shown in Figure 2. The visualization results demonstrate

that the proposed method could achieve good depth estima-

tion results. However, the example in the second row, which

has a building and car in the image, shows the results pre-

dicted by the proposed method are very rough around the

edges due to the excessive down-sampling.

4. Conclusion

In this paper, we propose a simple but accurate method

for depth estimation, which achieves state-of-the-art results.

The well-designed encoder-decoder network makes it pos-

sible to extract features with sufficient receptive field and

rich contexts. Besides, the distillation process could help

improve the performance of the proposed light network

without reducing the speed. Finally, the proposed method

achieves a good trade-off between latency and accuracy and

ranked first place on the MAI 2021 Monocular Depth Esti-

mation Challenge. More specifically, the proposed method

achieves a si-RMSE score of 0.28 with 97 ms on the Rasp-

berry Pi 4.
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