Swarthmore College

Works

Physics & Astronomy Faculty Works Physics & Astronomy
1-1-1986

A Simple Conceptual-Model For 2-Photon Absorption

Frank Moscatelli
Swarthmore College, fmoscat1@swarthmore.edu

Follow this and additional works at: https://works.swarthmore.edu/fac-physics

b‘ Part of the Physics Commons
Let us know how access to these works benefits you

Recommended Citation

Frank Moscatelli. (1986). "A Simple Conceptual-Model For 2-Photon Absorption". American Journal Of
Physics. Volume 54, Issue 1. 52-54. DOI: 10.1119/1.14770
https://works.swarthmore.edu/fac-physics/79

This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in
Physics & Astronomy Faculty Works by an authorized administrator of Works. For more information, please contact
myworks@swarthmore.edu.


https://works.swarthmore.edu/
https://works.swarthmore.edu/fac-physics
https://works.swarthmore.edu/physics
https://works.swarthmore.edu/fac-physics?utm_source=works.swarthmore.edu%2Ffac-physics%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=works.swarthmore.edu%2Ffac-physics%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://forms.gle/4MB8mE2GywC5965J8
https://works.swarthmore.edu/fac-physics/79
mailto:myworks@swarthmore.edu

AMERICAN
JOURNAL

ﬁ:(‘,mu'.'!: (}J‘PHYS]CS
e S R

A simple conceptual model for twophoton absorption
Frank A. Moscatelli

Citation: American Journal of Physics 54, 52 (1986); doi: 10.1119/1.14770

View online: http://dx.doi.org/10.1119/1.14770

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/54/1?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Nonperturbative modeling of two-photon absorption in a three-state system
J. Chem. Phys. 121, 9820 (2004); 10.1063/1.1809572

Vibration and two-photon absorption
J. Chem. Phys. 116, 9729 (2002); 10.1063/1.1477179

Intuitive model to include the effect of freecarrier absorption in calculating the twophoton absorption
coefficient
Appl. Phys. Lett. 60, 166 (1992); 10.1063/1.106980

Cooperative twophoton absorption
J. Chem. Phys. 78, 1088 (1983); 10.1063/1.444891

Theoretical Studies of TwoPhoton Absorption Processes. Il. Model Calculations
J. Chem. Phys. 47, 3698 (1967); 10.1063/1.1701522

Explore the AAPT Career Center -
access hundreds of physics education and

other STEM teaching jobs at two-year and
four-year colleges and universities.

%#EI
http://jobs.aapt.org Eﬁ



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://jobs.aapt.org
http://scitation.aip.org/search?value1=Frank+A.+Moscatelli&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.14770
http://scitation.aip.org/content/aapt/journal/ajp/54/1?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/121/20/10.1063/1.1809572?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/116/22/10.1063/1.1477179?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/60/2/10.1063/1.106980?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/60/2/10.1063/1.106980?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/78/3/10.1063/1.444891?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/47/10/10.1063/1.1701522?ver=pdfcov

Demanding Lorentz invariance under a boost in the x*
direction gives the additional equations

Toi =Tie=Ts3=T55=0, T535=—Tp5. (Al

At last, Lorentz invariance under a boost in the x> direction
gives the additional equation

T3 = —Ty . (A14)

From Egs. (A12)-{A 14} follows

T, = Ty diag(l, — 1, — 1, — 1), (A15)
which can be written as

Too = T Mas » (A16)

where 7, are the components of the Minkowski metric
tensor. Transformation to an arbitrary basis {e, } gives

T = Tt 8 - (A17)

From the physical interpretation of the components of
the energy-momentum density tensor, it follows that

T =p, (A18)
where p is the energy density of the system (here the vacu-
um). This will not be invariant under Lorentz transforma-
tions for arbitrary systems. But, the energy density of the
vacuum is in general a scalar function of the four space-
time coordinates.

In homogeneous cosmological models one demands that
the density p measured by an observer depends only upon
time. Due to the relativity of simultaneity this condition is
Lorentz invariant only if p = constant = p,. Thus in the
cosmological case the energy-momentum density tensor of
the vacuum is

Tpv =p0gpv . (Alg)
The energy density of the vacuum appears as a cosmologi-
cal constant.
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A simple conceptual model for two-photon absorption

Frank A. Moscatelli

Department of Physics, Swarthmore College, Swarthmore, Pennsylvania 19081
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The process of two-photon excitation of atoms is explained by a simple conceptual model which
takes into account virtual states of the atom as well as photon statistics. In addition to predicting
the correct dependence of the two-photon excitation probability on the intensity of incident light,
the model also provides an explanation for a number of experimentally observed effects.

It is a fundamental principle of atomic theory that an
atom can be raised to an excited energy state by the absorp-
tion of a photon whose energy is exactly equal to that re-
quired for the transition. Alternatively, if there exist inter-
mediate states, this excitation can be effected in a stepwise
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fashion with the absorption of a single photon, of correct
energy for each transition involved. However, it is also pos-
sible for an atom to ‘‘simultaneously” absorb a number of
photons, each of which is not necessarily resonant with the
intermediate transitions, and thereby be raised directly to
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the excited state. The only requirement is that the sum of
the energies of the photons absorbed be equal to the excita-
tion energy (and that the proper selection rules be satisfied).
This is called multiphoton excitation.

In this paper we consider an important subclass of the
above process, that of two-photon absorption. Although
the theory was first described by Goeppert-Mayer in 1929,
it was not until 1961 that it could be experimentally veri-
fied.? The reason for this delay is, as we shall see, that the
process requires an intensity of incident light most readily
obtained through the use of lasers. Probably the most im-
portant application of two-photon absorption is in the field
of Doppler-free spectroscopy. If the two photons absorbed
by the atom are traveling in opposite directions, then al-
though their individual energies are Doppler shifted, their
sum is not. This means that every atom in the sample can
participate regardless of its velocity. Other methods, such
as saturation spectroscopy,’ achieve Doppler-free results
by selecting only a subclass of atoms from the sample (i.e.,
those with zero component of velocity in the direction of
the incident light). With sample sizes as low as 10~° g for
some artificially produced radioisotopes, this difference
could be important. Other advantages of two-photon spec-
troscopy include the ability to reach excited states that are
parity-forbidden for single-photon transitions, and more
importantly the extension of the effective spectral range of
the light source (in some cases all the way into the UV).

The complete quantitative description of the two-photon
process requires familiarity with quantum-mechanical
methods, especially second-order perturbation theory.*
The treatment presented here is based on little more than
the Heisenberg uncertainty relation, elementary statistics,
and physical intuition. Nevertheless, several experimental-
ly verified features of the process do emerge.

We begin by considering an atomic transition between
two levels of energy E; and E ; with E; < E ;. Assume that
a third level exists whose energy E, differs slightly from
(E,— E;)/2,i.e., E, is nearly halfway between £, and E .
Now let the atom be irradiated by light of frequency w such
that hw = (E ; — E;)/2. The situation is depicted in Fig.
1(a).

Since the light is not resonant with the transition
E, — E,, the state |k ) is not populated. However, the pho-
ton may still be absorbed, thereby raising the atom to an
excited state E, , as long as this state exists for a time limited
by the Heisenberg uncertainty relation [Fig. 1(b}]. Since the
nearest stationary state is |k ), this time is given approxi-
mately by

|E, —Ex|At=nh
Ef E, E,
he
y Eg-—m- --
Ek Ek Ek
ho
E‘—+ E‘. E‘
(a) (o) (c)

Fig. 1. Schematic representation of two-photon absorption.
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or
At=1/|o — o], (1)

where hw,; = (E, — E;).

We call the state |v) a virtual atomic state, although in
other perturbative treatments, they can actually enter as
real stationary states. The two-photon excitation process
can then be completed if a second photon of frequency @ is
absorbed by the atom while it is still in the virtual state [Fig.
1(c)]. We are, therefore, led to the fundamental assumption
of this model, namely, that the probability for two-photon
excitation is proportional to the probability of finding two
photons within the interval of time the atom spends in a
virtual state.’

To obtain values for this probability we turn to a statisti-
cal description of the propagation of light. We ask the fol-
lowing question: Given a light beam of intensity / (which
can be represented in terms of a photon flux of one photon
per T s), what is the probability of getting two photons
during a time interval At given by Eq. (1)? The answer, it
would seem, should be provided by the Poisson distribu-
tion function®

P, (At,T) = exp( — At /T)(1/nY)(At /T, (2)

with n = 2 in our case.

All that remains is for us to relate the intensity to 7. This
can easily be done by recalling that intensity is simply a
measure of the amount of energy per unit area per second.
With this in mind we set

I = ho/AT, ' (3)

where T is the average time between the passage of single
photons in the beam and 4 is an area element on the order
of the cross-sectional area of the atom.

Before actually inserting the values for Az and T from
Eqgs. (1) and (3), respectively, into Eq. (2), we pause briefly
for two important observations. First, the exponential term
in Eq. (2) can quickly be set equal to unity. To see this we
note that, for typical optical transitions, the Ats as given by
Eq. (1) are on the order of 10~ '* 5. This means that for the
exponential term to contribute, T needs to be of the same
order. This would correspond to a photon flux of about
10" per second! At that intensity a perturbative treatment
of the process is certainly not in order, and a completely
different method would have to be employed. Second, to
allow for the possible existence of more than one intermedi-
ate state |k ), the expression in Eq. (1) should be summed
over all possible values of k.

We may now obtain our result for the two-photon excita-
tion probability 4, , under the assumption of this model.
Using Eqgs. (1}-(3), we get

y —P(AtT)—C(Z——A—)ZIZ

if 2 ’ . |(0 —w,, | ’

where Cis a constant. As a final step, we relate the classical
quantity representing the area A of the atom to quantum-
mechanical observables characteristic of the atomic dimen-
sion. Under these circumstances it seems that a simple pro-
duct of the transition dipole moments R, = (i|r|k ) and
R, ;= (k |r| f) would be appropriate for this purpose. We
then get, as our final result,

R, Ry s )2
A ,=C Sl Sl T B £3 4
o . (Ek:|w—wi,k| ()

This expression bears a striking resemblence to that ob-
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tained by second-order quantum-mechanical perturbation
theory. Several experimental observations can be under-
stood with reference to Eq. (4). Probably the most notable is
the dependence of the two-photon process on the square of
the incident light intensity. This makes such experiments
difficult with light sources of low (or even moderate) power.

In addition, since the dipole-moment operator possesses
odd partity, nonzero values of R;; and R, , will exist only
if the intermediate state |k ) is of opposite parity to |/) and
| f) simultaneously. This means that |/} and |f) must
have the same parity for two-photon transitions, unlike the
single-photon case.

The energy denominator in Eq. (4) shows that those in-
termediate states closer to resonance with the incident pho-
ton participate more strongly. This effect is frequently ex-
ploited in experimental situations. For example the
35—4D two-photon transitions in sodium, first carried out
by Cagnac et al.,” use the 3P, ,, and 3P;, levels as interme-
diate states. Their energies differ from that of the incident
photons by about 0.1%. As such, they contribute signifi-
cantly to the transition probability. The singularity which
results when @ = w,, should not be disturbing since, in
that case, excitation via single-photon transitions becomes
the dominant process.

It should also be pointed out that although the interme-
diate state was assumed to lie nearly halfway between E;
and E ; in the model, the result [Eq. (4)] is valid in general.
More specifically, there need not even be any states
between E; and E /! In that case, the summation is carried
out over all other states of the atom (discrete and contin-
uous) for which R, , ,and R, , arenot zero. The 15-2S' two-
photon transition in hydrogen is such a case. There are no
states with energies between E, s and E,g, but two-photon
absorption has been observed.® The intermediate states
which contribute in this case include the 2P, 3P, 4P, etc.
For hydrogen, this calculation has actually been carried
out exactly by Bassani et al.” The relative contributions of

the intermediate states can be seen explicitly.

Finally, we should mention that the concept of a virtual
atomic state is a powerful one, capable of explaining other
nonlinear processes in atoms. For example, if the incident
light intensity is not high enough, then the virtual state |v)
may have a chance to decay spontaneously before the sec-
ond photon comes along. If this decay is to one of the inter-
mediate states, then a photon of frequency ' will be emit-
ted. But this is precisely Raman scattering. In this manner,
such phenomena as third-harmonic generation and three-
wave mixing can be understood.

In conclusion, we note that the model does not explain
the important dependence of the process on the polariza-
tion of the two photons. This is not too surprising since
nowhere in the development does the model consider the
vector-field nature of the incident electromagnetic radi-
ation. Nevertheless, the simplicity and conceptual clarity
of the model help to provide a basic understanding and
even appreciation of this mysterious process.
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Volume exclusion correction to the ideal gas with a lattice gas model
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The thermodynamic properties of the classical ideal gas are well known and documented. The
departure of real gases from ideal behavior requires modification of the ideal equation of state. We
derive an exact solution for an “excluded volume” system in which the constituent particles have
nonzero volume and only one particle may occupy a specific region in space. To incorporate this
volume exclusion, we propose a lattice gas model and find a simple combinatorial solution to this
model. We construct the partition function, equation of state, and several other thermodynamic

quantities.

L. INTRODUCTION

One description of an ideal gas is that of a collection of
noninteracting particles. With the absence of interactions

54 Am. J. Phys. 54 (1), January 1986

as the only assumption, one may derive the familiar ideal

. equation of state PV = NkT. When this simple P-V-T de-

pendence is not observed, or in the extreme case when the
gas condenses to the liquid phase, it is clear that atomic or

© 1986 American Association of Physics Teachers 54



	A Simple Conceptual-Model For 2-Photon Absorption
	Recommended Citation

	tmp.1423244887.pdf.LJflj

