
Statistica Sinica 16(2006), 1043-1058

A SIMPLE CENSORED MEDIAN REGRESSION

ESTIMATOR

Lingzhi Zhou

The Hong Kong University of Science and Technology

Abstract: Ying, Jung and Wei (1995) proposed an estimation procedure for the

censored median regression model that regresses the median of the survival time,

or its transform, on the covariates. The procedure requires solving complicated

nonlinear equations and thus can be very difficult to implement in practice, es-

pecially when there are multiple covariates. Moreover, the asymptotic covariance

matrix of the estimator involves the density of the errors that cannot be esti-

mated reliably. In this paper, we propose a new estimator for the censored median

regression model. Our estimation procedure involves solving some convex min-

imization problems and can be easily implemented through linear programming

(Koenker and D’Orey (1987)). In addition, a resampling method is presented for

estimating the covariance matrix of the new estimator. Numerical studies indi-

cate the superiority of the finite sample performance of our estimator over that in

Ying, Jung and Wei (1995).
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1. Introduction

The accelerated failure time (AFT) model, which relates the logarithm of the

survival time to covariates, is an attractive alternative to the popular Cox (1972)

proportional hazards model due to its ease of interpretation. The model assumes

that the failure time T , or some monotonic transformation of it, is linearly related

to the covariate vector Z

Ti = β′
0Zi + εi, i = 1, . . . , n. (1.1)

Under censoring, we only observe Yi = min(Ti, Ci), where Ci are censoring

times, and Ti and Ci are independent conditional on Zi. The censored lin-

ear regression model has been studied extensively in recent years. Most stud-

ies deal with mean regression for the case of i.i.d. errors. Miller (1976) and

Buckley and James (1979) provided modification of least-squares estimators and

Prentice (1978) proposed rank-estimators. Koul, Susarla and Van Ryzin (1981)

and Leurgans (1987) developed synthetic data approaches. The asymptotic

properties of these estimators were rigorously studied by Ritov (1990), Tsiatis
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(1990), Wei, Ying and Lin (1990), Lai and Ying (1991), Robins and Tsiatis

(1992) and Zhou (1992), among others. More recently, Jin, Lin, Wei and Ying

(2003) developed simple and reliable methods for implementing a broad class of

rank-based monotone estimating functions in which the covariance matrices of

the estimators can be easily estimated by a resampling technique. For median

regression, Yang (1999) developed a method based on some weighted empirical

hazard and survival functions. Salibian-Barrera and Yohai (2003) adapted the

projection and the maximum depth estimates to the case of censored data.

Koenker and Geling (2001), however, pointed out that the i.i.d. error as-

sumption is highly restrictive, and proposed general quantile regression analysis

for the case of non-i.i.d. errors with no censoring. Portnoy (2003) developed a

recursively re-weighted estimator for censored quantile regression; however, his

procedure requires that all conditional quantiles are linear functions of the co-

variates, which can be very restrictive. In addition, there is a large literature

in econometrics on censored median regression dealing with general errors and

fixed censoring, see, for example, Powell (1986) and Chernozhukov and Hong

(2002). So far, Ying, Jung and Wei (1995) is the only procedure that deals with

general errors with random censoring. They proposed an estimator for median

regression that is heuristically related to the least absolute deviation estimator

with no censoring. Qin and Tsao (2003) developed a very computationally in-

tensive empirical likelihood approach to make inferences based on Ying et al.’s

(1995) estimator.

In spite of the important contribution by Ying et al. (1995), several issues

remain unresolved. First, the procedure involves solving a highly complicated

set of discontinuous equations, in which case there can be multiple solutions, and

the corresponding estimators may not be well defined. Their method can be very

difficult to implement in practice, especially when there are multiple covariates.

In addition, the limiting covariance matrix of their estimator involves unknown

density functions of the errors, which would be difficult to estimate reliably. Ying

et al. (1995) partially bypassed this problem by applying an inference procedure

of Wei, Ying and Lin (1990). However, calculation of this inference procedure

involves minimizations of discrete objective functions with potentially multiple

local minima; and such calculation is practically feasible only for confidence in-

tervals of one-dimensional parameters, and does not produce an estimate of the

covariance matrix. Kocherginsky, He and Mu (2005) suggested that resampling

methods for inference about regression quantiles are more reliable in general.

Recently, Bang and Tsiatis (2003) proposed a modification of the least ab-

solute deviation (LAD) estimator as an initial estimator for obtaining efficient

estimates for censored median regression. Their estimator is, in spirit, similar

to the mean regression estimator of Koul, Susarla and Van Ryzin (1981), and its
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main advantage is simplicity and ease of computation. However, its performance

is unsatisfactory due to the fact that it is constructed with the estimated Kaplan-

Meier estimator (Kaplan and Meier (1958)) for the censoring distribution at the

denominator. As is well known, the Kaplan-Meier estimator is not stable at the

right tail due to the sparsity of data. In the present paper, we provide a sim-

ple modification of Bang and Tsiatis’ (2003) initial estimator based on the idea

that data at the right tail do not affect the median. Furthermore, our procedure

involves minimizing a convex function and can be easily implemented through

linear programming (Koenker and D’Orey (1987)). There is practically no addi-

tional computational cost for high dimensional problems with our procedure. In

addition, we propose a resampling method based on Jin, Ying and Wei (2001),

which provides an attractive procedure for making statistical inferences due to

the convexity of the estimation procedure.

This article is organized as follows. In Section 2 we propose a simple cen-

sored median regression estimator. We effectively deal with the instability of the

right tail by introducing artificial censoring points that do not affect the median

function. The covariance matrix of the proposed estimator is estimated through

a resampling scheme. In Section 3, we report some simulation studies and give

an illustration. Technical derivations are summarized in Appendices 1 to 3.

2. A Simple Censored Median Regression Estimator

Let Ti be the ith failure time, or a monotonic transformation of it, Xi be a

(p − 1) × 1 vector of covariates for Ti. Conditional on Xi, the median regression

relates the median of Ti to the covariates through

Ti = β′
0Zi + εi, (2.1)

where Zi = (1,X ′
i)

′, i = 1, . . . , n, β0 is a p-dimensional vector and εi, i = 1, . . . , n,

are assumed to have a conditional median of 0. In the presence of censoring,

observations consist of bivariate vectors (Yi, δi), where Yi = min(Ti, Ci) and δi =

I(Ti ≤ Ci), with I(.) the indicator function. The censoring variable Ci is assumed

to be independent of Ti. Furthermore, we assume that the survival function G(.),

of Ci does not depend on Zi, and that {(Ti, Ci,Xi), i = 1, . . . , n} are generated

from random sampling.

For the uncensored case, the LAD estimator (Koenker and Bassett (1978))

for β0 in model (2.1) is obtained by minimizing

n
∑

i=1

|Ti − β′Zi|. (2.2)
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Note that a minimizer to (2.2) is a root of the following estimating equations:

n
∑

i=1

Zi

{

I(Ti − β′Zi ≥ 0) − 1

2

}

≈ 0.

Observing that the expected value of I(Yi − β′
0Zi ≥ 0) is (1/2)G(β′

0Zi) in the

presence of censoring, Ying, et al. (1995) propose to estimate β0 with the following

estimating equation:

Un(β) =

n
∑

i=1

Zi

{

I(Yi − β′Zi ≥ 0)

Ĝ(β′Zi)
− 1

2

}

≈ 0,

where Ĝ is the Kaplan-Meier estimator for G. Note that Un(β) is neither continu-

ous nor monotone in β. Thus it is difficult to solve the above equation, especially

when the dimension of β is high.

Noting that the expected value of δi/G(Yi) is 1, Bang and Tsiatis (2003)

proposed to estimate β by a root of

Ũn(β) =

n
∑

i=1

δi

Ĝ(Yi)
Zi

{

I(Yi − β′Zi ≥ 0) − 1

2

}

≈ 0.

They suggested simulated annealing for the implementation of the inferential

procedure and adoption of the minimum dispersion test statistic for the purpose

of constructing confidence regions of β.

It is worth pointing out that a root of Ũn(.) = 0 is also a minimizer of

n
∑

i=1

δi

Ĝ(Yi)
|Yi − β′Zi|, (2.3)

which is a convex function, and minimization of (2.3) can be easily implemented

through an efficient linear programming algorithm of Koenker and D’Orey (1987).

As is well known, however, the Kaplan-Meier estimator is very unstable at

the right tail. Consequently, the estimator based on (2.3) could have poor perfor-

mance, similar to Koul et al. (1981). This problem, however, can be adequately

dealt with through an artificial censoring, based on the observation that while

the mean of any random variable depends critically on the tail behavior of its

distribution, any alteration of its distribution beyond the median point would

have no impact on the median. More specifically, for a constant term M such

that M > β′
0Zi for i = 1, 2..., n, the conditional median of M ∧ (β ′

0Zi + ε)

given Zi is still β′
0Zi. With this insight, we now propose a new estimator by

modifying the objective function in (2.3). Define T M
i = Ti ∧ M to be the min-

imum of Ti and M and δM
i = I(T M

i ≤ Ci). Note that δM
i is well defined since
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δM
i = δi + (1− δi)I(M ≤ Ci). We define β̂1, an estimator of β0, to be the β that

minimizes
n
∑

i=1

δM
i

Ĝ(Y M
i )

|Y M
i − β′Zi|, (2.4)

where Y M
i = TM

i ∧ Ci = Yi ∧ M. The estimator based on (2.4) is more sta-

ble as the Ĝ(Y M
i ), i = 1, . . . , n, the denominator terms in (2.4), are bounded

below by Ĝ(M). It is shown in Appendix 1 that β̂1 is strongly consistent and

asymptotically normal.

Notice that in the previous approach, a single constant M was used for

artificial censoring of all the observations. Intuitively, different constant terms

Mi should be more appropriate for efficiency reasons. Define Mi = β′
0Zi + c0

for a small positive constant c0. Following the previous arguments, we can show

that the conditional median of T Mi

i given Zi will be Mi ∧ β′
0Zi = β′

0Zi. This

suggests that a more attractive estimator for β0 would be β̂2, which minimizes

Ln(β) =
n
∑

i=1

δM̂i

i

Ĝ(Y M̂i

i )
|Y M̂i

i − β′Zi|, (2.5)

where M̂i = β̂′
1Zi + c0. The theoretical value of M and c0 are constants inde-

pendent of the data. In practice, M and c0 are chosen to be data dependent.

We will discuss in detail the selection of M and c0 in the section on numerical

studies. Notice that this simple two-step estimation procedure can be easily im-

plemented as each step involves solving a convex minimization problem. It is

shown in Appendix 2 that β̂2 is strongly consistent and asymptotically normal.

The asymptotic covariance matrix of β̂2 needs to be estimated to facilitate

valid statistical inference. However, the asymptotic covariance matrix is difficult

to estimate reliably as it involves conditional densities of error terms. We develop

a resampling scheme similar to that of Jin, Ying and Wei (2001) to approximate

the distribution of β̂2, that does not involve complicated and subjective nonpara-

metric functional estimates. Specifically, we define a perturbed version of Ln(β)

as

L∗
n(β) =

n
∑

i=1

δM̂i

i

Ĝξ(Y
M̂i

i )
ξi|Y M̂i

i − β′Zi|, (2.6)

where M̂i = β̂′
2Zi+c0, ξi (i = 1, . . . , n) are independent positive random variables

with E(ξi) = V ar(ξi) = 1, and which are independent of the data (Yi, δi, Zi). Ĝξ

is the Kaplan-Meier estimator based on the perturbed observations:

Ĝξ(t) =
∏

s≤t

(

1 − ∆Nξ(s)

Yξ(s)

)

,
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where Nξ(t) =
∑n

i=1(1 − δi)ξiI(Yi ≤ t), Yξ(t) =
∑n

i=1 ξiI(Yi ≥ t). We show

in Appendix 3 that the asymptotic distribution of
√

n(β̂∗ − β̂2) is the same

as the limiting distribution of
√

n(β̂2 − β0). In practice, one may approximate

the distribution of β∗ by generating a large number, say N , of independent

samples {ξi}. For each realization of {ξi}, we obtain a realization of β∗ by

minimizing (2.6). The variance-covariance matrix of β̂ can be estimated by the

sample covariance matrix based on these N realizations of β∗. Consequently, we

can obtain confidence intervals for β0 using the normal approximation to the

distribution of β̂.

Note that, similar to Ying et al. (1995), our estimating procedure allows

the errors to depend on the covariates. For this procedure to be valid, we re-

quire that the distribution function of the censoring variable C to be free of

the covariate variable X. This assumption is often satisfied in randomized con-

trolled clinical trials; when it is violated, we follow the procedure adopted by

Ying, Jung and Wei (1995) to replace Ĝ(t) by ĜZ(t) if one can discretize the

covariate X into finitely many values. When there is no obvious way to dis-

cretize a continuous covariate, a nonparametric nearest-neighbor estimator of

the conditional censoring distribution might be used.

3. Numerical Studies

The estimator defined as a minimizer of (2.5), can be easily implemented

through the linear programming algorithm developed by Koenker and D’Orey

(1987). Many numerical studies were performed on different designs to check

the performance of the new estimator, including both low-dimensional and high-

dimensional cases.

To implement our procedure, we need to specify the choice of M and c0.

From numerous simulation studies, we found that the following ranges for M

and c0 give quite stable results for moderate censoring:

• M is chosen so that Ĝ(M) ≥ c1, for c1 ∈ (0.01, 0.15).

• c0 is set to be the sample standard deviation of z ′
iβ̂1(i = 1, . . . , n) multiplied

by a constant c2, for c2 ∈ (0.15, 0.35).

For our illustration, we chose c1 = 0.1 and c2 = 0.25 for all cases involving

one covariate, and those cases involving three covariates with moderate censoring,

namely, when the censoring percentage is no more than 30%. For the cases

involving three covariates with 45% censoring, we set c1 = 0.02 and c2 = 0.25;

in fact, our estimator performs quite well for c1 in the range (0.01, 0.05).

Extensive numerical experiments were conducted for comparing our new es-

timator with that of Ying et al. (1995). We consider two models with sample size
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n = 100. Data were generated by letting Xi, i = 1, . . . , n, be i.i.d. uniform(0,1),

εi, i = 1, . . . , n, be i.i.d. standard normal, with independence between Xi and εi.

We consider the following linear models.

• Model A: Ti = α + β1Xi + 0.5εi;

• Model B: Ti = α + β1Xi + 0.5Xiεi.

Data were generated with (α, β1) = (0, 1). Various normal N(c, 0.52) censor-

ing variables were considered, where the constant c in each model was chosen to

produce pre-specified proportions of censoring, namely, 10%, 25% and 45%. For

each c, 1,000 random samples {(Yi,Xi, δi), i = 1, . . . , 1, 000} were generated. Ta-

ble 1a summarizes the mean and standard error of the proposed new procedure

and the procedure of Ying et al. (1995). The results for Ying et al. (1995) are

obtained through grid search.

Table 1a. Bias and Standard error of the parameter estimates.

New YJW

α β1 β0 β1

Model Censoring bias s.e. bias s.e. bias s.e. bias s.e.

A 10% -0.007 0.12 0.007 0.22 -0.007 0.13 0.014 0.24

25% -0.003 0.13 0.015 0.24 -0.003 0.15 0.032 0.30

45% 0.008 0.15 -0.018 0.31 0.015 0.19 -0.006 0.39

B 10% 0.000 0.02 0.001 0.09 0.001 0.03 -0.003 0.13

25% -0.000 0.02 0.001 0.12 -0.004 0.05 0.013 0.18

45% 0.004 0.03 -0.016 0.14 0.003 0.07 -0.008 0.25

s.e., standard error; YJW: Ying, Jung and Wei (1995)

From Table 1a it is obvious that the proposed new estimator outperforms

β̂YJW in all the models in terms of standard errors. The most likely reason

behind the improvement is that our estimator is based on the convex minimiza-

tion problem, which typically has very stable finite sample performance, and

their estimates are based on solving complicated non-linear equations, which

can produce volatile finite-sample estimates unless the estimating equations are

monotone. The computation time for our procedure is significantly shorter than

that of YJW. In fact, it took only half a minute to generate the entries in Table

1a with our procedure on a Pentium 4 computer with CPU 1700MHz, while the

time taken for YJW using grid search was over five hours.

We also compare the coverage probabilities of our new estimator for β1, the

slope term, with those of Ying et al. (1995) for models A and B. A Wald type

confidence interval for the new procedure was adopted. The standard errors
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were obtained based on N =1,000 sets of resampled {ξi} from the exponential

distribution. The confidence interval for YJW is based on (9) on Page 180 of Ying

et al. (1995). Table 1b is obtained with 1,000 sets of data. We can conclude that,

based on the results in Table 1b and other unreported simulations, the coverage
probabilities obtained with the new approach are fairly consistent across different

designs, and are much closer to the nominal levels than those obtained by YJW.

Table 1b. Coverage probabilities for the slope parameter.

New YJW

Model Censoring 95% CP 90% CP 95% CP 90% CP

A 10% 96.5 92.6 98.3 96.4

25% 97.4 93.5 98.6 97.5

45% 95.3 91.1 98.9 97.0

B 10% 95.8 92.2 91.3 85.6

25% 96.2 91.9 92.5 86.4

45% 96.2 90.5 93.7 87.9

CP, coverage probability.

The advantage of our procedure is even more obvious when the dimension

of the covariates is high. The procedure of Ying et al. (1995) involves solving

complicated nonlinear equations that generally fail to have a unique solution

and, as pointed out by Ying et al. (1995), it is not practical for high-dimensional

cases. Our procedure is implemented with the linear programming algorithm

at little additional cost for high dimension. Numerical studies show that our

estimator performs equally well when the dimension of the covariates is high. We
considered a linear regression model with three independent covariates for Xi,

the first one from a Bernoulli variable (X1i) with ‘success’ probability 1/2, the

second from a uniform variable (X2i) on (0, 1), and the third a normal variable

X3i = N(0, 0.52). The survival time Ti is generated as follows:

• Model C: T = α + β1X1i + β2X2i + β3X3i + εi,

• Model D: T = α + β1X1i + β2X2i + β3X3i +
√

X2iεi,

where (α, β1, β2, β3)
′ = (0, 1, 1, 1)′ and εi, i = 1, . . . , n, are i.i.d. standard nor-

mal random variables independent of Xi, i = 1, . . . , n. Various censoring vari-

ables N(c, 1) are considered, where the constant c is chosen to produce pre-

specified proportions of censoring. For each design, we simulated 1,000 realiza-

tions {(Xi,∆i, Zi)} to estimate the bias and standard error of our estimator.

Results are reported in Table 2. From Table 2, we can see that the parameter

estimates appear to be virtually unbiased. It took under one minute to generate

Table 2.
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Table 2. Estimated bias and standard errors for high dimension.

α β1 β2 β3

Model Censoring bias s.e. bias s.e. bias s.e. bias s.e.

C 10% -0.013 0.29 0.002 0.26 0.010 0.45 0.007 0.27

25% -0.034 0.33 0.010 0.31 0.015 0.57 -0.002 0.33

45% -0.020 0.44 -0.009 0.43 -0.046 0.78 -0.057 0.45

D 10% 0.003 0.12 0.001 0.14 -0.001 0.26 -0.003 0.15

25% 0.000 0.14 -0.009 0.16 -0.005 0.33 -0.008 0.18

45% 0.004 0.19 -0.017 0.24 -0.032 0.43 -0.030 0.25

Model C, Homogeneous error; Model D, Heterogenous error.

Finally, we apply the proposed methods to a lung cancer data set, the same

data set that Ying et al. (1995) analyzed. In this study, 121 patients were ran-

domly assigned to two groups: 62 patients were in Group A and 59 patients

in Group B. The censoring percentage is 19%, so the estimators are expected

to perform well. In the median regression model, Ti is the base-10 logarithm

of the ith patient’s failure time, X1i = 0 if the ith patient is in Group A

and 1 otherwise, and X2i is the patient’s entry age. The point estimate is

β̂ = (3.020,−0.171,−0.004)′ , and the 95% confidence intervals for β based on

1,000 resampled data are (2.236, 3.693), (−0.335,−0.007) and (−0.014, 0.007).

These results are very similar to those of Ying et al. (1995).

Acknowledgements

The author is grateful to Xuming He and Zhiliang Ying, the Co-Editor and

an anonymous referee for their helpful comments.

Appendix 1. Asymptotic Properties of β̂1

We make the following assumptions.

(1) Z is bounded (||Zi|| ≤ B) and E(ZZ ′)̇ is positive definite.

(2) Conditional on Z, the regression errors εi have median 0 and a continuous

positive density function f(· | Z) in a neighborhood of 0.

(3) The derivative g of −G is uniformly bounded, where G is the survival function

of the censoring variable.

(4) The true value β0 of β is in the interior of a bounded convex region D. For

β ∈ D, there exists a constant M0 such that P (Y > M0) > 0 and β′Z ≤ M0

with probability 1.

Step 1: Proof of strong consistency of β̂1:

Define ε∗i = min(Ti − β′
0Zi,M − β′

0Zi) = min(εi,M − β′
0Zi). Then, median
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(ε∗i ) = median (εi) = 0 since M − β′
0Zi > 0. β̂1 is the β that minimizes

Gn(θ) = n−1
n
∑

i=1

δM
i

Ĝ(Y M
i )

(|ε∗i − θ′Zi| − |ε∗i |) = An(θ) + Bn(θ), (A.1)

where θ = β − β0 and

An(θ) = n−1
n
∑

i=1

δM
i

G(Y M
i )

(|ε∗i − θ′Zi| − |ε∗i |)

Bn(θ) = n−1
n
∑

i=1

δM
i (G(Y M

i ) − Ĝ(Y M
i ))

G(Y M
i )Ĝ(Y M

i )
(|ε∗i − θ′Zi| − |ε∗i |).

Since ||ε∗i − θ′Zi| − |ε∗i || ≤ |θ′Zi| ≤ B |θ|, by the uniform consistency of the
Kaplan-Meier estimator and G(M) > 0, Bn(θ) converges almost surely to 0.
Since An(θ) is the mean of i.i.d random variables, it converges almost surely to
E(|ε∗ − θ′Z| − |ε∗|), which is minimized only when θ = 0 under assumptions (1)
and (2).

Step 2: Proof of asymptotic normality of β̂1:

Assumption 2 ensures that the function Γ(θ) = E(An(θ)) = E(|ε∗i − θ′Zi| −
|ε∗i |) has a unique minimum at zero, and Γ(θ) = θ ′Aθ + o(||θ||)2,where A =
E(f(0|Z)ZZ ′).

Define Ri(θ) = |ε∗i − θ′Zi| − |ε∗i | − DiZ
′
iθ with Di = I(ε∗i < 0) − I(ε∗i ≥ 0),

which satisfies E(Di|Zi) = 0 because ε∗i has a zero median conditional on Zi.
Then, An(θ) = Γ(θ)+ W ′

1,nθ + Cn(θ), where W1,n = n−1
∑n

i=1(δ
M
i /G(Y M

i ))DiZi

is the mean of independent random variables with mean 0 and finite variance,
and

Cn(θ) = n−1
n
∑

i=1

[

δM
i

G(Y M
i )

Ri(θ) − E(
δM
i

G(Y M
i )

Ri(θ))

]

.

It can be easily seen that |Ri(θ)| ≤ 2 |θ′Zi| I(|ε∗i | ≤ |θ′Zi|). Thus,

E {Cn(θ)}2 ≤ n−2
n
∑

i=1

E

[

δM
i

G(Y M
i )

Ri(θ)

]2

≤ 4B2 ||θ||2
nG(M)

P (|ε∗| ≤ B| |θ||).

Therefore, |Cn(θ)| = op(||θ||/
√

n) in a small neighborhood of θ = 0, and

An(θ) = θ′Aθ + W ′
1,nθ + o(||θ||)2 + op(

||θ||√
n

). (A.2)

By applying a well-known martingale representation for (G − Ĝ)/G (see, for
example Fleming and Harrington (1991)), we can easily show that

Bn(θ) = W ′
2,nθ + op

( ||θ||√
n

)

, (A.3)
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where W2,n = n−1
∑n

i=1

∫∞

−∞
(q1(t)/h(t))dMi(t) is the mean of independent ran-

dom vectors with mean 0 and finite variance. Here,

q1(t) = E
[

n−1
∑

DiI(Y M
i ≥ t)Zi

]

, h(t) = E [Y (t)/n] , (A.4)

Mi(t) = (1 − δi)I(Yi ≤ t) −
∫ t

−∞

I(Yi ≥ t)dΛG(t),

where ΛG(t) is the cumulative hazard function of the censoring variable. Con-
sequently, it follows from (A.1) to (A.3) that Gn(θ) = θ′Aθ + W ′

nθ + o(||θ||2) +
op(||θ||/

√
n),where Wn = W1,n + W2,n is the average of independent random

vectors with mean 0 and finite variance. Thus,
√

nWn converges in distribu-
tion to a normal random variable with mean 0. Using the convexity of Gn(θ)
and following the convexity argument of Pollard (1991), we can prove that
θ̂n + A−1Wn/2 = op(1/

√
n). Therefore,

√
nθ̂n converges in distribution to a nor-

mal random vector with mean 0. The proof is complete.

Appendix 2. Asymptotic Properties of β̂2

Step 1: Proof of strong consistency of β̂2:

Let θ̂1 = β̂1−β0. Define Mi(θ1) = c0 +β′
0Zi +θ′1Zi and ε∗i (θ1) = min(εi, c0 +

θ′1Zi). Then M̂i = c0 + β̂′
1Zi = c0 + β′

0Zi + θ̂′1Zi = Mi(θ̂1) and ε̂∗i = min(εi, M̂i −
β′

0Zi) = ε∗i (θ̂1). Define Mi = c0 + β′
0Zi = Mi(0) and ε∗i = min(εi,Mi − β′

0Zi) =
min(εi, c0) = ε∗i (0). Since β̂1 →a.s β0, M̂i −β′

0Zi = c0 + (β̂1 −β0)
′Zi →a.s c0 > 0.

For the proofs that follow, θ1 is assumed to be in a small region D1 of zero so
that c0 + θ′1Zi > 0, and n is large enough that θ̂1 ∈ D1. Therefore, the median of
ε∗i (θ1) and ε̂∗i is zero, and the density of ε∗i (θ1) given Zi at zero is also f(0|Zi).
From (2.5), θ̂ = β̂2 − β0 is the θ that minimizes

Kn(θ) = n−1
n
∑

i=1

δM̂i

i

Ĝ(Y M̂i

i )
(|ε̂∗i − θ′Zi| − |ε̂∗i |)

= n−1
n
∑

i=1

δ
Mi(θ̂1)
i

Ĝ(Y
Mi(θ̂1)
i )

(|ε∗i (θ̂1) − θ′Zi| −
∣

∣

∣
ε∗i (θ̂1)

∣

∣

∣
)

= K1,n(θ̂1, θ) + K2,n(θ̂1, θ), (A.5)

where

K1,n(θ1, θ) = n−1
n
∑

i=1

δ
Mi(θ1)
i

G(Y
Mi(θ1)
i )

(|ε∗i (θ1) − θ′Zi| − |ε∗i (θ1)|),

K2,n(θ1, θ) = n−1
n
∑

i=1

δ
Mi(θ1)
i (G(Y

Mi(θ1)
i )−Ĝ(Y

Mi(θ1)
i ))

G(Y
Mi(θ1)
i )Ĝ(Y

Mi(θ1)
i )

(|ε∗i (θ1)−θ′Zi|−|ε∗i (θ1)|).
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By the Strong Law of Convergence of the Kaplan-Meier estimator, we can easily
see that, for any fixed θ, |K2,n(θ̂1, θ)| ≤ C ||θ|| supt≤τ |Ĝ(t) − G(t)| a.s.→ 0, where
τ < inft[limn→∞ G(t)

∑

P (Yi > t)/n = 0].
In addition, K1,n(θ1, θ) can be expressed as

δi+(1−δi)I((c0+β′
0Zi+θ′1Zi)≤Ci)

G (Yi ∧ (c0+β′
0Zi+θ′1Zi))

(|min(εi, c0+θ′1Zi)−θ′Zi|−
∣

∣min(εi, c0+θ′1Zi)
∣

∣).

Let ς = (T,C, ε, Z). By applying Examples 19.7, 19.9 and 19.20 of van der Vaart
(1998), the set of functions, ς → {[I(T <C)+I(T ≥C)I((c0+β′

0Z+θ′1Z)≤C)]
/G (T ∧ C ∧ (c0 + β′

0Z + θ′1Z))}(|min(ε, c0 + θ′1Z) − θ′Z| − |min(ε, c0 + θ′1Z)|),
with θ1 and θ ranging over compact sets D1 and D∗ = {β − β0 : β ∈ D} re-
spectively, is a Vapnic-Cervonenkis (VC) class of functions. Hence, as a result
of Lemma 19.15 of van der Vaart (1998), the Glivenko-Cantelli theorem holds
since the set of functions have a bounded envelope. That is, supθ1,θ |K1,n(θ1, θ)−
E(K1,n(θ1, θ))| →a.s. 0. In addition, E(K1,n(θ1, θ)) = E(|ε∗i (θ1)− θ′Zi|− |ε∗i (θ1)|)
is minimized at θ = 0 for θ1 ∈ D1. Therefore, β̂2 is a consistent estimator of β0.

Step 2: Proof of asymptotic normality of β̂2:

Similar to the proof in Appendix 1, we have Γ(θ1, θ) = E[K1,n(θ1, θ)] =
θ′Aθ + o(||θ||2). Define Di(θ1) = I(ε∗i (θ1) < 0)− I(ε∗i (θ1) ≥ 0) , Di = Di(0), and
Ri(θ1, θ)= |ε∗i (θ1)−θ′Zi|−|ε∗i (θ1)|−Di(θ1)Z

′
iθ. Then, |Ri(θ1, θ)|≤2|θ′Zi|I(|ε∗i (θ1)|

≤ |θ′Zi|). We have

K1,n(θ1, θ) − Γ(θ1, θ)

= n−1
n
∑

i=1

δ
Mi(θ1)
i

G(Y
Mi(θ1)
i )

Di(θ1)Z
′
iθ + n−1

n
∑

i=1

δ
Mi(θ1)
i

G(Y
Mi(θ1)
i )

[Ri(θ1, θ) − E(Ri(θ1, θ))].

Using the same argument in the proof of Appendix 1, we have, for fixed θ and
θ1 ∈ D1,

K1,n(θ1, θ) = θ′Aθ + n−1
n
∑

i=1

δ
Mi(θ1)
i

G(Y
Mi(θ1)
i )

Di(θ1)Z
′
iθ + o(||θ||2) + op(

||θ||√
n

).

In addition, by applying a similar argument used in proving consistency, the
class of functions {(δMi(θ1)

i /G(Y
Mi(θ1)
i ))Di(θ1)Zi : θ1 ∈ D1} is a VC class of

functions with a bounded envelope, therefore a Donsker class by Lemma (19.15)

of van der Vaart (1998). Since E(Di(θ1)) = E(Di) = 0 and the conditions for
Lemma 3.3.5 of van der Vaart and Wellner (1996) hold, since the denominator

is bounded away from zero, we have

n−1
n
∑

i=1

δ
Mi(θ̂1)
i

G(Y
Mi(θ̂1)
i )

Di(θ̂1)Zi − n−1
n
∑

i=1

δMi

i

G(Y Mi

i )
DiZi = op(

1√
n

).
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Therefore,

K1,n(θ̂1, θ) = θ′Aθ + n−1
n
∑

i=1

δMi

i

G(Y Mi

i )
DiZ

′
iθ + o(||θ||2) + op(

1 + ||θ||√
n

). (A.6)

Applying the property of the Kaplan-Meier estimator, it can be easily seen that

K2,n(θ1, θ)

= n−1
n
∑

i=1

δ
Mi(θ1)
i (G(Y

Mi(θ1)
i ) − Ĝ(Y

Mi(θ1)
i ))

G2(Y
Mi(θ1)
i )

Di(θ1)Z
′
iθ + op(

||θ||√
n

)

= n−1
n
∑

j=1

∫ ∞

−∞

Ĝ(t−)

G(t)Y (t)/n

{

n−1
n
∑

i=1

δ
Mi(θ1)
i Di(θ1)I(Y

Mi(θ1)
i ≥ t)

G(Y
Mi(θ1)
i )

Z ′
i

}

dMj(t)θ

+op(
||θ||√

n
),

where Y (t) =
∑

I(Yi ≥ t). The class of functions {δMi(θ1)
i Di(θ1)I(Y

Mi(θ1)
i ≥ t)

/G(Y
Mi(θ1)
i ) : θ1 ∈ D1,−∞ < t < ∞} is again a VC class of functions with a

bounded envelope. Again, by Lemma (19.15) of van der Vaart (1998),

sup
t

∣

∣

∣
n−1

n
∑

i=1

δ
Mi(θ̂1)
i Di(θ̂1)I(Y

Mi(θ̂1)
i ≥ t)

G(Y
Mi(θ̂1)
i )

Zi − q2(t)
∣

∣

∣
→ 0 a.s.

where q2(t) = E[n−1
∑

DiI(Y Mi

i ≥ t)Zi]. It follows from properties of martingale
integral representation that

K2,n(θ̂1, θ) = n−1
n
∑

i=1

∫ ∞

−∞

q2(t)
′

h(t)
dMi(t)θ + op(

||θ||√
n

). (A.7)

Here, h(t) and Mi(t) are defined the same as in (A.2) and, from (A.5) to (A.7),

we have Kn(θ) = θ′Aθ + W ′
nθ + o(||θ||2) + op(||θ||/

√
n)for high-dimensional cases

with Wn = n−1
∑n

i=1[(δ
Mi

i /G(Y Mi

i ))DiZi +
∫∞

−∞
(q2(t)/h(t))dMiG(t)]. Again, by

applying the same convexity argument as in Pollard (1991), we can prove that

θ̂n = −1

2
A−1Wn + op(

1√
n

), (A.8)

where Wn is the mean of the independent random vectors. It thus follows from

the Multivariate Central Limit Theorem and a tedious, but otherwise routine,
covariance calculation that the distribution of n1/2Wn is asymptotically normal

with mean zero and variance covariance matrix

Ω = n−1
n
∑

i=1

E

[

D2
i

G(Y Mi

i )
ZiZ

′
i

]

−
∫ ∞

−∞

q2(t)q2(t)
′

h(t)
dΛG(t).
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Therefore, n1/2θ̂n →p N(0, A−1ΩA−1/4). The proof is complete.

Appendix 3. Asymptotic Properties of β̂∗

Let θ̂∗= β̂∗ − β0 be the θ that minimizes K∗
n(θ) = n−1

∑n
i=1(δ

M̂i

i /Ĝξ)(Y
M̂i

i )

ξi(|ε̂∗i − θ′Zi| − |ε̂∗i |) = K∗
1,n(θ) + K∗

2,n(θ), where

K∗
1,n(θ) = n−1

n
∑

i=1

ξiδ
M̂i

i

G(Y M̂i

i )
(|ε̂∗i − θ′Zi| − |ε̂∗i |),

K∗
2,n(θ) = n−1

n
∑

i=1

ξiδ
M̂i

i (G(Y M̂i

i ) − Ĝξ(Y
M̂i

i ))

G(Y M̂i

i )Ĝξ(Y
M̂i

i )
(|ε̂∗i − θ′Zi| − |ε̂∗i |).

Similar to the proof in Appendix 2, we can show that

K∗
1,n(θ) = θ′Aθ + n−1

n
∑

i=1

ξiδ
Mi

i

G(Y Mi

i )
DiZ

′
iθ + o(||θ||2) + op(

||θ||√
n

).

In order to study K∗
2,n(θ),we provide a useful identity for Ĝξ similar to the un-

perturbed Kaplan-Meier estimator

G(t) − Ĝξ(t)

G(t)
=

∫ t

−∞

Ĝξ(s−)

G(s)Yξ(s)
dMξ(s), (A.9)

where Mξ(t) =
∑n

i=1{(1 − δi)ξiI(Yi ≤ t) −
∫ t
−∞

ξiI(Yi ≥ s)dΛG(s)}. Using the

argument to prove the asymptotic distribution of the unperturbed Kaplan-Meier

estimator, we can prove that

sup
t≤τ

∣

∣

∣
G(t) − Ĝξ(t)

∣

∣

∣
= o(1) a.s. and sup

t≤τ

√
n
∣

∣

∣
G(t) − Ĝξ(t)

∣

∣

∣
= Op(1) (A.10)

for τ < inft[limn→∞ G(t)
∑

P (Yi > t)/n = 0]. Here the convergence is with re-

spect to the product space ξ × (T, δ, Z).

By making use of (A.9) and (A.10), we can easily reach the following repre-

sentation:

K∗
2,n(θ) = n−1

n
∑

j=1

∫ ∞

−∞

ξj

Yξ(t)/n

{

n−1
n
∑

i=1

ξi
δMi

i Di(θ1)I(Y Mi

i ≥ t)

G(Y Mi

i )
Z ′

i

}

dMj(t)θ

+op(
||θ||√

n
)

= n−1
n
∑

j=1

∫ ∞

−∞

ξj
q(t)

h(t)
dMj(t)θ + op(

||θ||√
n

),
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where op(.) is with respect to the product space, ξ × (Y, δ, Z). Therefore,

θ̂∗ = −1

2
A−1W ∗

n + op(
1√
n

), (A.11)

where W ∗
n = n−1

∑n
i=1 ξi((δ

Mi

i /G(Y Mi

i ))DiZi +
∫∞

−∞
(q(t)/h(t))dMi(t)). Combin-

ing (A.11) and (A.8), we have

√
n(θ̂∗ − θ̂) = −1

2
A−1√n(W ∗

n − Wn) + op(
1√
n

)

= −1

2
A−1

[

1√
n

n
∑

i=1

(ξi − 1)

(

δMi

i

G(Y Mi

i )
DiZi +

∫ ∞

−∞

q(t)

h(t)
dMi(t)

)]

+op(
1√
n

).

Conditional on (Y, δ, Z), the term in [.] converges to a multivariate normal with

mean zero and variance converging in probability to Ω. Therefore, the distri-

bution of
√

n(β̂∗ − β̂2) converges in distribution to N(0, A−1ΩA−1/4), as in the

limiting distribution of
√

n(β̂2 − β0). The proof is complete.
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