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Abstract

Spin systems are a general way to describe local inter-
actions between nodes in a graph. In statistical mechanics,
spin systems are often used as a model for physical systems.
In computer science, they comprise an important class of
families of combinatorial objects, for which approximate
counting and sampling algorithms remain an elusive goal.

The Dobrushin condition states that every row sum of
the “influence matrix” for a spin system is less than 1 − ε,
where ε > 0. This criterion implies rapid convergence
(O(n log n) mixing time) of the single-site (Glauber) dy-
namics for a spin system, as well as uniqueness of the Gibbs
measure. The dual criterion that every column sum of the
influence matrix is less than 1 − ε has also been shown to
imply the same conclusions.

We examine a common generalization of these condi-
tions, namely that the maximum eigenvalue of the influence
matrix is less than 1 − ε. Our main result is that this cri-
terion implies O(n log n) mixing time for the Glauber dy-
namics.

As applications, we consider the Ising model, hard-core
lattice gas model, and graph colorings, relating the mixing
time of the Glauber dynamics to the maximum eigenvalue
for the adjacency matrix of the graph. For the special case
of planar graphs, this leads to improved bounds on mixing
time with quite simple proofs.

1 Introduction

Let G = (V,E) be a finite graph and Q a finite set of
spins. In many applications of both theoretical and practical
interest, one is interested in sampling random assignments
of spins to vertices according to some target distribution π
whose dependencies are “local” in terms of the graph G.
By “local,” we mean that for any vertex v and assignment
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of spins to V \ {v}, the marginal distribution of the spin as-
signed to v under π is a function only of the spins at neigh-
bors of v. Following the terminology of spin systems from
statistical physics, we will refer to elements of V as sites,
elements of Q as spins, and elements of QV as configura-
tions. Letting n = |V |, our goal is to sample configurations
from π (or a close approximation to π) in time poly(n), that
is, polylogarithmic in the size of the configuration space.

EXAMPLE: THE (FERROMAGNETIC) ISING MODEL. Here
Q = {−1, 1} is the set of spins. The target (Gibbs) dis-
tribution π assigns higher weights to configurations where
adjacent spins are equal. More precisely, for all σ ∈ QV ,

π(σ) ∝ exp

−β
∑

(i,j)∈E

σ(i)σ(j)


where 0 ≤ β ≤ ∞ is the inverse temperature. At lower
temperatures (larger β), spins at a site are more strongly
influenced by the spins at their neighbors.

EXAMPLE: THE HARD CORE MODEL (INDEPENDENT
SETS). Here again there are only two spins, Q = {0, 1}.
We say a site is occupied if its spin is 1, and unoccupied if
0. This time there is a hard constraint: configurations with
adjacent sites occupied have probability zero. For valid con-
figurations σ (with no two adjacent sites occupied),

π(σ) ∝ λ
P

i∈V σ(i)

where λ > 0 is the fugacity.

EXAMPLE: GRAPH COLORINGS. Here Q = {1, . . . , k},
where k is at least the chromatic number of G. A configu-
ration σ : V → Q is considered a proper coloring if no two
adjacent spins (colors) are equal. Our target distribution π
is the uniform distribution over proper colorings.

The heat bath single-site dynamics (also known as the
Gibbs sampler or heat bath Glauber dynamics) is undoubt-
edly among the simplest possible algorithms for sampling
from a spin system. Starting from an arbitrary initial con-
figuration, repeatedly choose a site v at random, each time



replacing the spin at v with one sampled from π conditioned
on the spins currently assigned to the neighbors of v. This
is a Markov chain over the set of configurations, and under
modest assumptions, its distribution is guaranteed to con-
verge to π as the number of steps tends to infinity. Thus,
to approximately sample from π, one only needs to simu-
late a sufficient number of steps of the above Markov chain,
outputting the configuration obtained.

Clearly, the efficiency of the above Markov chain Monte
Carlo algorithm depends on knowing the rate of conver-
gence to equilibrium, or “mixing time” of the Glauber dy-
namics. This is the number of steps required until the dis-
tribution of the Markov chain is close (in total variation dis-
tance) to the stationary distribution π. In recent years, much
progress has been made in deriving upper bounds on the
mixing time. In many cases, it has been possible to show
that the mixing time is as fast as O(n log n). Celebrated
examples include the 2-dimensional Ising model above the
critical temperature [14], graph colorings with sufficiently
many colors [12], and the hard core model (independent
sets) at sufficiently low densities [19]. An upper bound
of O(n log n) arises naturally from various techniques for
bounding the mixing time, such as coupling [2] and the
log-Sobolev constant [4], and, at least among physicists, is
generally taken as the criterion for “rapid mixing” (rather
than the weaker notion of being bounded by a polynomial
in n, which is more common in computer science). In fact,
O(n log n) mixing is the fastest possible for any reversible
single-site dynamics, at least in the case of bounded-degree
graphs, as shown recently by Hayes and Sinclair [10].

For adjacent sites i and j, the influence of j on i is the
maximum amount (in variation distance) that the marginal
distribution of the spin at i can ever change due to changing
the spin at j. (For non-adjacent sites, the influence is zero.)
A more formal description is given in Definition 4. Due to
the local nature of their definition, the influences are often
easy to compute exactly. By the influence matrix, we will
mean the n×n matrix whose (i, j) entry is the influence of
i on j.

In 1968, Dobrushin [5], studying spin systems on count-
ably infinitely many sites, considered the case when no site
has combined influence on its neighbors greater than 1− ε,
for some ε > 0, i. e., every row sum of the influence matrix
is at most 1 − ε. Under this condition, he proved “unique-
ness of the Gibbs measure,” which roughly stated says that
there is asymptotically no correlation between the spin at a
site v and the spins at sites at distance d from v, as d tends
to infinity.

As subsequent work would show [6, 8, 11, 1, 17], the
same “Dobrushin condition” implies several other impor-
tant properties. In particular, for graphs on n sites, the
Dobrushin condition implies optimal mixing time for the
single-site heat bath dynamics, namely O(n log n) steps.

This bound on mixing time also applies to heat bath “block
dynamics,” which update the spins of multiple sites per step,
as well as to single-site “systematic scan” dynamics, which
update vertices in a fixed (non-random) order. (See Section
2 for definitions.)

For a discussion of some further important consequences
of Dobrushin’s condition (also called the “completely ana-
lytic” setting), the reader is referred to the excellent sur-
vey by Weitz [20], and also the seminal papers by Do-
brushin [5], Dobrushin and Shlosman [7, 6, 8], and Stroock
and Zegarlinski [17].

Various extensions to the Dobrushin condition are known
that imply the same conclusions. For instance, Dobrushin
and Shlosman [7, 6] showed that the same consequences
follow when every column sum of the influence matrix is
less than 1− ε. They also generalized the condition to vari-
ants of the influence matrix which arise from “weighting”
the rows and columns by placing a path metric on the state
space. As we shall see in Remark 9, this last idea is closely
linked to the present work.

Our main contribution is:

Theorem 1. When the operator norm (i. e., the maximum
eigenvalue) of the influence matrix is less than 1 − ε,
the mixing time for the heat bath Glauber dynamics is
O((n log n)/ε).

The same applies to the mixing time of the “systematic
scan” dynamics, where the vertex order is fixed rather than
uniformly random.

An interesting feature of this result is that the condition
that the operator norm of the influence matrix is less than
1 − ε is not sufficient to imply uniqueness of Gibbs mea-
sure. This fact is demonstrated by two of the three examples
presented in the second part of the paper.

In the second part of the paper, we consider applications
to three important spin systems: the Ising model, the hard
core model (independent sets), and k-colorings of a finite
graph. For these systems, among others, the influence ma-
trix is bounded above by a small multiple of the adjacency
matrix for the underlying interaction graph G. This obser-
vation allows us to extend the class of graphs for which
rapid mixing is known to hold.

In particular, we show the mixing time for Glauber dy-
namics on k-colorings of planar graphs of maximum degree
∆ is O(n log n), assuming k ≥ ∆+O(

√
∆). This is in fact

the first polynomial upper bound on the mixing time for this
class of graphs and number of colors. For ∆-regular trees,
optimal mixing was already known assuming k ≥ ∆ + 2
(see [15, Theorem 1.5]). However, polynomial-time mixing
for planar graphs was only known under the same hypothe-
ses as for general graphs, namely k ≥ 11∆/6 (see [18]).

For the Ising model on planar graphs, we prove optimal
mixing when the inverse temperature is β = O(1/

√
∆).



Previously, this was known for tree; see [15, Theorem 1.1.]
for the exact threshold. For general graphs, the stronger
assumption β = O(1/∆) is required.

In the case of the hard core model (independent sets)
with fugacity λ, we can prove optimal mixing for the
Glauber dynamics on planar graphs of maximum degree ∆,
assuming λ = O(1/

√
∆). Previously, this was known for

trees (see [15, Theorem 1.2]), but the stronger assumption
λ = O(1/∆) was required for more general graphs.

2 Main Results

Let Q be a set of “spins” and let G = (V,E) be a finite
graph. Let Ω ⊆ QV be the set of “feasible spin configu-
rations”. Let π be a probability distribution on Ω. We will
assume throughout that ε, δ > 0.

Definition 2. The “heat bath Glauber dynamics” is a
Markov chain on state space Ω, defined as follows. Sup-
pose the current state is Xt ∈ Ω. Choose a site i(t + 1)
uniformly at random from [n]. Sample Xt+1 from the con-
ditional distribution of π, given that Xt+1(j) = Xt(j) for
all j 6= i(t + 1). Thus the spin of i(t + 1) is rechosen ran-
domly, and all other spins remain the same. This defines the
next state Xt+1.

Assuming the state space is connected under the above
transitions, the distribution of the Glauber dynamics will
converge to π in the limit as the number of steps tends to
infinity. To measure the rate of this convergence, we will
use the following standard notion of mixing time.

Definition 3. Let (Xt), t ≥ 0 be the Glauber dynamics for
target distribution π, starting from an initial configuration
X0. Let µt denote the distribution of Xt. Let δ > 0. The
mixing time τ(δ) for the dynamics is defined by

τ(δ) := max
X0

min{t : dTV(µt, π) ≤ δ},

where dTV(·, ·) denotes the total variation distance.

Definition 4. For x ∈ Ω, and i ∈ V , let µi(x, ·) denote
the marginal distribution of the spin of i, for configurations
sampled from π conditional on agreeing with x at all other
sites. For sites i, j ∈ V , the influence of j on i is defined as

ρi,j := max
(x,y)∈Sj

dTV(µi(x, ·), µi(y, ·)),

where Sj denotes the set of all pairs of feasible configura-
tions (x, y) ∈ Ω2 such that x and y agree on all sites except
j. Let R = (ρi,j) be the |V | × |V | influence matrix. We
remark that this matrix has also been referred to as a matrix
of “dependencies” or “interdependences” in the literature.

Remark 5. Since R is a square matrix with non-negative
entries, its operator norm, defined as

sup
v 6=0

‖Rv‖
‖v‖

,

where ‖ · ‖ denotes the Euclidean norm, is also equal to
its maximum eigenvalue in absolute value. Moreover, this
principal eigenvalue is non-negative real1 and has at least
one corresponding eigenvector whose entries are all non-
negative reals.

The Dobrushin condition is that every row sum of R is
less than 1− ε < 1. The Dobrushin-Shlosman condition is
that every column sum of R is less than 1−ε < 1. Either of
these conditions implies uniqueness of the Gibbs measure,
and also O(n log n) mixing time for the heat bath Glauber
dynamics. We will now show that the rapid mixing result
also follows the weaker hypothesis that the principal eigen-
value of R is less than 1.

Theorem 6. Let 1−ε be the operator norm of R. Then after
T steps of heat bath Glauber dynamics, the total variation
distance from π satisfies

dTV(PT , π) ≤
(
1− ε

n

)T

n.

Proof. Fix x, y ∈ Ω. For t ≥ 0, define (Xt, Yt) ∈ Ω2 by
iterating a maximal one-step coupling of the Glauber dy-
namics, starting from initial condition X0 = x, Y0 = y. For
t ≥ 0, define the vector pt by

pj
t := Pr (Xt(j) 6= Yt(j)).

Note that since the Glauber dynamics chooses a random site
in each step, this implies

pj
t+1 =

n− 1
n

pj
t

+
1
n
Pr (Xt+1(j) 6= Yt+1(j) | j chosen at time t).

Now by the definition of a maximal one-step coupling, and
linearity of expectation, it follows that

pt+1 ≤ Apt,

where
A :=

n− 1
n

I +
1
n

R,

where I is the n×n identity matrix. Note that A has eigen-
values n−1

n + α
n , where α runs through the eigenvalues of

R. Hence the principal eigenvalue of A is at most 1− ε/n.

1in degenerate cases, there may be other eigenvalues with the same
absolute value



By induction, we obtain the component-wise inequality

pT ≤ AT p0. (1)

By a union bound, the `1 norm of pT gives an upper
bound on the probability of non-coalescence, thus

Pr (XT 6= YT ) ≤ ‖pT ‖1
≤
√

n‖pT ‖2 by Cauchy-Schwarz

≤
√

n‖AT p0‖2 by (1)

≤
√

n‖A‖T ‖p0‖2

≤ n
(
1− ε

n

)T

.

Theorem 6 immediately implies the following bound on
the mixing time, which in turn implies Theorem 1 from the
Introduction.

Corollary 7. Let 1−ε be the largest eigenvalue of R. Then
the mixing time satisfies

τ(δ) ≤ n

ε
ln

n

δ
.

In our definition of Glauber dynamics, we assumed
that the site order used for updating spins was uniformly
random. By contrast, in systematic scan, the site order
v1, v2, . . . , is deterministic and fixed in advance. A spe-
cial case of interest is when a fixed permutation of the sites
is repeated ad infinitum). More generally, we will assume
that I1, I2, . . . , is a partition of the positive integers into
“rounds,” such that for every t ∈ Ij , t

′ ∈ Ij+1 we have
t < t′, and for every j ≥ 1, v ∈ V , there exists t ∈ Ij such
that vt = v. (In the special case when the site order is a
repeated permutation, the rounds are all of length n.)

We next show that our generalized Dobrushin condition
implies rapid mixing for systematic scan. The approach is
similar to earlier proofs for the usual Dobrushin condition
(see Dyer, Greenhill, Jerrum [9]).

Theorem 8. Let 1− ε be the largest eigenvalue of R. Then
after T rounds of systematic scan, the total variation dis-
tance from π satisfies

dTV(Q, π) ≤
(
1− ε

2

)T+1 2n

ε
.

Proof. As before, let (Xt, Yt) ∈ Ω2, t ≥ 0 be a coupling
of two copies of the dynamics starting from arbitrary initial
conditions, and let pt be defined by

pj
t := Pr (Xt(j) 6= Yt(j)).

For each site i, define Mi to be the identity matrix with
the i’th row replaced by the i’th row of R. Then, if the site
order for the systematic scan is i(1), . . . , i(t), . . . , then the

disagreement probability vector satisfies the component-
wise inequality

pt ≤ Mi(t)pt−1.

Let S be the following slight perturbation of R:

S := R +
ε

2n
J,

where J is the n× n all-ones matrix.
Let x = (x1, . . . , xn) denote the principal eigenvector

for S, and let α ≤ 1 − ε/2 be the principal eigenvalue.
Observe that the components of x are all strictly positive;
moreover, for every component j,

αxj = (Sx)j ≥ ε

2n
(Jx)j =

ε

2n
‖x‖1. (2)

For each time t, we have

p
i(t)
t ≤

(
Mi(t)pt−1

)i(t)

= (Rpt−1)
i(t)

< (Spt−1)
i(t)

≤ (Sx)i(t) max
j

pj
t−1

xj

≤ αxi(t) max
j

pj
t−1

xj
.

Moreover, for each time t and each k 6= i(t), we have

p
i(t)
t = p

i(t)
t−1.

From these facts, an easy induction shows that, for t in
round Ir, for every site i,

pi
t

xi
≤

{
α maxj

pj
s

xj if i was updated in round r by time t.

maxj
pj

s

xj if not.
(3)

Here the subscript s denotes the final time of round r − 1.
Thus max

j
pj

t/xj decreases by at least a factor of α in each

round.
For every site j and time t, define

qj
t := pj

t/xj .

Note that this definition implies the component-wise in-
equality

pt ≤ (max
j

qj
t )x.

Applying induction to (3), we know that after T rounds of
systematic scan,

max
j

qj
t ≤ αT max

j
qj
0 ≤

αT

xmin



and hence

Pr (Xt 6= Yt) ≤ ‖pt‖1 by a union bound

≤ αT

xmin
‖x‖1

≤ αT+1 2n

ε
by (2)

Remark 9. In the above proof, a key step was to rescale
the vector p by dividing componentwise by x. This is a
fairly common theme among coupling proofs in the litera-
ture. For instance, in proofs based on path coupling, the key
step is often to prove contraction in a scaled version of the
Hamming metric on configurations. Finding the right such
metric may amount to explicitly computing or approximat-
ing the principal eigenvector for the influence matrix. Note
that to apply Theorems 6 or 8 one only needs a good bound
on the principal eigenvalue, which is hopefully much easier
to come by.

3 Applications

In many cases, the influence matrix can be easily
bounded by a multiple of the adjacency matrix for G. For
instance,

Observation 10. For the hard core model (independent
sets) with fugacity λ, the influence matrix R is related to
the adjacency matrix A by

R =
λ

1 + λ
A.

Proof. Let σ be any configuration. There are only two pos-
sibilities for the marginal distribution of π at a site i, con-
ditioned on the neighbors agreeing with σ. Either some
neighbor is occupied under σ, in which case i is unoccu-
pied with probability 1, or all neighbors are unoccupied,
in which case i is occupied with probability λ/(1 + λ), and
unoccupied otherwise. Since the variation distance between
these marginal distributions is λ/(1 + λ), this is an upper
bound on the entries of the influence matrix. This completes
the proof, since the influence of i on j is zero except when
i and j are neighbors.

Observation 11. For the Ising model at inverse tempera-
ture β ≥ 0, the influence matrix R is related to the adja-
cency matrix A by

R ≤ tanh(β)A ≤ βA.

Proof. Let σ be any configuration. Suppose exactly r
neighbors of site i have spin +1, and the remaining d − r

have spin −1. Then the marginal distribution of π at i con-
ditioned on the neighbors agreeing with σ is +1 with prob-
ability

exp(β(2r − d))
exp(β(2r − d)) + exp(β(d− 2r))

.

Now consider another distribution τ which agrees with σ
except at a single neighbor j. Without loss of generality, it
has exactly r + 1 neighbors of i with spin +1. Now a little
algebra shows that the variation distance equals

exp(2β)− exp(−2β)
(y + 1/y)(y exp(2β) + 1/(y exp(2β)))

,

where y = exp(β(2r − d)). This attains a maximum value
of tanh(β) when d is odd and r = (d− 1)/2.

Observation 12. For the uniform distribution on proper k-
colorings of a graph with maximum degree ∆, the influence
matrix R is related to the adjacency matrix A by

R ≤ 1
k −∆

A.

Proof. More precisely, for sites i, j, the influence of j on i
satisfies

ρi,j =
Ai,j

k − di
≤ Ai,j

k −∆
,

where di denotes the degree of site i.
This value for the influence of j on i is realized by col-

orings which assign distinct colors to all di neighbors of i,
and disagree only at j. We leave the details to the interested
reader.

This gives us the following consequences. Since the
eigenvalues of the adjacency matrix of a graph G is a graph
invariant, we will often simply refer to the “eigenvalues of
G.”

Proposition 13. The heat bath Glauber dynamics for the
hard core model with fugacity λ on a graph with principal
eigenvalue ρ has mixing time

τ(δ) ≤ n

ε
log

n

δ

whenever λ ≤ 1−ε
ρ .

Proof. By Observation 10, we have

‖R‖ =
λ

1 + λ
‖A‖ ≤ λρ ≤ 1− ε

where A is the adjacency matrix for G. The desired result
follows by Corollary 7.



Proposition 14. The heat bath Glauber dynamics for the
Ising model at inverse temperature β ≥ 0, on a graph with
principal eigenvalue ρ, has mixing time

τ(δ) ≤ n

ε
log

n

δ

whenever β ≤ 1−ε
ρ .

Proof. By Observation 11 and monotonicity of the operator
norm as a function of the entries of a non-negative matrix,
we have

‖R‖ ≤ β‖A‖ = βρ ≤ 1− ε

where A is the adjacency matrix for G. The desired result
follows by Corollary 7.

Proposition 15. The heat bath Glauber dynamics on proper
k-colorings of a graph with maximum degree ∆ and princi-
pal eigenvalue ρ has mixing time

τ(δ) ≤ n

ε
log

n

δ

whenever k ≥ ∆ + ρ
1−ε .

Proof. By Observation 12 and monotonicity of the operator
norm as a function of the entries of a non-negative matrix,
we have

‖R‖ ≤ 1
k −∆

‖A‖ =
1− ε

ρ
ρ

where A is the adjacency matrix for G. The desired result
follows by Corollary 7.

Now, the usual applications of the Dobrushin and
Dobrushin-Shlosman conditions can be seen as conse-
quences of the basic fact that the principal eigenvalue of a
graph is at most the maximum degree of a vertex. However,
in general, the principal eigenvalue can be much smaller.
In particular, we note that for planar graphs (such as trees)
the principal eigenvalue is O(

√
∆), where ∆ is the maxi-

mum degree. This follows as a consequence of the follow-
ing more general result.

Theorem 16. Let G be an undirected graph of maximum
degree ∆, which admits an orientation with maximum out-
degree d ≤ ∆/2. Then the maximum eigenvalue of G is at
most 2

√
d(∆− d).

Proof. We will use the fact that the principal eigenvalue of
any graph G equals the limit

lim
`→∞

(W`)1/`,

where W` denotes the number of walks of length ` in G.
(This in turn follows from the fact that W` equals the sum
of the entries of A`, where A is an adjacency matrix for G.)

In light of this fact, it will suffice to prove the following
upper bound on the number of walks of length `:

W` ≤ n2`d`/2(∆− d)`/2 (4)

Let s = (v0, . . . , v`) denote any walk of length `. For
each vertex vi, label its neighbors with {1, . . . ,∆} so that
the out-neighbors from vi all have labels ≤ d.

Now, let F (s) denote the set of steps i such that vi+1

has an index ≤ d among the neighbors of vi. Clearly, for a
given subset F ⊆ [`], there are at most nd|F |(∆ − d)`−|F |

walks s such that F (s) = F .
Summing over all F ⊂ [`] such that |F | ≥ `/2, there can

be at most
n2`−1d`/2(∆− d)`/2

walks s such that |F (s)| ≥ `/2, assuming ` is odd. When `
is even, the same upper bound applies, if we only count half
of the sequences s such that |F (s)| = `/2.

Now note that, if we let R(s) = (v`, . . . , v0) denote the
reverse walk of s = (v0, . . . , v`), then F (s) ∪ F (R(s)) =
[`]. Hence at least one of |F (s)|, |F (R(s))| is at least `/2,
which establishes the desired upper bound (4).

We remark that as an immediate corollary, an upper
bound of 2

√
d(∆− d) holds for the principal eigenvalue

of any graph, all of whose subgraphs contain at least one
vertex of degree ≤ d.

Corollary 17. Let G be a graph of maximum degree ∆. If
G is a tree (or forest) and ∆ ≥ 2, then the maximum eigen-
value of G is at most 2

√
∆− 1. If G is planar and ∆ ≥ 6,

then the maximum eigenvalue is at most 2
√

3(∆− 3).

Proof. For a forest, fix a root for each connected compo-
nent, and orient each tree towards its root. The first result
follows by Theorem 16 applied with d = 1.

That every finite planar graph has average degree < 6 is a
well-known consequence of Euler’s formula v−e+f−c =
1, where v is the number of vertices, e the number of edges,
f the number of faces, and c the number of connected com-
ponents. It follows that at least one vertex has degree ≤ 5.
This shows that we can apply Theorem 16 with d = 5 to
obtain a weaker upper bound of 2

√
5(∆− 5) on the prin-

cipal eigenvalue (assuming ∆ ≥ 10). To obtain the claimed
bound, a more clever orientation must be found, with d = 3.
This can be done recursively and efficiently, e.g. using the
algorithm of Schnyder for planar embeddings [16].

Combining Corollary 17 with Propositions 13 through
15 immediately yields the following rapid mixing results
for planar graphs.

Corollary 18. Let ∆ ≥ 6, let G be a planar graph on n
vertices of degree≤ ∆. Then the heat bath Glauber dynam-
ics for the hard core (independent sets) model with fugacity



λ ≤ 1−ε

2
√

3(∆−3)
has mixing time

τ(δ) ≤ n

ε
ln

n

δ
.

Corollary 19. Let ∆ ≥ 6, let G be a planar graph on n ver-
tices of degree ≤ ∆. Then the heat bath Glauber dynamics
for the Ising model at inverse temperature β ≤ 1−ε

2
√

3(∆−3)

has mixing time
τ(δ) ≤ n

ε
ln

n

δ
.

Corollary 20. Let ∆ ≥ 6, let G be a planar graph on n
vertices of degree ≤ ∆. Then the heat bath Glauber dy-

namics on k-colorings of G where k ≥ ∆ + 2
√

3(∆−3)

1−ε has
mixing time

τ(δ) ≤ n

ε
ln

n

δ
.

As far as I know, these are the first rapid mixing results
to take advantage of the structure of planar graphs. More
attention has been paid to the special case of trees, and may
help to put our results into context. In 1999, Brightwell
and Winkler [3] proved uniqueness of the Gibbs measure
for k-colorings of trees, where k ≥ 1.62∆. In 2002, Jonas-
son [13] proved that k ≥ ∆ + 2 is the threshold for unique-
ness of the Gibbs measure. In 2004, Martinelli, Sinclair and
Weitz [15] proved rapid mixing for the heat bath Glauber
dynamics on trees under arbitrary boundary conditions, for
k ≥ ∆ + 3. The methods used in these papers are rather
sophisticated and involve lengthy calculations, in contrast
to our present approach.

4 Further Discussion

An interesting feature of our result is that, unlike Do-
brushin’s condition, which implies uniqueness of the Gibbs
measure as well as rapid mixing of the Glauber dynamics,
our new condition only implies rapid mixing. For instance,
in the case of the Ising model on a tree of maximum de-
gree ∆, our condition holds and implies rapid mixing for
β = O(1/

√
∆); on the other hand, it is known that for an

infinite ∆-regular tree, the threshold for Gibbs uniqueness
is Θ(1/∆). Thus, unlike Dobrushin’s condition, our condi-
tion can be used to derive rapid mixing in some cases where
the Gibbs measure is not unique.

A partial explanation comes from the observation that,
while the infinite tree is ∆-regular, and so has operator norm
∆, any finite subtree has average degree less than 2. So,
for the finite tree, the many vertices of small degree can be
viewed as the cause both for the smaller operator norm and
for the rapid mixing.

A somewhat more detailed explanation is that, when the
graph is infinite, there are several different operator norms
corresponding to different vector norms. For the class `2 of

vectors whose squares of entries have a finite sum, under
the Euclidean vector norm, the operator norm equals the
supremum of the operator norms on finite subgraphs (e.g.
O(
√

∆) for planar graphs), and hence can be used to de-
duce O(n log n) mixing. For the class `∞ of vectors with
absolutely bounded entries, under the sup norm, the oper-
ator norm may be larger (for instance it is ∆ for any ∆-
regular graph, including trees), and can be used to deduce
uniqueness of Gibbs measure. We will discuss this issue in
more detail in the final version of this paper.
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ing Markov chains. In Séminaire do Probabilités XVII, vol-
ume 986 of Lecture Notes in Mathematics, pages 243–297.
Springer, Berlin, 1983.

[3] G. R. Brightwell and P. Winkler. Random colorings of a
cayley tree. In B. Bollobás, editor, Contemporary Combina-
torics, volume 10 of Bolyai Society Mathematical Studies,
pages 247–276. Janos Bolyai Math. Soc., Budapest, 2002.

[4] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev in-
equalities for finite Markov chains. Annals of applied prob-
ability, 6:695–750, 1996.

[5] R. L. Dobrushin. Prescribing a system of random variables
by the help of conditional distributions. Theory Prob. and
its Applications, 15:469–497, 1970.

[6] R. L. Dobrushin and S. B. Shlosman. Completely analytical
Gibbs fields. In J. Fritz, A. Jaffe, and D. Szasz, editors, Sta-
tistical mechanics and dynamical systems, pages 371–403.
Birkhauser, Boston, 1985.

[7] R. L. Dobrushin and S. B. Shlosman. Constructive criterion
for the uniqueness of a Gibbs field. In J. Fritz, A. Jaffe,
and D. Szasz, editors, Statistical mechanics and dynamical
systems, pages 347–370. Birkhauser, Boston, 1985.

[8] R. L. Dobrushin and S. B. Shlosman. Completely analytical
interactions: constructive description. Journal of Statistical
Physics, 46:983–1014, 1987.

[9] M. Dyer, L. A. Goldberg, and M. Jerrum. Dobrushin condi-
tions and systematic scan. ECCC Report No. 75, page 16pp,
July 2005.



[10] T. P. Hayes and A. Sinclair. A general lower bound for mix-
ing of single-site dynamics on graphs. In Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 511–520, 2005.

[11] R. Holley. Possible rates of convergence in finite range, at-
tractive spin systems. In Particle systems, random media and
large deviations (Brunswick, Maine, 1984), volume 41 of
Contemporary Mathematics, pages 215–234. Amer. Math.
Soc., Providence, RI, 1985.

[12] M. R. Jerrum. A very simple algorithm for estimating the
number of k-colorings of a low-degree graph. Random
Structures and Algorithms, 7:157–165, 1995.

[13] J. Jonasson. Uniqueness of uniform random colorings of
regular trees. Statistics & Probability Letters, 57:243–248,
2002.

[14] F. Martinelli and E. Olivieri. Approach to equilibrium of
Glauber dynamics in the one phase region i. the attractive
case. Communications in Mathematical Physics, 161:447–
486, 1994.

[15] F. Martinelli, A. Sinclair, and D. Weitz. Fast mixing for
independent sets, colorings and other model on trees. In
Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 449–458. ACM, 2004.
Full version to appear in Random Structures and Algorithms,
2006.

[16] W. Schnyder. Embedding planar graphs on the grid. In Pro-
ceedings of the 1st Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 138–148. ACM, 1990.

[17] D. W. Stroock and B. Zegarlinski. The logarithmic Sobolev
inequality for discrete spin systems on a lattice. Communi-
cations in Mathematical Physics, 149:175–194, 1992.

[18] E. Vigoda. Improved bounds for sampling colorings. Jour-
nal of Mathematical Physics, 41:1555–1569, 2000.

[19] E. Vigoda. A note on the Glauber dynamics for sampling
independent sets. Electronic Journal of Combinatorics, 8(1),
2001.

[20] D. Weitz. Combinatorial criteria for uniqueness of Gibbs
measures. Random Structures and Algorithms, 27(4):445–
475, 2005.


