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Abstract

A novel, very simple chaotic oscillator is described. It is intended for
training laboratories accompanying courses on nonlinear dynamics and chaos
for undergraduate, postgraduate and PhD students. The oscillator consists of
an operational amplifier, an LCR resonance loop, an extra capacitor, a diode
as a nonlinear element and three auxiliary resistors. Chaotic oscillations are
demonstrated both experimentally and numerically.

Electronic oscillators generating chaotic waveforms are the most convenient tools for practical

training of students taking courses on nonlinear dynamics and chaos [1–6]. From a didactical

point of view, the oscillator should not be higher than a third-order system and preferably

autonomous. It should contain a single, simply defined and common nonlinear unit. Smooth,

monotonous and unambiguous nonlinear functions are preferred to piecewise linear, non-

monotonous and ambiguous ones. From a technical point of view the circuit should contain

as few elements as possible. All the devices should be commercially available and cheap.

The circuit should be easy to build and tune up. The oscillator should operate at kilohertz

frequencies to simplify the measuring procedures.

A number of chaotic oscillators have been described in the literature (see, e.g. [7]). A

systematic and didactic way to design a third-order autonomous chaotic oscillator is to start

with a second-order normal sinusoidal oscillator, either an LC or Wien-bridge type. The next

step is to insert an additional energy storage element, say an inductor L∗ or capacitor C∗, and

an appropriate nonlinear device, e.g. a diode. In this paper we suggest a novel, very simple,

apparently simplest third-order autonomous chaotic oscillator. The oscillator is shown in

figure 1. It includes a non-inverting amplifier and a series LCR resonance circuit in a positive

feedback loop. In addition, an extra capacitor C∗ and a diode D are inserted in the circuit.

In an experimental prototype, the circuit parameters were the following: L = 100 mH,

C = 100 nF (ρ =
√

L/C = 1 k�, fundamental frequency f ∗ ≈ 1/2π
√

LC ≈ 1.6 kHz),

C∗ = 15 nF, R = 1 k�, R1 = R2 = 10 k� (R2 variable resistor), and R0 = 20 k�. The gain of

the amplifier k = R2/R1 + 1. The variation of R2 from 0 to 10 k� allows one to tune k from
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Figure 1. Circuit diagram of the chaotic oscillator (left) and phase portrait (IL versus VC ) (right).

Gain k ≈ 1.4. The diode is dc-forward-biased via resistor R0: Vb = 20 V (I0 ≈ 1 mA).

1 to 2. A common LM741 type operational amplifier was employed and a 1N4148 type

general purpose diode was used.

There are three dynamical variables in the oscillator: VC , IL and VC∗ , i.e. the voltage

across the capacitor C, the current through the inductor L, and the voltage across the capacitor

C∗ respectively. The variable IL can be taken either as a voltage drop across the resistor R or

as the output signal from the amplifier OA. Since the capacitors C and C∗ are not grounded

the variables VC and VC∗ should be taken by means of an oscilloscope with a differential input.

Two-dimensional projections (phase portraits) of the three-dimensional phase trajectory (IL,

VC , VC∗ ), specifically (IL versus VC), (IL versus VC∗ ) and (VC∗ versus VC) can easily be

displayed on the screen of an oscilloscope. One of them, namely (IL versus VC) is presented

in figure 1 (right) to illustrate the chaotic performance of the oscillator.

Applying the Kirchhoff laws one comes to the following set of three ordinary differential

equations describing the dynamics of the oscillator:

C dVC/dt = IL, L dIL/dt = (k − 1)RIL − VC − VC∗ , C∗ dVC∗/dt = I0 + IL − ID.

(1)

Here I0 ≈ Vb/R0 (R0 ≫ R, ρ) is the dc bias current and ID = f (VC∗) is the nonlinear

current–voltage characteristic of the diode:

ID = IS(exp(eVD/kBT ) − 1), (2)

where IS and VD is the saturation current and the voltage across the diode, respectively (note

that due to parallel connection VD = VC∗ ); e is the electron charge, kB is the Boltzmann

constant and T is the temperature. By introducing the dimensionless variables and parameters

x =
VC

VT

, y =
ρIL

VT

, z =
VC∗

VT

, θ =
t

τ
,

VT =
kBT

e
, ρ =

√

L

C
, τ =

√

LC, a = (k − 1)
R

ρ
,

b =
ρI0

VT

, c =
ρIS

VT

, ε =
C∗

C
,

(3)

equations convenient for analysis and numerical simulation are obtained:

ẋ = y, ẏ = ay − x − z, εż = b + y − c(exp z − 1). (4)

Here the dots above the variables denote their derivatives over θ . For certain sets of the control

parameters a, b and ε (normally c ≪ 1, therefore the oscillations are insensitive to its value)
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Figure 2. Bifurcation diagram from equation (4), i.e. the local maxima xm of the variable x(t) versus

control parameter a (left) and leading Lyapunov exponent λ as a function of control parameter a

(right). Other parameters are fixed at b = 30, ε = 0.13 and c = 4 × 10−9.

the system generates chaotic oscillations as illustrated in figure 2 with the bifurcation diagram

and Lyapunov exponent. Positive values of the latter confirm the chaotic behaviour of the

oscillator. One can see that the oscillator exhibits a universal period-doubling route to chaos,

i.e. a scenario typical of many nonlinear systems. There are also narrow periodic windows in

the chaotic domain and reverse bifurcations at higher values of the parameter a.
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