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Abstract

The block diagonalization (BD) is a linear precoding technique for multi-user multi-input multi-output (MIMO) broadcast

channels, which is able to completely eliminate the multi-user interference (MUI), but it is not computationally efficient. In this

paper, we propose the block diagonal Jacket matrix decomposition, which is able not only to extend the conventional block

diagonal channel decomposition but also to achieve the MIMO broadcast channel capacity. We also prove that the QR

algorithm achieves the same sum rate as that of the conventional BD scheme. The complexity analysis shows that our

proposal is more efficient than the conventional BD method in terms of the number of the required computation.

Keywords: Multi-user MIMO; Broadcast channel; Precoding; Block diagonalization; QR decomposition; Eigenvalue

decomposition; Diagonal Jacket matrix

1 Introduction
Recently, the research of the capacity region of the

multi-user multi-input multi-output (MIMO) broadcast

channels (BC) has been of concern. It is well known that

any algorithm requiring the eigenvalue decomposition

(EVD) suffers from the high computational cost. In mo-

bile wireless communication systems, in which MIMO

technique is utilized, the channel characteristics may

vary faster than the computation process of the precod-

ing/decoding algorithm that is based on the EVD of the

channel matrix that is changing instantaneously.

In [1], the authors proposed the MIMO channel pre-

coding/decoding based on the Jacket matrix decompos-

ition where we believe that the required computational

complexity in obtaining diagonal-similar matrices is

smaller than that required in the conventional EVD.

Definition 1 Let JN ≜ {ai,j} be a N ×N matrix; then, it is

called a Jacket matrix when J−1N ¼ 1
N

ai;j
� �−1

n oT

, that is,

the inverse of the Jacket matrix can be determined by its

element-wise inverse [2-3].

Definition 2 Let A be an n × n matrix. If there exists a

Jacket matrix J such that A = J ∑ J−1, where Σ is a diag-

onal matrix, then we say that A is a Jacket matrix similar

to the diagonal matrix ∑. Moreover, we say that A is a

Jacket diagonalizable [4].

Theorem 1 A 4 × 4 matrix J is a Jacket matrix similar to

the diagonal matrix if and only if J has the following form:

J 4 ¼ A½ �2 B½ �2
C½ �2 A½ �2

� �

ð1Þ

i.e., the entries of the main diagonal of a matrix are equal.

Proof Refer to [4] for the proof.

Multi-user diversity can significantly improve the per-

formance of multiple antenna systems. The simplest ways

to achieve the diversity gain in MIMO downlink commu-

nications are the zero forcing (ZF)-based linear precoding

approaches. In [5,6], it was shown that the maximum sum

rate in the multi-user MIMO broadcast channels can be

achieved by dirty paper coding (DPC). However, the high

computational complexity of the DPC makes it difficult to

implement in practical systems. A suboptimal strategy of

the DPC [7], the Tomlinson-Harashima precoding (THP)

algorithm which is based on nonlinear modulo operations,

is still impractical due to its high complexity.

In linear processing systems, several practical precoding

techniques have been proposed, typically as the channel

inversion method [8,9] and the block diagonalization (BD)

method [10]. The ZF channel inversion scheme [8] can

suppress co-channel interference (CCI) completely for the

case where all users employ a single antenna. However, its

performance is degraded due to the effect of noise en-

hancement. Although the minimum mean-squared error

(MMSE) channel inversion method [8] overcomes the
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drawback of the ZF, it is still confined to a single-receive

antenna case. In the scenario where multiple antennas are

located at both the mobile terminal and base station for

each user, low-complexity BD methods have been pro-

posed [8,11-13]. Moreover, the BD attempts to completely

eliminate the multi-user interference (MUI) irrespective of

the noise. The BD precoding has been proposed in [10] to

improve the sum rate or reduce the transmitted power. A

BD precoding algorithm has focused on how to imple-

ment the BD precoding algorithms with less computa-

tional complexity without the performance degradation. A

low-complexity generalized ZF channel inversion (GZI)

method has been proposed in [9] to equivalently imple-

ment the first singular value decomposition (SVD) oper-

ation of the original BD precoding, and a generalized

MMSE channel inversion (GMI) method is also developed

in [9] for the original regularized BD (RBD) precoding.

Therefore, the performance of the BD scheme is poor at

the low SNR regime, while preserving its good perform-

ance at high SNR. With the purpose of improving the per-

formance of the BD, an RBD scheme [14] is proposed.

The QR/SVD techniques require only low complexity to

equivalently implement the BD precoding algorithms. As

an improvement of the BD precoding algorithms, a low-

complexity lattice reduction-aided RBD (LC-RBD-LR)-

type precoding algorithm has been proposed in [11,12]

based on the QR decomposition scheme. However, the

complexity of the RBD is too high, which is difficult to be

implemented in practice. Owing to the SVD in the algo-

rithm, the BD is not computationally efficient.

In this paper, we propose QR-based BD and Jacket

matrix methods. We consider the channel matrix de-

composition based on QR and Jacket matrices for the

case where each user has multiple antennas. By using the

QR decomposition to find the orthogonal complement,

the complexity of the SVD-BD can be reduced. As a new

approach of the conventional BD scheme, the QR shows a

significant improvement in computational complexity. In

addition, we prove that the proposed QR algorithm has

the same sum rate as the conventional BD scheme. We

also discuss the block diagonal Jacket matrix decompos-

ition because Jacket matrices are element-wise inverse

matrices. Thus, we can calculate their complexity easily.

The rest of this paper is organized as follows. In

Section 2, we describe the system model. In Section 3, we

discuss the BD method. In Section 4, we analyze the block

diagonal Jacket decomposition of an equivalent channel

matrix. In Section 5, we perform the complexity analysis.

Finally, we draw meaningful conclusions in Section 6.

2 System model
We consider the downlink MIMO broadcast channel

base station (BS) to K mobile users as shown in Figure 1.

The MIMO channel of each user is assumed to be flat

fading with distribution CN 0; Ið Þ , where the BS has NT

transmitter antennas, and each user has NR receiver an-

tennas. In this linear precoding scheme, the precoded

signal vector for the k-th user can be written as

xk ¼ T ksk ð2Þ

The received signal for the k-th user can be repre-

sented as

yk ¼ Hk

X

K

j¼1

T jxj þ nk ¼ HkT ksk þ
X

K

j¼1;j≠k

HkT jsj

þnk ; k ¼ 1;⋯;K ;

ð3Þ

where k and j are user indices, T k∈ℂ
NT�Nk is a precod-

ing vector for the user k, sk represents the data symbol

Figure 1 MIMO broadcasting system model.
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vector, xk∈ℂ
Nk�1 is a transmit signal, Hk∈ℂ

Nk�NT is a

MIMO channel matrix, and nk is a Gaussian noise with

zero mean and variance σ
2. It is also assumed that all

signals are detectable and
X

K

k¼1

N k≤NT.

Note that the precoding vectors are normalized to

unity, i.e., ‖Tk‖
2 = 1 for k = 1,⋯, K. Furthermore, the

power constraints are defined as tr(TkTk
H) ≤ Pk, where Pk

is the total transmission power. The power constraint

corresponding to the BS applies to the transmitters of k-

th BS. Therefore, a sum rate maximization problem with

power constraints can be expressed as

max
X

k

log I þHkT kT
H
k H

H
k

�

�

�

�

s:t: tr T kT
H
k

� �

≤Pk ; k ¼ 1;…;K
~H kT k ¼ 0; k ¼ 1;…;K

ð4Þ

The aforementioned problem is categorized as a convex

optimization problem. Thus, it can be solved optimally

and efficiently by using the water filling algorithm, which

is proposed for the multi-user transmit optimization for

broadcast channels.

3 Block diagonalization method
In this section, we represent a novel BD method for

multi-user MIMO systems. The BD algorithm is an ex-

tension of the ZF method for multi-user MIMO systems

where each user has multiple antennas. Each user's lin-

ear precoder and receiver filter can be obtained by twice

SVD operations [15–16].

3.1 Block diagonalization

The key idea of the BD algorithm is to employ the

precoding matrix Τ to suppress the MUI completely.

To eliminate all MUI, the following constraint is

imposed.

~H kT k ¼ 0; k ¼ 1;⋯;K ð5Þ

~H k is defined as the channel matrix for all users other

than the user k.

~H k ¼ HT
1 ⋯HT

k−1H
T
kþ1⋯HT

K

	 
T ð6Þ

By applying the SVD, the following value for the channel

is obtained

~H k ¼ UkΣk V
1ð Þ
k V

0ð Þ
k

h iH

; ð7Þ

where Σk is the diagonal matrix of which the diagonal ele-

ments are non-negative singular values of ~H k and its di-

mension equals to the rank of ~H k . Vk
(0) contains vectors

corresponding to the zero singular values, and Vk
(1) con-

sists of the singular vectors corresponding to nonzero sin-

gular values. Thus,Vk
(0) is an orthogonal basis for the null

space of ~H k . In order to maximize the achievable sum rate

of the BD, the water filling algorithm can be additionally

incorporated. Define the SVD of ~H k
~V

0ð Þ
k as

~H k
~V

0ð Þ
k ¼ ~U k

~Σk
~V

1ð Þ
k

~V
0ð Þ
k

h iH

: ð8Þ

Thus, we define the total precoding matrix as

TBD ¼ ~V
0ð Þ
1 V

1ð Þ
1

~V
0ð Þ
2 V

1ð Þ
2 ⋯ ~V

0ð Þ
K V

1ð Þ
K

h i

Λ
1=2; ð9Þ

where Λ is a diagonal matrix of which the element λk

scales the power transmitted into each of columns of

TBD. To maximize the sum rate under a total power

constraint at the BS, where the power allocation matrix

is the solution to the following optimization, with TBD

chosen in Equation 9, the capacity of the BD [10,15] is

CBD ¼ max
Λ

log2 I þ Σ
2
Λ

σ2

�

�

�

�

�

�

�

�

; ð10Þ

where

Σ ¼
Σ1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ΣK

2

4

3

5: ð11Þ

The optimal power-loading coefficients of Λ are deter-

mined by using the water filling on the diagonal ele-

ments of Σ, assuming that Pk is a total power constraint.

A summary of the BD algorithm [10] in Algorithm 1.

3.2 Proposed QR-based BD method

In this subsection, we propose an alternative method to

find vectors orthonormal to ~H k based on the QR de-

composition. In order to compute the null space of ~H k ,

we define a QR decomposition of ~H k as

~H k ¼ Qk
�Qk½ � Rk

0

� �

¼ QkRk ; ð12Þ

where Qk is an NT ×NT unitary matrix, so Qk
HQk = Ik; Rk

∈ℂ
NT�NR is an NT ×NR upper triangular matrix, and �Qk

is an NT × (NR −NT) matrix. �Q
H
k ¼ Q1

k Q
2
k

� �

; where Qk
1 is

an Nk column unitary matrix.
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The pseudo inverse of the channel matrix Hk =

[H1
TH2

T
⋯HK

T]T is �H k ¼ HH
k HkH

H
k

� �−1 ¼ �H 1
�H 2⋯ �H K½ � .

Then, we can show that

Hk
�H k ¼

H1

⋮

HK

2

4

3

5 �H 1 ⋯ �HK

	 


¼
H1

�H 1 ⋯ H1
�HK

⋮ ⋱ ⋮

HK
�H 1 ⋯ HK

�HK

2

4

3

5¼
INR;1

⋯ 0
⋮ ⋱ ⋮

0 ⋯ INR;K

2

4

3

5:

ð13Þ
Clearly, H j

�H k ¼ 0 when j ≠ k, which is called the zero

inter-user interference (IUI) constraint since it gets the

IUI to be zero. By defining ~H j as ~H j ¼ HT
1 ⋯HT

j−1

h

HT
jþ1⋯HT

K �T , it is shown that the zero IUI constraint is

satisfied such as ~H j
�H j ¼ 0. The QR decomposition of

~H j is

~H j ¼ QjRj for j ¼ 1;⋯;K : ð14Þ
From the zero IUI constraint, we have ~H jQjRj ¼ 0 .

Since Rj is invertible, it is conjectured that ~H jQj ¼ 0

Let Gk =HkQk
1 and we apply the EVD of Gk as

Gk ¼
⌢

Uk

⌢

Σk

⌢

U
H

k ; ð15Þ
where

⌢

Uk is a unitary matrix, and
⌢

Σk is a diagonal

matrix. Thus, we get the precoding matrix as

TQR ¼ Q1
1

⌢

U1 Q1
2

⌢

U2⋯Q1
K

⌢

UK

h i

Ψ
1=2; ð16Þ

where Ψ is a diagonal matrix of which the elements

scale the power transmitted into each of columns of

TQR. The capacity of the QR-EVD is

CQR−EVD ¼ max
Ψ

log
I þ ⌢

Σ
2
Ψ

σ2

�

�

�

�

�

�

�

�

�

�

; ð17Þ

where

⌢

Σ ¼
⌢

Σ1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯
⌢

ΣK

2

4

3

5: ð18Þ

The optimal power-loading coefficients of Ψ are deter-

mined by using the water filling on the diagonal ele-

ments of
⌢

Σ , assuming that Pk is a total power constraint.

Equation 10 and Equation 17 are the same as the chan-

nel capacity of the conventional BD and the QR-EVD

decomposition (Algorithm 2).

Figure 2 shows that the BD method has the same sum

rate as the QR-EVD method and An's method [15]

under condition that a MIMO broadcasting system con-

sists of one base station and two users where the base

station has four transmit antennas and each use has two

receive antennas.

4 Block diagonal Jacket decomposition of an
equivalent channel matrix
In this section, we introduce the block diagonal Jac-

ket decomposition of an equivalent channel matrix.

Assume that Hk is an NR ×NT block diagonal matrix

given by

Hk ¼
LΣL−1
� �

⋯ 0
⋮ ⋱ ⋮

0 ⋯ LΣL−1
� �

2

4

3

5; ð19Þ

and its inverse is

H−1
k ¼

LΣL−1
� �−1

⋯ 0
⋮ ⋱ ⋮

0 ⋯ LΣL−1
� �−1

2

4

3

5: ð20Þ

The channel matrix is decomposed into parallel single-

input single-output subchannels. A special k × k Jacket

matrix called a diagonal Jacket matrix can be defined as

follows:

J½ �k ¼
J1;1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ J k;k

2

4

3

5; and ð21Þ

Its inverse matrix is

J½ �−1k ¼
1=J 1;1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1=J k;k

2

4

3

5: ð22Þ

Obviously, the unitary matrices can be considered as

the Jacket matrices.

Let us denote B2 as a 2 × 2 block matrix in the main di-

agonal of Hk [1,17]. Then, Equation 19 can be written as

Hk ¼ Ik=2⊗B2; ð23Þ

where

B2 ¼ LΣL−1 ð24Þ

Ik/2 is an identity matrix, and⊗ is the Kronecker prod-

uct. It is worthwhile to note that each block in the diag-

onal of the matrix in Equation 19 is a 2 × 2 matrix that

satisfies the condition specified in Theorem 1, and
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hence, we say that B2 can be decomposed by the EVD

using Jacket matrices. In other words, B2 is able to be

represented by

B2 ¼ J 2Σ2J
−1
2 : ð25Þ

In addition, it is shown that Hk is decomposed, which

has the diagonal form as

Hk ¼ Ik=2⊗B2 ¼ Ik=2⊗ J 2Σ2J
−1
2

� �

¼ Ik=2⊗J2
� �

diag λ1; λ2⋯λkð Þ Ik=2⊗J−12
� �

¼ JΣJ−1
:

ð26Þ

Thus, we can write

Hk¼JΣJ−1; ð27Þ

where

J ¼ Ik=2⊗J2 ¼
J2 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ J 2

2

4

3

5

k�k

; ð28Þ

Σ ¼ Ik=2⊗Σ2 ¼
Σ2 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ Σ2

2

4

3

5

k�k

; and ð29Þ

J−1 ¼ Ik=2⊗J−12 ¼
J−12 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ J−12

2

4

3

5

k�k

: ð30Þ

Note that the size of each block element in the diag-

onal matrices (28), (29), and (30) is 2 × 2.

4.1 Eigenvalue decomposition of matrix of order 3

In this subsection, we introduce a class of matrices of

order 3 that can be factorized into EVD forms through

Jacket matrices [1,17]. A 3 × 3 matrix A is a Jacket

matrix similar to a diagonal matrix Λ if and only if such

a matrix can be factorized into the form of an EVD such

as A = J Λ J−1. Consider a special matrix, A, of which the

elements in the first row are arbitrary, whereas the ele-

ments in the other rows are generated by cyclically shift-

ing the previous row. One of its examples is given as

follows.

A ¼
a b c

c a b

b c a

2

4

3

5: ð31Þ

The abovementioned matrix, A, can be decomposed as

follows:

a b c

c a b

b c a

2

4

3

5 ¼
1 1 1
1 ω ω

2

1 ω
2

ω

2

4

3

5

�
aþ bþ c 0 0

0 aþ bωþ cω2 0
0 0 aþ bω2 þ cω

2

4

3

5

�
1 1 1
1 ω ω

2

1 ω
2

ω

2

4

3

5

−1

;

ð32Þ

where ω = e−j2π/n (n is a matrix order). Note that ω3 = 1,

and ω
1
≠ 1.

Consider a matrix A6 that is able to be decomposed

via Jacket matrices as

A6 ¼ A2⊗A3 ¼ J2⊗J3ð Þ Λ2⊗Λ3ð Þ J2⊗J3ð Þ−1; ð33Þ

where⊗ is the Kronecker product. Then, the EVD of

Equation 33 is given as

A6 ¼ a b

b a

� �

⊗

a b c

c a b

b c a

2

4

3

5

¼ a a

a −a

� �

⊗

1 1 1
1 ω ω

2

1 ω2 ω

2

4

3

5

2

4

3

5

aþ b 0
0 aþ b

� �

⊗

aþ bþ c 0 0
0 aþ bωþ cω2 0
0 0 aþ bω2 þ cω

2

4

3

5

2

4

3

5

� a a

a −a

� �

⊗

1 1 1
1 ω ω

2

1 ω ω

2

4

3

5

2

4

3

5

−1

:

ð34Þ

Figure 2 Comparison of the sum throughput of BD and QR.
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In general, a matrix of order n (n = 2k × 31) can be

decomposed via Jacket transform as follows:

An ¼ A2k�3l ¼ A2k⊗A3l

¼ J2kΛ2k J
−1
2k

� �

⊗ J3lΛ3l J
−1
3l

� �

¼ J2k⊗J3lð Þ Λ2k⊗Λ3lð Þ J2k⊗J3l Þ−1


ð35Þ

The diagonal mobile communication channel matrix is

given by Equation 23, where

B2 ¼ cos450 −i sin450

sin450 i cos450

� �

¼ 1
ffiffiffi

2
p 1 −i

1 i

� �

¼ 0:8881 −0:3251þ 0:3251i
0:3251þ 0:3251i 0:8881

� �

0:9659−0:2588i 0
0 −0:2588þ 0:9659i

� �

0:8881 0:3251−0:3251i
−0:3251−0:3251i 0:8881

� �

¼ QΛQH :

ð36Þ

A 4 × 4 block wise Jacket matrix is

H4 ¼ B½ �2 0
0 B½ �2

� �

¼ 1
ffiffiffi

2
p

1 −i 0 0
1 i 0 0
0 0 1 −i

0 0 1 i

0

B

B

@

1

C

C

A

¼ 1 0
0 1

� �

⊗
1
ffiffiffi

2
p 1 −i

1 i

� �

¼ I½ �2⊗ B½ �2:

ð37Þ

Then, the capacity of a MIMO wireless communica-

tion system is given by

C ¼ log2 det INR
þ SNR

NT
HkH

H
k

� �� �

bits=s=Hz ð38Þ

The channel matrix Hk is also able to be decomposed

by the EVD

Hk ¼ QΛQH : ð39Þ

Then, the EVD is obtained as

HkH
H
k ¼ QΣΣ

HQH ¼ QΛQH ; ð40Þ

where QQH =QHQ = IN, and Λ = dig(λ1, λ2,⋯, λK) with

its diagonal elements given as

λk ¼ σ
2
k ; if k ¼ 1; 2;⋯;Kmin

0; if k ¼ Kmin þ 1;⋯;K :

�

ð41Þ

It is shown that the MIMO system capacity can be

written as

C ¼
X

K

k¼1

log2 1þ SNR

NT
λk

� �

bits=s=Hz: ð42Þ

Therefore, the EVD can be also applied to block diag-

onal Jacket matrices.

5 Complexity analysis
In this section, we quantify the complexity of the QR-

EVD decomposition algorithm and compare it with the

conventional SVD-BD schemes. The complexities of the

alternative methods are usually compared by the number

of floating point operations. A flop is defined as real

floating operations, i.e., real additions, multiplications,

divisions, and so on. One complex addition and multipli-

cation elaborate two and six flops, respectively.

Figure 3 The required flops versus the number of transmit

antennas, NT.

Figure 4 The required flops versus the number of users, K.
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5.1 Complexity of matrix operations

For an m × n complex-valued matrix E ∈ ℂ
m × n, its

multiplication with another n × p complex-valued matrix

D ∈ ℂ
n × p, we use the total number of flops to measure

the computational complexity of the existing algorithms

[11,13,18,19]. We summarize the total flops needed for

the matrix operations as below:

� Multiplication of m × n and n × p complex matrices

is 8mnp flops.

� When D = E∗, the complexity is reduced to 4 nm

(m + 1) flops, where D is a diagonal or block

diagonal matrix.

� The flop count for the SVD of real-valued m × n

(m ≤ n) matrices is 4m2
n + 8mn

2 + 9n3. For

complex-valued m × n (m ≤ n) matrices, we

approximate the flop count as 24mn
2 + 48m2

n + 54m3

by treating every operation as the complex

multiplication.

� The QR decomposition on E using the Gram-Schmidt

Orthogonalization (GSO) method takes 6 × 2m2
n

flops.

� The water filling operation is 2m2 + 6m flops for

the water filling over m eigenvalues [18].

5.2 Complexity analysis for BD methods

For the conventional SVD-BD method, obtaining the or-

thogonal complementary basis Vk
(0) requires K times of

SVD operations [19]. Hence, we consider GSO or QR

decomposition methods. To calculate all, ~H k
~V

0ð Þ
k re-

quires K matrix multiplications while obtaining the sin-

gular vectors ~V
1ð Þ
k and the singular values λk require

another K SVD operations. The water filling is needed to

find Pk. The square root of the real-valued diagonal

matrix Pk
1/2 needs to be calculated and multiplied by

~V
0ð Þ
k and V

0ð Þ
k , respectively. Those operations repeat K

times as well.

Based on the above analysis, two results of the SVD-

BD and the QR decomposition are shown in Figures 2

and 3, respectively. Figure 3 shows the required number

of flops according to the number of transmit antennas,

NT, where n = 2 and k = 2. Figure 4 shows the required

number of flops according to the number of users, K,

where m = 24 and n = 2. From Figures 3 and 4, it is obvi-

ous that the QR decomposition can significantly reduce

the number of flops compared with the BD algorithm.

The larger values NT and K have, the less number of
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Figure 5 Capacity versus SNR at different sizes of matrix.

Table 1 Complexity comparison

Method Computational complexity

SVD-BD 6K 9 K−1ð ÞNkð Þ3 þ 8 K−1ð ÞNkð Þ2NT þ 4 K−1ð ÞNkN
2
T

 �

8KNkNT(NT − (K − 1)Nk)

6K 9N3
k þ 8N2

k NT− K−1ð ÞNkð Þ þ 4Nk NT− K−1ð ÞNKð Þ2
 �

2K2Nk
2 + 6KNk

KNk þ 2KN2
k þ 8KNT NT− K−1ð ÞNkð ÞNk

QR-BD 12K K−1ð Þ2N2
k NT− K−1ð ÞNk=3ð Þ

8KNkNT(NT − (K − 1)Nk)

6K 9N3
k þ 8N2

k NT− K−1ð ÞNkð Þ þ 4Nk NT− K−1ð ÞNkð Þ2
 �

2K2Nk
2 + 6KNk

KNk þ 2KN2
k þ 8KNT NT− K−1ð ÞNkð ÞNk
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flops the QR decomposition has. Figure 4 shows that the

number of flops significantly decreases. In other words,

the complexity highly declines.

The channel in Equation 27 can be decomposed by

Jacket matrices, which has the diagonal form, where J is

a unitary matrix. Therefore, Equations 8 and 15 are the

same as Equation 27 because U and V are unitary matrices

and a family of Jacket matrices, which are mathematically

proved in the previous sections. Thus, the complexity ana-

lysis of Jacket matrices are the same as that of the QR-

EVD decomposition as shown in Table 1. The complexity

of the conventional EVD method and Jacket-based EVD

method increases as the respective sizes of their matrices

increase, as shown in Figure 5. In addition, we compare

the performance of the conventional-based EVD method

and Jacket-based EVD method. Classes of these matrices,

which are simply decomposed by the EVD based on Jacket

transform, have been used to significantly reduce their

computational complexity compared to the conventional

EVD method.

6 Conclusion
In this paper, we propose the QR method to obtain the

precoding matrix for MIMO broadcast downlink sys-

tems. In addition, the QR scheme that of achieves the

same sum capacity as the SVD-BD scheme. We show

that the new method has the lower complexity than the

conventional BD method through complexity analysis,

and the efficiency improvement becomes significant

when the base station or users have a large number of

transmit antennas. These results also show that the QR

decomposition algorithm requires much less complex-

ity than the conventional BD method. Thus, the complex-

ity analysis of Jacket matrices is the same as that of the

QR-EVD decomposition. We believe that the amount of

computation required to obtain diagonal-similar matri-

ces is much smaller than that of computation required

in the conventional EVD. In addtion, by using the QR de-

composition to find the orthogonal complement, it is

shown that the complexity of the SVD-BD can be sig-

nificantly reduced. In addition, we show that EVD can be

extended to the high-order matrices. These properties

may be used for Jacket matrices to be applied to signal

processing, coding theory, and orthogonal code design.

The EVD can be used in the information-theoretic ana-

lysis of MIMO channels.
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