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A Simple Construction of Initial Data for Multiple Black Holes
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We consider the initial data problem for several black holes in vacuum with arbitrary momenta and
spins on a three space with punctures. We compactify the internal asymptotically flat regions to obtain
a computational domain without inner boundaries. When treated numerically, this leads to a significant
simplification over the conventional approach which is based on throats and isometry conditions. In
this new setting it is possible to obtain existence and uniqueness of solutions to the Hamiltonian
constraint. [S0031-9007(97)03144-X]

PACS numbers: 04.20.Ex, 04.25.Dm, 04.70.Bw, 95.30.Sf

Binary black hole spacetimes are one of the great chal- The simplest example derives from the Schwarzschild
lenges for numerical general relativity, even if no mat-spacetime in quasi-isotropic coordinates. Considered as
ter sources are present. Here we consider the problem problem onR? minus the pointr = 0, the constraint
of finding initial data for several black holes in vacuum equations (2) and (3) are solved by
with arbitrary momenta and spins. In general relativity,
initial data on a hypersurface cannot be specified freely, =1+ ﬂ, Ky =0, (4)
because the Einstein equations give rise to four equations, 2r
three momentum constraints, and the Hamiltonian conghere m is the mass and: the isotropic radius. To

straint that the initial data has to satisfy. The purpose ofnake contact with the throat picture, recall that there
this Letter is to introduce a novel approach which is sig-gyists an isometry given by — m?/4r which leaves the

nificantly simpler than the conventional method based oRordinate sphere = m/2 invariant and which maps the
throats and conformal imaging. entire exterior asymptotically flat space into that sphere.
In all that follows we will assume vacuum, that the consequently, there exists a second asymptotically flat
metric is conformally flat, and that the extrinsic curvatureregion nearr = 0. Equivalently, one can represent this
general relat|V|}1y can be obtained by rescaling the physmaéopies of R3 with a sphere excised and appropriate
three-metricg’, and its extrinsic curvatur&’, by a identification at the spheres.
conformal factony, For N black holes and nonvanishing extrinsic curva-
ph_ 4 ph _ 2 ture, York and others [8] have developed a sophisticated
8ap = Y 8av, Kap = "Kap - (1) method to solve the constraints for two asymptotically flat
The momentum constraint becomes spaces that are connected by as many throats (i.e., excised
b spheres) as there are black holes, and that are isometric
VK =0, (2) copies of each other. Note that there are explicit solu-
and the Hamiltonian constraint becomes an elliptic equalions to the momentum constraint (2) that characterize a
tion for the scalar fieldy, single black hole with given momentuRf, and spinS“.

| For example,
Ay + gKPKaypp™ =0, (3)

3 .

where the covariant derivatives are defined by the flat Kps = ﬁ[Pa”h + P'n® = (g — nn")P¢n,]
metric g,,, Which is also used to raise and lower indices 3
(see [1,2]). + 5 (e““Scngn” + €"Scngn®), (5)

In order to obtain black hole vacuum data, one has r
to introduce a nontrivial topology. The first calculations wheren? is the radial normal vector. Since the conformal
were performed by Einstein and Rosen [3] in theirmetric is flat, we will use in what follows either standard
work on point particles in general relativity. Various spherical or Cartesian coordinates, ie= (x> + y> +
constructions for black holes based on Einstein-Rosen?)'/2 andn® = x4/r.
bridges and “wormholes” were given in, e.g., [4—7]. The By the method of images it is possible to obtain an infi-
spatial slice typically consists of two or more copieskdf  nite series based on (5) f&*> which solves the momen-
with several spheres removed and identifications of théum constraint and satisfies an isometry condition at any
various spherical inner boundaries. In this way severahumber of spheres [6,8]. Given such a solution, what re-
asymptotically flat regions are obtained that are connecteghains to be done is to solve the Hamiltonian constraint
by bridges or “throats.” (3), which is an elliptic equation o®> minus several
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spheres, with the inner boundary given by the isometry Given K, as defined in (7), we proceed to solve the
and the outer boundary determined by asymptotic flathesslamiltonian constraint, (3). We rewrite the conformal
Three independent numerical implementations of thdactor in terms of functionsx andu given by
above scheme have been given and compared in the defini- N
tive paper on three-dimensional black hole initial data by Y = 1 +ou, 1 _ # 8)
Cook, Choptuik, Dubal, Klasky, Matzner, and Oliveira [9]. a a = 2|7 = Fol
For the Hamiltonian constraint, they consider a nonlin- ] ]
ear block full approximation storage multigrid scheme forOn the puncturedr®, the Laplacian of1/a is zero,
Cadez coordinates, a successive over-relaxation scherf@ that the Hamiltonian constraint equation becomes
in Cartesian coordinates, and a multiquadratics approackCf- [11] for a single asymptotic region and vanishing
All these approaches are greatly complicated by the predinéar momentum)
g(r)lggit(i);nt.he inner spherical boundaries and the isometry Au+ B0+ au) T =0, )
Let us return to the Schwarzschild solution of the
constraints on a “puncturedR’. As noted by Misner
and Wheeler [5] and studied in detail by Brill and B = éa7K"bKab. (10)
Lindquist [7] (MWBL), the Schwarzschild solution to the
constraints generalizes trivially t§ black holes for time To complete the definition of the problem, we have

symmetry, to specify boundary conditions fou. For asymptotic
N flatness at infinity we require — 1 = O(r~!) for large
p=1+> Mo g, =0, (6 distances tothe punctures.
& 207 = el The key question that remains is what condition we

want to impose ort close to the punctures. As it turns

out, to build in asymptotically flat regions as are present

in the MWBL data near the puncturdassuffices to solve

(9) everywhere orR? without any points excisedThis

completes the statement of our proposal.

Let us discuss existence and uniqueness of solutions

the modified Hamiltonian constraint equation (9) on
Since in this case the topology is trivial, we can

show existence and uniqueness ofC& solution by

Let us now discuss the method that we propose ; . : .
. ; . . epeating the proof given in [13] for the conventional
to find data for multiple black holes with arbitrary H:miltor?ian copnstrair?t equaticgn ]0R3. By definition,

boosts and spins. The idea is to compactify the interng), " " B are proportional to|# — 7| near the
asymptotlcally fIat_reglons in order to _obt_aln a.S'mpleformer punctures and are therefof®, despite the fact
QOmam of integration. Sugh compactification brlrjgs UPy 5t K K™ goes asi — 7| ° at th;ese points. From
issues of regularity of the fields (e.g., [10,11]), which Yeihe maximum principle and the outer boundary condition

ad,grSeEngiov\\,/\}e consider vacuum spacetimes. the metriwe obtain that there exists at most ofié solution, and,
' P ’ fh particular, thaty = 1 and1 + au = 1. Referring to

fscaﬂfeorrsnaliy fIIat,I.and the eﬁmns'c cur\{a;lée |s_irhac;free[13] for the definition of weighted Sobolev spaces, for
patial slice we choose a sin Wi the existence part of the proof we require thae M’ ;
punctures as in the MWBL data. First, we solve the 7 P ) ’
momentum constraint (2) by setting and (1 + au)™" € M;_, 5., with p > 3 for the norm
ands = 3 characterizing differentiability. The falloff of
ab N ab 7 (9) is the same as in the standard case. Interior points
K = Z Kps(i - ™ like the ;) do not affect the weight. Because of the
=t loss of differentiability at the punctures j8, we find that
where each term is defined by (5) with its own originin our casep > 3 ands = 3. (In comparison, [14] uses
4, momentumPg), and spinS;. These parameters p = 2 butrequiress = 4.) The proof proceeds as in [13]
correspond to the ADM quantities in the limit that the with minor changes in the algebra and due care whenever
separation of the holes is very large. Equation (7) defineg matters thata and 8 may vanish. So, although
the solution to the momentum constraint that we actuallys only C? at the 7(;), there exists a unique solution for
use, and is not just the starting point for the method othe conformal factoly = u + 1/« on the punctured®?
images that is usually invoked to distdet,, to obtain an determined by our proposal faron the unpunctureé?.
isometric solution (cf. [12], where the same simplification Given a solutionu, we can demonstrate that each
arises for a trapped surface boundary condition at thpuncture represents the “point at infinity” for another
inner boundary). asymptotically flat spacetime (cf. [7]). Hence, solving

where m; characterizes the mass of thh black hole
(i.e., the ADM mass i®_ m;) and 7 is the location of
theith black hole. For regularity of the conformal factor,
the MWBL solution is considered on a singte with the
points7 = F; removed. We refer to thg;) as punctures.
The isometry present in the Schwarzschild solution is Iostto
although there still exist minimal surfaces characterizingR3
the throats [7]. '
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(9) on R? involves a particular compactification @f  multigrid method built around a nonlinear Gauss-Seidel
out of N + 1 asymptotically flat regions, one of which relaxation scheme [15] performs very well for (9) on a
is distinguished by our choice &€,,; see below. We finite Cartesian grid with a Robin boundary condition.
perform a coordinate inversion through a sphere neaNote that the standard representationof by centered

the ith puncture, 7 = «?/r, under which the metric finite differences is only first order at the punctures. One
transforms as could use a different prescription at the puncture points,
ds? = y*dr? + r2dQ?) = JHdr + 72d02), but in numerical tests we found that the correspondingly
lower rate of convergence is contained in a surprisingly

(11)  small neighborhood of the puncture points, whether those

with ¢ = ¢ r/a (which is not an isometry). Setting &€ partof the grid or not. L
a = m/2 wheremy;, is the bare mass of the puncture The multigrid program is part oBAm, a bifunctional

we are considering, we obtain for our choice f (8), adaptive mesh package for elliptic and hyperbolic prob-

that lems in three-dimensional numerical relativity (see [16] for
_ the hyperbolic part; we do not use adaptivity here). Since
_ m;) 1 . . . .
=1+ —+ 0<__2>, (12)  in general the Hamiltonian constraint has to be solved nu-
2F r merically, it is important to provide at least one efficient

Z L) (13) numerical implementation. There is no reason to believe
7 20Fa = Tl that the multigrid method is the only good method. How-
Therefore, the metric becomes flat as we approach th&Ver: when available, multigrid methodg have proven to be
punctures. among the best performers. We consider the absence of
To show asymptotic flatness at the punctures, it reirregular boundaries in our method to be a valuable feature
mains to be shown thak,, = O(F~2). In the physical since it makes a straightforward multigrid implementation

variables, we just have the coordinate transformation ~ POSSible. _
a2/r, Ab = oaxP/9x¢ = (a®/F)LL where Lb = 87 — As atest, let us compute the correction to the conformal
1 c c c c

2nPn.. In the unphysical variables, we also have to takdactor for two equal mass black holes boosted toward

into account the transformation ¢f With K, = :ZZI_(%’ one another when we keep only terms of snrallthe
_ph N X momentum of each hole) arld (the coordinate positions
andK,, = (AK?"),,, we obtain

. of the holes along the axis being=L). Considerg to
= _ [ 4 be of ordere, and consider the MWBL solution to be
Kab — (LK)ab . (14) . . . .
F the zeroth order solution to the Hamiltonian constraint,
Therefore, for our choice o, (5), the momentum term u = u@) + euqy = 1 + euy). We now have
of orderr~2 is mapped to ordef * while the spin term —7
. . . = — + .
of order 3 is mapped to order 3. This observation EA”(_” ’8(1_ _ @) (15)
extends to multiple hole data witk,, defined in (7). The ADM mass to first order i is

me = m(i)(bt(?m) +

Hence the black hole puncture data are asymptotically flat 1 1
at the punctures. Mapm = = - ¢ Va<;>d5a
In fact, we also learn that the black hole seen from "
the region near the puncture appears to be unboosted, 1 7
because the boost term is obtained from thé term + ﬁf Bl + a) " dv
in the untransformed space. This term is always zero in ) ) 4
our space by construction. In the conventional method, —om + (ﬁ) [E(E) - %(E) } (16)
m m .
imposing the isometry leads to terms which goras$ in m/) L50\m 35\m

K.»,. These terms may not be included in our methodThis equation predicts the correction to the ADM mass

(without modification), because would not be regular at resulting from the full nonlinear solve to within abaifb

the punctures if they were. whenP/m = 1.0 andL/m = 0.2 and the grid is a cube
Since the initial data are asymptotic to Schwarzschildvhose sides have a length of aboutriénd are resolved

data near the punctures, and since small spherical surfacegth 67 zones.

centered at the puncture of Schwarzschild data are outer- This calculation provides one test for the correctness of

trapped surfaces (with outside referring to the asymptotithe solution of the data set, at least for the ADM mass

region away from the punctures), this indicates that thef the spacetime for perturbative cases. This is valuable,

region near the punctures is inside black holes. As irbecause the code cannot be tested for the case when

[7], several punctures may be hidden behind a commoK,, = 0 since then the solution is trivially the MWBL

horizon, which we confirmed numerically but will not solution.

discuss here. As a general 3D strong field example we present in
We now come to the numerical implementation of ourTable | data comparable to the A2B8 data set of [9]. Note

proposal. We found that a full approximation storagethat the data sets produced by the two methods are not

3608



VOLUME 78, NUMBER 19 PHYSICAL REVIEW LETTERS 12 My 1997

TABLE I. Results for the A2B8 data set of [9]. All units need for the method of images. Second, in the solution
are in terms ofm), h is the grid spacingn the number of  of the Hamiltonian constraint we avoid the numerical
grid points, d is the residual,r the truncation erroro the complications due to an inner boundary. Compared to
convergence rate, amdapw IS the ADM mass of the box. the standard Cartesian (Cadez) method, one (two) levels
A2B8, box of size 32 of sophistication less are required for an implementation,
which should make general black hole initial data more

- mﬂ)goz 2 2 ni<220=01 " widely available.
o = (0,0, T = (0,0,— ; ]
_Pyy = (15,0,0) Py = (—15,0,0) Finally, note that black hole puncture data has al

ready been successfully evolved in the case of 3D
Sw =(-20.20.0) S = (0.20.20) Schwarzschild initial data [L7 16], which is possible even
h n ll2ll, 171l o Mapm - .

when the punctures are part of the numerical grid since

4000 11’ 1.159¢-08  3.813¢-03  4.029 ~ 9.209  thare gre no physical singularities on the initial slice. For

2.000 19; 5-350e-08  1.984¢-03  —2.119 10.097 long term evolution of black holes, one may start with

1.000 35 2.141e-07  5.400e-03 0.838 10.601 data obtained by either the throat t truc-

0500 67°  2.582¢-07 1216e-02 1121 10.833 O y either the throat or puncture construc

0.250 1313 1552¢-07 222202 1430 10917 ton, and then cut out the interior regions at the apparent

0.125 259 6.629¢-08 3.383¢-02  1.712 10942 horizon to avoid the physical singularities on future slices
[12,18].
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