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SUMMARY

The physics of fractures, which forms the basis of seismic faulting, is not very amenable
to simple deterministic differential equations. For this reason a different approach,
aimed at reproducing the statistical mechanical properties of earthquakes, has attracted
progressively increasing interest. A variety of models have been presented but there
seems to be little that can be done to ascertain the merits and defects of each. We set the
clock back and attempt to derive a dynamically evolving automaton that is as simple
as possible and that incorporates all the basic ingredients and includes strain diffusion,
a process often disregarded in simple models in spite of its crucial importance. Our
automaton is based on a homogeneous grid of cells and its rupturing is controlled by a
generalized local threshold. The automaton also considers local dissipation of energy
and time-dependent strain applications. This simple model is capable of reproducing
earthquake dynamics, including the effects due to transient loads such as those imposed
by elastic waves, with an ef®ciency superior to that of the most complicated automata
and with less stringent assumptions.
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1 I N T R O D U C T I O N T O C O M P L E X
S Y S T E M S

While the description of deterministic and stochastic processes

is well established, the picture is far less clear for the recently

introduced complex systems. Generally speaking, a complex

system is any system made up of several parts interacting in

a strongly non-linear way. This results in behaviour that is

dif®cult to describe with a group of equations.

The classical scienti®c method looks for

(i) an explanation that ®ts in with other data and concepts,

and

(ii) a testable theory that is as simple as possible.

The second point is one of the paradigms of physics, namely

that each model must be written in a form that can be veri®ed

by anyone, and the easiest way to do so is to write it in math-

ematical form. Until a few years ago, differential equations were

the most widely used instrument for building mathematical

models because of their capability of describing the evolution

of a system in time and space. In fact, only some phenomena

can be described exhaustively by differential equations, and

among the differential equations, only the linear ones, those

that can be linearized and a few others have analytical solutions.

The variables in the differential equations are continuous

functions. However, such equations are often solved through

the application of numerical methods on discretized variables.

Computers have been used mostly as a calculus tool but

their capability to model directly complex systems is still on the

verge of being fully exploited. In this case, computers can

operate according to two paths,

(i) a forward path, through simulation, since they can repro-

duce and follow the rapid changes of status and interrelations

among the parts of a many-body system, and

(ii) an inverse path, since they are able to recognize complex

patterns.

We will deal below with the ®rst path. The basis of our computer

simulation is a cellular automaton (CA), a conceptual device

that can assume certain states and responds to given stimuli

(inputs) according to a prede®ned set of laws. In general, auto-

mata can successfully represent many-body interactions and

therefore allow one to model complex processes, a task that

is beyond the capabilities of classical mathematics. A general

reference on the theory and applications of cellular automata is

Wolfram (1986).

2 G E N E R A L T E R M S

We know from thermodynamics that certain systems present

a discontinuity in some properties such as density, entropy,

magnetization, etc. that characterize a phase transition. The

point in space where the discontinuity ®rst vanishes, that is,

where the ®rst-order transition disappears, is called the critical

point, and beyond this point it is possible to move continuously

from one phase to the other.

A physical system is said to be in a state of organized

criticality (OC) when it approaches a critical point and retreats
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from it as a consequence of a certain event, after which it

can approach the critical point again and so on, intermittently.

A physical system is said to be in a state of self-organized

criticality (SOC) when it can organize itself not just into a

pattern but into the precise pattern seen at the critical point,

and then oscillate around it in a stationary metastable con-

dition. A key property of the SOC state is that the behaviour of

the system is relatively insensitive to the details of the dynamics

so that it is not necessary to ®ne-tune the parameters in order to

achieve this condition. It has been suggested that earthquakes

are similar to critical points and that earthquake distributions

have properties strikingly similar to OC and SOC (Main 1996;

Sammis & Smith 1999) but it has so far proved impossible to

state these issues in de®nite terms.

Seismic hazard studies assume that the crust undergoes

stationary processes. To detect stationarity, one needs to collect

data for a time interval longer than the duration of the process.

Nobody knows plausible values of the latter for the lithosphere,

and evidence in favour of such stationarity is lacking since

contrary evidence is also lacking and since it eliminates time

dependence. Only an Occam's razor-type reasoning would

suggest keeping stationarity.

Although plate motion studies show that the long-term plate

tectonic velocities averaged over the last 3 million yr from

palaeomagnetic data are virtually identical to those measured

in the last 10 yr from satellite data (DeMets 1995), indicating

that global plate motion is likely to be stationary, it is hard

to assume the same at the smaller scale at which earthquakes

occur. The Earth's crust consists of physically and chemically

different domains with a decreasing tendency to rupture from

the margins inwards. The cumulative distributions of events in

the non-stationary intervals may follow locally linear patterns

that make it impossible to detect its general state.

The Gutenberg±Richter power law (Gutenberg & Richter

1954) for natural earthquakes holds for events of magnitude

greater than a value M0, below which seismic catalogues are

incomplete; similar behaviour occurs at the upper end.

The complexity of lithosphere dynamics is not very amenable

to simple deterministic differential equations. In this case, cellular

automata can be more ef®cient.

3 T H E M O D E L

Following Occam's razor approach, we have attempted to

derive a general and as simple as possible automaton capable

of reproducing the statistical mechanical properties of earth-

quakes, incorporating what are assumed to be the basic micro-

physical aspects of the phenomenon. Our 2-D automaton is

based on a square grid of massless equal elements. It does not

involve assumptions about the exact physics underlying the

process of rupture because it simply considers the stress, strain

or energy release as a consequence of loads or rupture events.

The way in which this redistribution takes place is not derived

from speci®c physical equations but follows prede®ned general

damping rules.

We decided to avoid the slider block model (Burridge &

Knopoff 1967; Ito & Matsuzaki 1990; Narkounskaia et al. 1992;

Olami et al. 1992; Nakanishi 1991; Carlson et al. 1994), which is

described in Section 7 below, because it is based on planar

faults, which are at odds with the unquestionable evidence that

faults are fractal, and because of our incomplete knowledge of

the physical equations governing the process.

To make the description of our model easier, we de®ne a

quantity called ruptino (plural ruptini), which can be interpreted

both as a unit of increase in the ground strain level of the

material and as a unit of decrease in the critical value of fracture

of the element itself (Fig. 1). Ruptino has this double meaning

because rupture is locally controlled by the difference between

the rupture threshold and the strain level.

The evolution of the system then travels along a loop of the

following transition rules.

(i) A discrete amount of ruptini is added to some elements of

the grid.

(ii) A critical value is established for each element of the

grid, and when the amount of strain in an element is greater

than its threshold, that element becomes unstable and fractures.

Its `deformation' is distributed to its neighbours according

to given laws. This redistribution may lead other elements to

become unstable, and it is performed for every unstable element

until stability of the system is reached again. The number of

broken elements gives the size of the fracture event. We call

the entire process starting with the addition of one (or more)

ruptini and ending with all the elements of the system in a

stable condition iteration.

(iii) Strain diffusion and the anelastic propagation of defor-

mation are accounted for by further redistributions of strain,

starting from the elements that were unstable during the

previous step. The number of redistributed ruptini follows a

geometric rule decreasing with the distance from the originally

unstable cell. At the end of the iteration, new ruptini are added,

starting again from the ®rst step.

The speci®c redistribution laws are as follows. Let N(i, j) be

the state of the (i, j) element of the system, t be the threshold

level for rupture and t be the temporal step. At time t=0

(Fig. 2),

if N�i, j�§q then

N�i, j� � N�i, j� ÿ q , (1)

N�i+1, j� � N�i+1, j� � q
4
,

N�i, j+1� � N�i, j+1� � q
4
:

At the successive iteration (after all redistributions have been

executed), the algorithm performs the following distributions

(Fig. 3):

t � 1, N�i, j� � N�i, j� ÿ 2

3
q , (2)

N�i+1, j+1� � N�i+1, j+1� � q
6
,

t � 2, N�i, j� � N�i, j� ÿ q
3
,

N�i+2, j� � N�i+2, j� � q
12

, (3)

N�i, j+2� � N�i, j+2� � q
12

,

t � 3, N�i, j� � N�i, j� ÿ q
3
,

N�i+1, j+2� � N�i+1, j+2� � q
12

, (4)

N�i+2, j+1� � N�i+2, j+1� � q
12

:
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Ruptini are lost from the grid when redistributions take place

near the edges and corners, thus giving a generally dissipative

model.

We refer to the action of injecting ruptini into a grid as

loading. We have explored different ways of loading. In the

next sections, we will examine the behaviour of our model for a

number of different loading conditions.

3.1 Random load

3.1.1 Load

Consider ®rst of all a grid, the elements of which are at

different levels below the rupture threshold. We term this state

heterogeneous. Starting from an empty grid, we can achieve

heterogeneity by adding a certain number of ruptini to random

locations. The number of iterations needed (i.e. of ruptini

injected) obviously depends on the grid dimensions but we used

up to 2r106 iterations.

Since most natural materials are heterogeneous and aniso-

tropic, we expect that a heterogeneous (not yet anisotropic,

in this study) grid of our CA is the basis for simulating a real

material. Heterogeneity has different importance in different

simulations. As rock mechanics teaches and engineering tests

show, specimens behave more or less like homogeneous bodies

only when subjected to loads applied to regions much wider

than their largest heterogeneities. Thus, in laboratory experi-

ments a simulation starting from a homogeneous grid of cells

may be suf®cient in some cases, while in the lithosphere a

heterogeneous con®guration is far more likely.

The ®rst loading we analysed was a random addition of

a single ruptino to a heterogeneous con®guration for each

step of the running algorithm. This loading condition can be

seen as a constant and is accompanied by a lowering of the

rupture threshold due to random ¯uctuations in the mechanical

properties of any origin such as ¯uid injection and local hetero-

geneities in mechanical behaviour etc. that are represented by

ruptini injections.

3.1.2 Results

De®ning a cluster as a series of ruptures with a non-event

preceding and following it, we observe in 80±90 per cent of

cases clustered activity, that is, events occur in groups usually

increasing and then decreasing in size according to the classical

foreshock±main shock±aftershock pattern of earthquakes

(Fig. 4). However, we have veri®ed that the foreshock±main

shock±aftershock pattern occurs only in approximately 6±7 per

cent of cases if no time-dependent strain diffusion is allowed in

accordance with the original Bak & Tang (1989) model.

The percentages of main shocks without foreshocks and

aftershocks are shown in Table 1 for grids larger than 20r20

cells, which, due to border effects, is the minimum size for

obtaining stable results.

Both cumulative and non-cumulative frequency±size distri-

butions for all shocks and for the three different kinds of shocks

(fore-, main and after-) separately follow a gamma-type distri-

bution on a log±log scale (Fig. 5). In more restricted ranges we

Figure 2. The ®rst group of cells involved in the redistribution of

ruptini from an originally unstable element, marked in red.

Figure 3. Successive cells involved in the redistribution of ruptini from an originally unstable element, marked in red.

Table 1. Percentages of main shocks without fore- and aftershocks.

Clusters without

foreshocks (%)

Clusters without

aftershocks (%)

Stationary conditions 40.1t3.3 29.9t2.9

Figure 1. Ruptino is a quantity that represents both an increase in the

ground strain level and a decrease in the critical value for rupture of

the element considered. When the strain level reaches the threshold, a

rupture event occurs.
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observe a generally linear relation between the logarithm of the

frequency of events and the logarithm of their size. Obvious

deviations from linearity occur for the events with small and

large dimensions compared to the grid area.

Changing the number of ruptini randomly dropped at each

step gives a single cluster of events. The frequency±size distri-

bution of all the events becomes bell-shaped (see Fig. 6), showing

a tendency to cluster around characteristic sizes that increase

with the number of particles added. Small-sized events tend

progressively to disappear. If one cuts the temporal sequence

of events with a threshold, similar to mimicking an instrument

with lower sensitivity, several clusters are again obtained and

the frequency±size distribution is very similar to those related

to the injection of a single ruptino, suggesting that the system

dynamic has not changed.

In these experiments we also ®nd a general tendency for

the number of foreshocks and aftershocks (when they exist) to

increase linearly with the size of the main shock. This relation

holds well for big grids, while the scatter in the data relative to

lattices with fewer than 30r30 cells shows less clear behaviour

due to border effects. As is apparent in Fig. 7, the slope of

the curve that relates the number of fore- and aftershocks to the

dimension of the main shock increases with grid dimension.

This appears intuitively reasonable because the larger the grid,

the easier it is to ®nd other smaller events beyond the main

shock since more cells lie near the critical value.

We have so far dealt with systems originating from hetero-

geneous grids. If we start with an empty grid, however, we

observe that, apart from very small events, the ®rst rupture

Figure 4. Typical cluster of events composed of foreshocks with an

exponential size growth, a main shock and a tail of aftershocks.

Figure 5. Cumulative (1) and non-cumulative or incremental (2) distributions of (a) foreshocks, (b) main shocks and (c) aftershocks that occurred

in a 100r100 grid after 300 000 iterations.
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has a very large size compared with the other events under

stationary conditions. This effect is due to the fact that, at the

beginning, many cells will reach levels close to the critical point

simultaneously and the instability reached by one of them, with

subsequent redistribution, will trigger instabilities in many of

the surroundings cells. After a certain number of iterations, the

evolution of our automaton becomes stationary. In particular,

we have veri®ed that stationarity is reached when the net input

¯ow of ruptini, namely the amount of ruptini injected into the

grid, is equal to the net output ¯ow, namely to the amount of

ruptini lost off the grid edges. In Table 2 we report these input

and output ¯ows, averaged over 50 000 iterations after the

initial transient, for different grid dimensions and for different

loads (1 ruptino and 10 ruptini added for each iteration), showing

that stationarity and stability are achieved.

Stationarity is approached with different velocities according

to the speci®c transition rules adopted. Non-stationarity, on the

other hand, refers both to the non-constant average dimension

of the events and to the non-constant shape of the clusters.

3.2 Time-dependent loads

Dynamic triggering of earthquakes is an important effect that

has so far only been `discovered' empirically in some in situ

cases (cf. Harris 1998) but never studied through cellular auto-

mata models. In order to model a wave travelling through a

heterogeneous lithosphere we periodically add a sequence of

ruptini to successive rows of the specimen. The passing wave

can also be interpreted as a periodic lowering in the threshold,

induced by a travelling water intrusion, a mechanism often

suggested as important in triggering crustal earthquakes.

Note how the systems described previously had borders open

only in the outgoing direction, allowing just the loss of particles.

The borders we consider here are open in both directions. The

passing waves are recognizable from the clusters they produce

(Fig. 8), while the distribution function does not change with

the number of ruptini injected into the grid (Fig. 9).

3.3 Local dissipation

When a fracture occurs, a certain amount of energy is lost

as frictional heat, elastic radiation and plastic deformation.

To take into account this local dissipation also, we modify

the transition rules of our automaton by letting it redistribute

to the neighbours an amount of particles smaller than that lost

from the unstable element.

A local dissipation of ruptini, starting from an initially empty

grid, produces different patterns of behaviour before stationarity

is reached. The temporal evolution of the system shows a

®rst big event (its origin as described in Section 3.1) followed

by some smoothing periodic clusters and a ®nal stationarity

(Fig. 10).

Figure 6. Distributions of events in a 30r30 grid for different amounts of ruptini injected relative to 50 000 iterations. Curve 1 refers to the injection

of a single ruptino for each iteration, curve 2 to three ruptini, curve 3 to six ruptini, curve 4 to nine ruptini.

Table 2. The typical output ¯ow of ruptini, averaged over 50 000

iterations under stationary conditions, for different grid dimensions

and different amounts of load.

Grid side Input ¯ow Output ¯ow Input ¯ow Output ¯ow

10 1 1.004 10 10.003

20 1 1.010 10 10.005

30 1 1.001 10 9.996

40 1 0.989 10 10.016

50 1 0.996 10 10.005

60 1 0.993 10 10.003
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The average size of the events is obviously smaller than that

observed for analogue grids under non-dissipative conditions

and the stationary condition is reached after a higher number

of iterations. A periodicity is apparent, clearly due to the strain

`shadows' left behind by the large events, similar to those found

by Herz & Hop®eld (1995) and Main et al. (2000).

If we call f the fraction of energy lost by local dissipation,

we expect that the period T will increase with decreasing f,

following the rule T=fx1. In fact, in the case of full strain

transfer and SOC (conservative systems), f=0 and Tp? so

that periodicity disappears. In the case of no strain transfer,

f=1, the period is T=1. The initial random distribution of

loads is conserved and leads to a repetition after each full

loading period. In the other cases of partial strain transfer, we

consider that a cell that nucleates a large cascade will probably

cause its neighbours to fail, each of which returns f/4 ruptini to

the initial cell. This cell will then generate another event after a

period proportional to f. We should note that this periodicity is

observable only at the beginning, before stationarity is reached.

In the other cases, when the grid is highly heterogeneous and

there is a strong random load, the memory of strain shadows is

destroyed by random ¯uctuations.

As is seen from Fig. 11, there are two other factors worthy of

note:

(i) there exists a direct proportionality between the grid area

and the observed periodicity for every amount of dissipation

investigated;

(ii) there also exists a direct proportionality between the

fraction of energy lost and the related period, so that if the

dissipation of a number q of ruptini at each iteration leads to

a period T, the dissipation of 2q ruptini results in a doubled

period, 2T, and so on.

Figure 7. Interpolations of the relation between the number of foreshocks and aftershocks preceding a main shock of a speci®ed area for different

lattice dimensions. I is the number of cells in each side of the grid. Errors associated with the quanti®cation of the angular coef®cients are lower than

5 per cent and all the statistical tests performed show that the linear ®t is a good model for these data.
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Let us now compare the sizes of the events, under stationary

conditions, in the globally and in the locally dissipative cases.

While the size of the largest events in the conservative auto-

maton is limited only by the size of the system (Fig. 12 and

Table 3), the size of the largest events in the non-conservative

system is limited by the losses during the cascade process and,

in particular, it is constant for different grid dimensions. In the

non-dissipative case, we also note an almost linear relation

between the grid area and the average dimension of the main

shocks. The deviation from linearity involves only the smallest

grids, with fewer than 40r40 elements.

In the case of local dissipation, the number of main shocks

without foreshocks and aftershocks changes consistently with

respect to the percentages found under the non-dissipative

conditions. In Table 4 we report these data relative to different

amounts of dissipation under stationary conditions. The number

of main shocks without foreshocks and aftershocks increases

with the fraction of energy dissipated because dissipation implies

a reduction of the strain level of the material around the

unstable cells.

Note that the percentage of main shocks without fore-

shocks is always much higher than that without aftershocks, as

is effectively observed in natural occurrences, where the values

range between 70 and 80 per cent and 10 and 20 per cent,

Figure 8. Time-dependent loads: the passing waves of ruptini (occurring during the time intervals shown as grey bands) are recognizable from the

cluster they originate.

Figure 9. Distributions of events in a 20r20 grid for different amount of ruptini injected in a ®xed position relative to 50 000 iterations. Curve 1

refers to a single ruptino injected for each iteration and curve 2 to a passing plane wave with an amplitude equal to 10 ruptini for each element of

the grid.

Table 3. Typical dimensions of the maximum events under stationary

conditions for locally dissipative systems with different amounts of

dissipation. f is the fraction of energy lost and q is the corresponding

amount of ruptini lost from the cell every time it becomes unstable.

Grid

side

f=16%

q=2

f=33%

q=4

f=66%

q=8

30 30 21 15

50 30 23 15

60 35 25 16

90 34 25 15
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respectively (Kasahara 1981; Von Seggern et al. 1981). We

should also emphasize that the actual percentages are strictly

connected to the sensitivity of seismometers and to the de®nition

of foreshocks and aftershocks.

3.4 Scaling properties

Recalling that fractals are objects that exhibit similar structures

over a range of length scales for which one can de®ne a non-

integer dimension, we have investigated the localization of

the rupture events in the grid with the aim of ®nding whether or

not its geometry is fractal. There are different procedures to

evaluate the fractal dimension. We have applied the box-counting

algorithm by dividing the grid into a number of boxes of

increasing dimension, e, and calculating the number of boxes,

N, in which at least one event took place (Gonzato et al. 1998,

2000). If fractality exists, there is a linear relation between the

two quantities on a log±log scale. In fact,

N!eÿD , (5)

logN!ÿD log e , (6)

where D is the fractal dimension of the phenomenon. Here, the

scaling range is limited from below by the size of the basic

building blocks (the cells) from which the system is composed

and from above by the system size. Since the grids we used were

seldom larger than 100r100 cells, we could investigate the

scaling properties of the system only for two orders of magni-

tude, both in the case of a random addition of ruptini and in the

locally dissipative case. Fig. 13 shows that a linear relation

effectively exists between the box dimension and the number

of boxes with at least one event on a log±log scale in a scaling

range of two orders of magnitude. Although a scaling range

over such a small range is unlikely to have much signi®cance

per se (Malcai et al. 1997), the rules are independent of the grid

size and this fractal behaviour is likely to be indicative of a real

scaling.

Figure 10. Temporal sequence of events in a 120r120 grid after 106 iterations. Every time a cell becomes unstable, eight ruptini are lost as

frictional heat.

Figure 11. The period of the smoothing clusters for different grid dimensions and different amounts of ruptini, q, lost.

Table 4. Percentages of shocks without fore- and aftershocks under

local dissipative conditions.

f

(%)

Clusters without

foreshocks (%)

Clusters without

aftershocks (%)

16 51.2t0.5 27.3t0.3

33 61.2t0.3 33.3t0.1

66 70.2t0.5 41.0t0.5
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4 C H A N G I N G T H R E S H O L D S
I N I T I N E R E

We know from rock mechanics that if a certain element

has a rupture threshold, say R, before the ®rst rupture, after

the element has come to fracture this threshold will approach

a residual value r<R. This is somewhat like saying that

instead of nucleating a new fault, reactivating an old one

is generally easier, or like saying that after the ®rst rupture

has occurred, the fault surface has become smoother and slips

more easily. In order to take into account this aspect in our

simulations, we have developed an automaton with a memory

of the cells in which instabilities did occur by diminishing

in these cells the rupture threshold relative to the successive

iterations.

As can be seen in Fig. 14, fractures grow around the elements

that developed instabilities at the previous stages. A large

fracture develops joining smaller weak areas. If these threshold

changes have to be taken into account for the lithosphere,

its stationarity seems still more unlikely, since it would imply

that the whole crust has broken at least once, achieving a new,

lower threshold. In Table 5 we show the dynamical properties

of this automaton relative to globally dissipative and locally

dissipativeÐwith different levels of dissipationÐcases.

Figure 12. Average dimensions of the main events under stationary conditions versus grid dimension for locally dissipative systems with different

amounts of dissipation.

Figure 13. Application of box counting to the spatial distribution of events in a typical grid of 100r100 cells. The solid line (fractal dimension

D=1.54) comes from a random load algorithm and the dashed line (fractal dimension D=1.60) from a locally dissipative system with q=2; curves

with greater dissipation (q=4 and q=8) are not distinguishable from it in this scaling range.
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(a)

(c)

(e) (f)

(d)

(b)

Figure 14. Evolution of a system undergoing loading applied to random locations. After the ®rst rupture, the fracture threshold decreases. The

distance of each element from rupture is represented by a scale of colours ranging from blue (stability) to red (instability) after (a) 36 300, (b) 36 350,

(c) 36 400, (d) 36 450, (e) 36 500 and (f) 36 600 iterations.
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In this automaton, the percentage of events not preceded by

foreshocks and/or not followed by aftershocks is not affected

by the amount of dissipation but it changes with the degree

of threshold reduction, always remaining quite close to that

observed in nature in the case of foreshocks. Comparing these

results with those in Table 1, where there is no dissipation, one

would expect similar percentages, at least in the case in which

the threshold reduction factor is low. This is not what happens

because the experiments performed in this section differ from

those performed in Section 4.1, since the rules for the distri-

bution of ruptini to the neighbours of an unstable cell are

different. Referring to the symbols of Section 4.1, here we have

adopted

if N�i, j�§q then

N�i, j� � N�i, j� ÿ q ,

N�i+1, j� � N�i+1, j� � q
12

, (7)

N�i, j+1� � N�i, j+1� � q
12

,

t � 1, N�i+1, j+1� � N�i+1, j+1� � q
12

,

while the other equations do not vary. It has been necessary to

smooth the ruptini redistribution law, otherwise redistributing

too many ruptini to the nearest cells, together with the threshold

reduction, leads to a single superevent that is impossible to

stop. It follows that what is important to draw from Tables 1,

4 and 5 is not the absolute values of the percentages because

they vary according to the redistribution rules followed. This

represents the general behaviour of the system, that is, in every

kind of automaton aftershocks occur in 35±40 per cent more

cases than foreshocks.

The dimensions of the largest events, once stationarity has

been reached, are not controlled by the grid area but, and only

very slightly, by the degree of threshold lowering.

5 U N I V E R S A L I T Y

When the exponents describing the behaviour of a system do

not depend on the parameters of the model, a property of

universality is concluded. One can look for this property by

comparing the distributions of the events that occur in systems

with the same size and the same number of iterations developed

according to different rules (Christensen & Olami 1992; Kadanoff

et al. 1989). In our automata, we observe that the universality

of the critical exponents exists only in the conservative cases,

while we shift to different classes of universality by changing

the non-conservation degree. For a similar discussion relative

to the Olami±Feder±Christensen model, see also Carvalho &

Prado (2000). Fig. 15(a) shows the distribution for all the events

Table 5. Percentages of clusters without foreshocks and without aftershocks for different threshold variations

and for different amounts of local dissipation. As the percentages do not change signi®cantly with the degree of

dissipation, the complete set of data is given, as an example, only for the case of threshold reduction equal to 60 per

cent. In the other cases the variation is within the standard deviation value.

Threshold reduction

after the ®rst rupture (%)

Dissipation

degree ( f )

Clusters without

foreshocks (%)

Clusters without

aftershocks (%)

20 general 79.0t0.5 40.0t0.5

30 general 77.0t0.5 39.9t0.6

60 0% 66.4t0.2 33.9t0.4

60 16% 66.2t0.2 33.2t0.2

60 33% 66.4t0.2 34.2t0.3

60 66% 66.2t0.1 34.4t0.4

(a)

(b)
Figure 15. (a) Distributions relative to 50 000 iterations performed on

grids of 60r60 particles. Curve 1 refers to the dissipation of q=8

ruptini, curve 2 to q=4, curve 3 to q=2, curve 4 to q=1 and curve 5 to

q=0, the conservative case. (b) Distributions relative to the same

system as in (a) but with a fracture threshold reduction after the ®rst

ruptures. The circles enclose the experiments run with q=0, q=1, q=2,

q=4 and q=8 but their distributions are not distinguishable.
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that occurred in a 60r60 grid. The system organizes itself into

a stationary state after a transient time, dependent on the level

of conservation. Here we analyse the statistics only after the

system is organized. It is seen that the slopes of the curves

become steeper as the dissipation degree increases. We compare

this case with the same plot made for a system in which the

threshold level changes after the ®rst rupture (Fig. 15b). In this

case, the universality of coef®cients is preserved. There is a big

difference in slope between the conservative and the dissipative

cases but, among the latter, the difference is slight.

6 U N S O L V E D P R O B L E M S

In our automaton we have a generally linear behaviour in

the central part of the plot of the frequency±size distribution

that is reminiscent of the Gutenberg±Richter power law for real

earthquakes cited in Section 2. A basic question is whether

any of these driven non-equilibrium threshold systems exhibit

similarities to equilibrium systems. In fact, if these models

possessed a stable, time-averaged energy distribution function,

standard techniques and methods of equilibrium statistical

mechanics could then be available for use in the analysis of

simulation results and the interpretation of system dynamics

(Rundle et al. 1997).

As is seen in Fig. 16, our lattice models possess a stable

energy distribution. In fact, the average number of ruptini in

the grid during the temporal evolution of the system shows a

Gaussian distribution as the model approaches stationarity. As

Rundle et al. (1995) pointed out, this line of reasoning does not

depend on the massless nature of the elements considered.

There are a number of questions that our automaton leaves

open. The ®rst problem is connected to the temporal meaning

of each iteration. Our algorithm works according to two different

timescales:

(i) when an element becomes unstable, a sudden redistribution

of ruptini takes place and, at the same time, the rupture event

increases its area until unstable cells exist;

(ii) the system keeps a memory of the elements that were

unstable in the previous steps, and the second timescale involves

slow time-dependent strain diffusion, that is, a redistribution of

particles from those elements.

Note that the cascades are assumed to be simultaneous

since the timescale associated with an earthquake is short com-

pared to the timescale associated with the loading or change in

threshold level, represented by ruptini injection. It is dif®cult

to derive a correspondence to these timescales for the Earth,

especially the second one. The ®rst should be of the order of a

few seconds; the second is much more scattered and should

range from a few minutes to many years.

Another limitation of our simulation is that it cannot resolve

changes in the rate of occurrence of the events. For instance, it

cannot say if there is an acceleration in the succession of

occurrences before a main shock simply because we consider

foreshocks as events that precede the maximum of each cluster.

This means that foreshocks occur at successive iterations in the

loop of the programme and the elapsed time between two

successive iterations is linked to the rate of particle addition. If

we consider the rupture propagation to be instantaneous, we let

events take place only at the time step given by the rate of

particle injection. The quanti®cation of this rate does not derive

from the evolution of the automaton but is imposed from outside.

Another problem, typical of all of these types of models,

involves the limited dimension of grids achievable by computers.

In principle, it is possible to work with large grids, in three

dimensions, modelling realistic portions of the lithosphere, but

runs on realistic models of a few hundred thousand cells are

demanding even for the most powerful parallel machines.

Finally, as we mentioned in the Introduction, we have little

reason to exclude the idea that the actual lithosphere may be

subject to continuous activity, that is, ruptures occur all the

time, as our automata have shown when loaded with many

ruptini at the same time. However, our instruments may only

detect a portion of this ground activity due to sensitivity

problems and spatial coverage.

Figure 16. Normalized distributions of the average number of ruptini in the grid during the evolution of systems under stationary conditions. These

curves, which ®t Gaussian distributions, come from automata of 30r30 cells with different amounts of ruptini (from q=1 to q=8) locally lost as

frictional heat.
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7 M E A S U R I N G T H E C O M P L E X I T Y A N D
T H E P E R F O R M A N C E O F C E L L U L A R
A U T O M A T A M O D E L S

An advantage of the complexity approach we have adopted is

that it does not necessarily require huge systems of equations.

However, in this case it is dif®cult to ®nd a criterion to measure

the complexity of the model. One can consider the complexity

of a cellular automaton model proportional to the number of

variables in the algorithm even if this does not help in stating

the signi®cance of the parameters. We have called these quantities

variables simply because this is their normal name in computer

language. Obviously, all the variables that have no effect on the

behaviour of the model can be disregarded in the calculation.

In this way we can measure the complexity of our model with

respect to the three main types of cellular automata proposed

so far as analogues of distributed seismicity.

The ®rst slider-block model of any kind was proposed by

Burridge & Knopoff (1967). This was a spring-mass oscillator

model for which the differential equations were solved. The

®rst massless cellular automaton model was that of Rundle

& Jackson (1977). Carlson & Langer (1989) reanalysed the

Burridge±Knopoff model by using many more elements. Other

variations on the slider-block automaton theme were explored

by Ito & Matsuzaki (1990), Nakanishi (1991), Brown et al.

(1991), Rundle & Brown (1991), Olami et al. (1992), Carlson

et al. (1994), Morein et al. (1995) and Narkounskaia et al.

(1992) with the aim of describing the organization properties of

earthquakes. The original Burridge±Knopoff model consists

of a lattice of blocks and springs that is pulled across a rough

surface, undergoing stick-slip motion. Since each block is con-

nected by springs to the four surrounding blocks, the slippage

of a block (i, j) increases the force acting on the four neigh-

bouring blocks (it1, j) and (i, jt1), and, if the stability

criterion is violated, it makes them move. This model would

require the simultaneous solution of coupled equations of motion

for all the moving blocks. In order to simplify the calculation,

only one block at a time is allowed to slip and the system is

treated as a cellular automaton. As listed in Tables 6 and 7, this

model and its variants need from 13 to 16 variables, seven to

eight of which describe the geometrical and physical properties

of the elements and the remaining six to nine the transition rules.

The second type of earthquake automaton model was

pioneered by Bak & Tang (1989) to establish the conditions

that characterize SOC. Bak & Tang's model considered a 2-D

array of particles on a square lattice, representing segments of a

sliding surface. The particles are subjected to a force from their

neighbours that adds to a constantly increasing `tectonic' driving

force. Forces are conserved except at the boundaries. When the

total force on a particle exceeds a threshold, the particle slips

to a nearby position. The energy release from one particle

may lead to instability at a neighbouring position, in which

case another redistribution takes place. This cascade process is

the earthquake and eventually the average force will reach a

statistically stationary value. This model requires only seven

variables, only one for its geometrical description and the other

six to explain its transition rules. Its main limitation is that it

does not allow aftershocks to occur because it does not take

into account any sort of time-dependent propagation of energy

to the neighbours. After a certain number of iterations, the

system reaches a state of SOC and in this state the distribution

of events follows a power law, similar to the Gutenberg±Richter

law observed in nature.

The third type of model is that of Barriere & Turcotte (1994),

who considered a grid of boxes with a fractal distribution of

sizes arranged in given patterns of spatial disposition. Particles

(representing energy, stress or strain) are randomly added to

the boxes until a critical value is reached and a redistribution to

the adjacent boxes occurs. The grid loses particles from edges

and corners and since there is a continuous input of particles, it

is essential for the system to be dissipative, otherwise only a

single macro-cluster of avalanches would take place. The authors

considered as a foreshock a redistribution from a small box

that triggers an instability in a larger box (the main shock). A

redistribution from a large box always triggers instabilities

in adjacent smaller boxes (aftershocks). Also in this case, the

frequency±size statistics for both main shocks and aftershocks

satis®es the Gutenberg±Richter relation. Foreshocks occur 28 per

cent of the time, in agreement with the measured seismicity, but

this result depends on the speci®c pattern of arrangement of the

boxes of different size. With respect to Bak & Tang's model,

this one requires two further geometrical variables (Table 8).

Note that while the fractal grid in the model of Barriere

& Turcotte was intended to represent a projection of the fault

Table 6. Description and computation of the variables necessary to implement different cellular automata. Bak & Tang's model is the automaton

with a homogeneous grid of cells, Barriere & Turcotte's that with a fractal grid, and Kadanoff et al.'s is the classical sand-pile model.

Description of the variables Bak & Tang (1989) Barriere & Turcotte (1994) Kadanoff et al. (1989)

Limited model Unlimited model

Grid dimension 1 ± 1 1

Fractal grid ± 3: side, order of ± ±

the model ( f )

Number of iterations 1 1 1 1

Rupture thresholds for the cells 1 1 1 1

Amount of stress injected 1 1 1 1

Position for the stress injection 1 1 1 1

Order of the redistribution 1 1 1 1

Law of redistribution 1 f 1 depends on slope

1

Boundary condition free free

Total 7 8+f 7 7
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system onto the lithosphere, and the network of bodies in the

model of Burridge & Knopoff was intended to represent a fault

surface, the lattice in our model can represent both and can

also be seen as any surface, including the topographic surface

of the Earth or the surface of a specimen to be fractured in

the laboratory. We can consider that the ruptures observed,

starting from small, localized cells and coalescing to form bigger

areas, occur at different locations on a single fracture surface or

that they are the epicentres of the seismic distribution, plotted

on other surfaces such as those of the Earth or of a laboratory

sample. If we imagine that each element represents a segment of

a fracture, we simulate faults that are not planar as the real ones

are. The rupture of a fault is in fact not a planar phenomenon

but develops through a series of small slips resulting in rough

surfaces. If we imagine, instead, that each event is the epicentre

of a shock, we obtain the geographic distribution of events

projected on the Earth or on a laboratory sample surface.

Our automaton, with its seven to 12 variables (Table 9), one

to de®ne the geometry of the grids and the others to set the

transition rules, is approximately as simple as that of Bak &

Tang, but it satis®es all the main phenomenological features of

natural earthquakes, that is, a Gutenberg±Richter distribution,

the ratio between the number of foreshocks and aftershocks and

the scaling of foreshocks and aftershocks according to power

laws. These last two features were not present in Bak & Tang's

model. Moreover, it does not constrain the basic geometry to

be fractal as Barriere & Turcotte assumed, but it ®nds this to be

the case.

It is immediately clear that the number of variables employed

to describe these automata may seem large with respect to

classical mathematical models, but none of the latter, even the

most complex ones, has ever been able to reproduce the average

statistical features of seismicity, not even assuming some of

them as tunable parameters (cf. Ward 1991).

8 C O N C L U S I O N S

We have attained our goal of creating a general model that is as

simple as possible, albeit accounting for both strain diffusion

and local dissipation of energy. Our model outperforms pre-

vious models since it is capable of reproducing all the known

statistical properties of real seismicity with the smallest number

of parameters and with a weak set of assumptions.

Many studies have attempted to describe the lithosphere in

terms of a state of SOC. Generally speaking, there seems to

exist an independence of the model from the parameters only in

the conservative cases, the applicability of which is doubtful.

Obtaining power (fractal) laws is a natural consequence of

the evolution of this type of automata and we have described

different kinds of transition rules that can explain the various

forms of power-law relationships known in seismology, although

Table 7. Description and computation of the variables necessary to implement different slider-block cellular automata.

Description of

variables

Ito & Matsuzaki (1990) Narkounskaia et al. (1992) Olami et al. (1992)

General

model

Two-block

(n=2) model

2-D

model

Number of blocks (n) 1 1 1 1 1

Mass of the blocks ± 1 1 1

Elastic constant of the

interconnecting springs

1 1 1 1 2

Number of interconnecting springs nx1
n
2

� �
n
2

� �
2
���
n
p � ���np ÿ 1� 2

���
n
p � ���np ÿ 1�

1 1 1 1 1

Elastic constant of the loader spring 1 1 1 1 1

Number of loading springs 1 1 1 1 1

Velocity of the driving surface 1 1 1 1 1

Frictional coef®cients of the

sliding blocks

Static

1

* 1 1 1

Number of iterations 1 1 1 1 1

Slip thresholds for the blocks 1 1 1 1 1

Stress release after a slip occurs 1 1 1 1 1

Redistribution rules 1 1 1 1 1

Amount of force to be distributed

to the neighbours described in the

previous row of this table

1 1 1 1 1

Dissipation ± ± ± ± 1

Probability 1xp representing

plasticity necessary to stop a

fracture

1 ± ± ± ±

Memory of the blocks already

slipped once

(Takayasu & Matsuzaki)

1

1 ± ± ±

Decay of aftershock 2 ± ± ± ±

Boundary conditions periodic free or periodic free or periodic free or periodic

Total 16 15 13 13 14

* Static, dynamic 2 (the system evolution does not depend on dynamic friction, so that 1 parameter is suf®cent).

622 S. Castellaro and F. Mulargia

# 2001 RAS, GJI 144, 609±624

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/144/3/609/614264 by guest on 16 August 2022



they are all isotropic while fracturing is anisotropic. However,

they all lead approximately to the same inde®nite conclusion,

that after a certain number of iterations, varying according

to the speci®c transition rules adopted, the system becomes

stationary and there is no way of knowing when and where the

next event will take place and how large it will be. Thus, one

may know many things about the average properties of the

system, but while this leads to a suf®cient description for gases,

it is not satisfactory for earthquakes.

In our simulation, we have encountered three main obstacles.

The ®rst is the non-interpretability of the timescale of the

distribution, which directly derives from the way in which the

automata are built. The second is ignorance of the object we

want to model, that is, the lithosphere and the question whether

its dynamics are stationary or not. The third limitation is the

grid size (Table 10), even for the most powerful computers, which

casts doubts on the applicability of this kind of simulation to

real cases.

Table 9. List of the variables needed to run our cellular automaton algorithms. Model A refers to the basic

model, without local dissipation of energy and variations in the threshold level for rupture; model B is the model

that considers also a local dissipation of energy; model C takes into account a change in the threshold level for

rupture after the ®rst fracture has occurred. t indicates a parameter that could be omitted in that model. Refer to

the text for a detailed explanation of the different models.

Description of variables Applies to models Quantity of variables

Grid dimension A, B, C 1

Number of iterations A, B, C 1

Rupture thresholds for the cells A, B, C 1

Variation in the rupture thresholds C 1

after the ®rst fracture

Amount of ruptini injected A, B, C 1

Position for the ruptini injection A, B, C 1

Amount of local ruptini dissipation B, tC 1

Amount of ruptini distributed tA, tB, tC *

randomly after a rupture occurs

Order of redistribution A, B, C 1

Law of redistribution A, B, C 1

Total A 7+3

B 8+3

C 8+4

* In general, equal to the number of steps in which a complete redistribution takes place; in our model it is typically
equal to 3.

Table 8. Description and computation of the variables necessary to implement different slider-block cellular automata.

Description of variables Nakanishi (1991) Carlson et al. (1994)

Number of blocks (n) 1 1

Mass of the blocks ± 1

Elastic constant of the interconnecting springs 1 1

Number of interconnecting springs one dimension: nx1 one dimension: nx1

1 1

Elastic constant of the loader spring 1 1

Number of loading springs 1 1

Position for the stress injection ± ±

Velocity of the driving surface 1 1

Frictional coef®cients of the sliding blocks 1 1

Number of iterations 1 1

Number of the iteration the algorithm is performing

(necessary in order to evaluate the differential equations)

1 ±

Slip thresholds for the blocks 1 1

Force drop after a slip occurs 1 1

Neighbours involved in the redistribution of force after a slip 1 1

Amount of force to be distributed to the neighbours described in the previous row of this table 1 1

Dissipation ± ±

Probability 1xp representing plasticity necessary to stop a fracture ± ±

Memory of the blocks already slipped once ± ±

Decay of aftershock ± ±

Boundary conditions ± ±

Total 13 13
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Table 10. Properties affected by ®nite size effects.

Properties affected by size effects What happens Size effect disappears

for grids larger than

Percentage of main shocks without fore- and aftershocks 20r20

Frequency±size cumulative and non-cumulative

distributions of the shocks deviations from linearity

Linear increase of the relation number of

fore- and aftershocks versus main-shock size deviations from linearity 30r30

Direct proportionality between

the grid area and the periodicity

observed under dissipative systems

Size of the largest events in the

conservative automata is limited by the in dissipative systems

size of the system

Linear relation between the grid area

and the average dimension of the main shocks deviations from linearity 40r40
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