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A Simple Construction of Initial Data for Multiple Black Holes
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We consider the initial data problem for several black holes in vacuum with arbitrary momenta
spins on a three space with punctures. We compactify the internal asymptotically flat regions to ob
a computational domain without inner boundaries. When treated numerically, this leads to a signifi
simplification over the conventional approach which is based on throats and isometry conditions.
this new setting it is possible to obtain existence and uniqueness of solutions to the Hamilto
constraint. [S0031-9007(97)03144-X]

PACS numbers: 04.20.Ex, 04.25.Dm, 04.70.Bw, 95.30.Sf
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Binary black hole spacetimes are one of the great ch
lenges for numerical general relativity, even if no ma
ter sources are present. Here we consider the prob
of finding initial data for several black holes in vacuum
with arbitrary momenta and spins. In general relativit
initial data on a hypersurface cannot be specified free
because the Einstein equations give rise to four equatio
three momentum constraints, and the Hamiltonian co
straint that the initial data has to satisfy. The purpose
this Letter is to introduce a novel approach which is si
nificantly simpler than the conventional method based
throats and conformal imaging.

In all that follows we will assume vacuum, that th
metric is conformally flat, and that the extrinsic curvatu
is tracefree. A convenient form of the constraints
general relativity can be obtained by rescaling the physi
three-metricg

ph
ab and its extrinsic curvatureK

ph
ab by a

conformal factorc,

g
ph
ab ­ c4gab , K

ph
ab ­ c22Kab . (1)

The momentum constraint becomes

=aKab ­ 0 , (2)

and the Hamiltonian constraint becomes an elliptic equ
tion for the scalar fieldc ,

Dc 1
1
8 KabKabc27 ­ 0 , (3)

where the covariant derivatives are defined by the fl
metric gab , which is also used to raise and lower indice
(see [1,2]).

In order to obtain black hole vacuum data, one h
to introduce a nontrivial topology. The first calculation
were performed by Einstein and Rosen [3] in the
work on point particles in general relativity. Variou
constructions for black holes based on Einstein-Ros
bridges and “wormholes” were given in, e.g., [4–7]. Th
spatial slice typically consists of two or more copies ofR3

with several spheres removed and identifications of t
various spherical inner boundaries. In this way seve
asymptotically flat regions are obtained that are connec
by bridges or “throats.”
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The simplest example derives from the Schwarzschi
spacetime in quasi-isotropic coordinates. Considered
a problem onR3 minus the pointr ­ 0, the constraint
equations (2) and (3) are solved by

c ­ 1 1
m
2r

, Kab ­ 0 , (4)

where m is the mass andr the isotropic radius. To
make contact with the throat picture, recall that ther
exists an isometry given byr ! m2y4r which leaves the
coordinate spherer ­ my2 invariant and which maps the
entire exterior asymptotically flat space into that spher
Consequently, there exists a second asymptotically fl
region nearr ­ 0. Equivalently, one can represent this
solution to the constraints on a space consisting of tw
copies of R3 with a sphere excised and appropriat
identification at the spheres.

For N black holes and nonvanishing extrinsic curva
ture, York and others [8] have developed a sophisticat
method to solve the constraints for two asymptotically fla
spaces that are connected by as many throats (i.e., exci
spheres) as there are black holes, and that are isome
copies of each other. Note that there are explicit sol
tions to the momentum constraint (2) that characterize
single black hole with given momentumPa, and spinSa.
For example,

Kab
PS ­

3
2r2 fPanb 1 Pbna 2 sgab 2 nanbdPcncg

1
3
r3 seacdScndnb 1 ebcdScndnad, (5)

wherena is the radial normal vector. Since the conforma
metric is flat, we will use in what follows either standard
spherical or Cartesian coordinates, i.e.,r ­ sx2 1 y2 1

z2d1y2 andna ­ xayr.
By the method of images it is possible to obtain an infi

nite series based on (5) forKab which solves the momen-
tum constraint and satisfies an isometry condition at a
number of spheres [6,8]. Given such a solution, what r
mains to be done is to solve the Hamiltonian constrai
(3), which is an elliptic equation onR3 minus several
© 1997 The American Physical Society
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spheres, with the inner boundary given by the isome
and the outer boundary determined by asymptotic flatn

Three independent numerical implementations of
above scheme have been given and compared in the de
tive paper on three-dimensional black hole initial data
Cook, Choptuik, Dubal, Klasky, Matzner, and Oliveira [9
For the Hamiltonian constraint, they consider a nonl
ear block full approximation storage multigrid scheme f
Cadez coordinates, a successive over-relaxation sch
in Cartesian coordinates, and a multiquadratics approa
All these approaches are greatly complicated by the p
ence of the inner spherical boundaries and the isom
condition.

Let us return to the Schwarzschild solution of th
constraints on a “punctured”R3. As noted by Misner
and Wheeler [5] and studied in detail by Brill an
Lindquist [7] (MWBL), the Schwarzschild solution to th
constraints generalizes trivially toN black holes for time
symmetry,

c ­ 1 1

NX
i­1

msid

2j$r 2 $rsidj
, Kab ­ 0 , (6)

where msid characterizes the mass of theith black hole
(i.e., the ADM mass is

P
msid) and $rsid is the location of

the ith black hole. For regularity of the conformal facto
the MWBL solution is considered on a singleR3 with the
points $r ­ $rsid removed. We refer to the$rsid as punctures.
The isometry present in the Schwarzschild solution is lo
although there still exist minimal surfaces characterizi
the throats [7].

Let us now discuss the method that we propo
to find data for multiple black holes with arbitrar
boosts and spins. The idea is to compactify the inter
asymptotically flat regions in order to obtain a simp
domain of integration. Such compactification brings
issues of regularity of the fields (e.g., [10,11]), which w
address below.

As before, we consider vacuum spacetimes, the me
is conformally flat, and the extrinsic curvature is tracefre
As the spatial slice we choose a singleR3 with N
punctures as in the MWBL data. First, we solve t
momentum constraint (2) by setting

Kab ­
NX

i­1

Kab
PSsid , (7)

where each term is defined by (5) with its own orig
$rsid, momentum $Psid, and spin $Ssid. These parameter
correspond to the ADM quantities in the limit that th
separation of the holes is very large. Equation (7) defi
the solution to the momentum constraint that we actua
use, and is not just the starting point for the method
images that is usually invoked to distortKab to obtain an
isometric solution (cf. [12], where the same simplificatio
arises for a trapped surface boundary condition at
inner boundary).
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Given Kab as defined in (7), we proceed to solve the
Hamiltonian constraint, (3). We rewrite the conforma
factor in terms of functionsa andu given by

c ­
1
a

1 u ,
1
a

­
NX

i­1

msid

2j$r 2 $rsidj
. (8)

On the puncturedR3, the Laplacian of1ya is zero,
so that the Hamiltonian constraint equation become
(cf. [11] for a single asymptotic region and vanishing
linear momentum)

Du 1 bs1 1 aud27 ­ 0 , (9)

b ­
1
8 a7KabKab . (10)

To complete the definition of the problem, we have
to specify boundary conditions foru. For asymptotic
flatness at infinity we requireu 2 1 ­ Osr21d for large
distances to the punctures.

The key question that remains is what condition w
want to impose onu close to the punctures. As it turns
out, to build in asymptotically flat regions as are presen
in the MWBL data near the punctures,it suffices to solve
(9) everywhere onR3 without any points excised.This
completes the statement of our proposal.

Let us discuss existence and uniqueness of solutio
to the modified Hamiltonian constraint equation (9) on
R3. Since in this case the topology is trivial, we can
show existence and uniqueness of aC2 solution by
repeating the proof given in [13] for the conventiona
Hamiltonian constraint equation onR3. By definition,
both a and b are proportional toj$r 2 $rsidj near the
former punctures and are thereforeC0, despite the fact
that KabKab goes asj$r 2 $rsidj

26 at these points. From
the maximum principle and the outer boundary conditio
we obtain that there exists at most oneC2 solution, and,
in particular, thatu $ 1 and 1 1 au $ 1. Referring to
[13] for the definition of weighted Sobolev spaces, fo
the existence part of the proof we require thatu [ M

p
s,d

andbs1 1 aud27 [ M
p
s22,d12 with p . 3 for the norm

ands $ 3 characterizing differentiability. The falloff of
(9) is the same as in the standard case. Interior poin
like the $rsid do not affect the weightd. Because of the
loss of differentiability at the punctures inb, we find that
in our casep . 3 ands ­ 3. (In comparison, [14] uses
p ­ 2 but requiress $ 4.) The proof proceeds as in [13]
with minor changes in the algebra and due care whenev
it matters thata and b may vanish. So, althoughu
is only C2 at the $rsid, there exists a unique solution for
the conformal factorc ­ u 1 1ya on the puncturedR3

determined by our proposal foru on the unpuncturedR3.
Given a solutionu, we can demonstrate that each

puncture represents the “point at infinity” for anothe
asymptotically flat spacetime (cf. [7]). Hence, solving
3607
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(9) on R3 involves a particular compactification ofN
out of N 1 1 asymptotically flat regions, one of which
is distinguished by our choice ofKab ; see below. We
perform a coordinate inversion through a sphere ne
the ith puncture, r̄ ­ a2yr, under which the metric
transforms as

ds2 ­ c4sdr2 1 r2dV2d ­ c̄4sdr̄2 1 r̄2dV2d,

(11)

with c̄ ­ c rya (which is not an isometry). Setting
a ­ msidy2 wheremsid is the bare mass of the punctur
we are considering, we obtain for our choice ofc , (8),
that

c̄ ­ 1 1
m̄sid

2r̄
1 O

µ
1
r̄2

∂
, (12)

m̄sid ­ msid

µ
us$rsidd 1

X
jfii

msjd

2j$rsid 2 $rsjdj

∂
. (13)

Therefore, the metric becomes flat as we approach
punctures.

To show asymptotic flatness at the punctures, it r
mains to be shown that̄Kab ­ Osr̄22d. In the physical
variables, we just have the coordinate transformationr̄ ­
a2yr, Lb

c ­ ≠xby≠x̄c ­ sa2yr̄2dLb
c where Lb

c ­ db
c 2

2nbnc. In the unphysical variables, we also have to tak
into account the transformation ofc . With Kab ­ c̄2K̄

ph
ab

andK̄
ph
ab ­ sLKphdab , we obtain

K̄ab ­

µ
a
r̄

∂6

sLKdab . (14)

Therefore, for our choice ofKab, (5), the momentum term
of orderr22 is mapped to order̄r24 while the spin term
of order r23 is mapped to order̄r23. This observation
extends to multiple hole data withKab defined in (7).
Hence the black hole puncture data are asymptotically fl
at the punctures.

In fact, we also learn that the black hole seen fro
the region near the puncture appears to be unboos
because the boost term is obtained from ther24 term
in the untransformed space. This term is always zero
our space by construction. In the conventional metho
imposing the isometry leads to terms which go asr24 in
Kab . These terms may not be included in our metho
(without modification), becauseb would not be regular at
the punctures if they were.

Since the initial data are asymptotic to Schwarzsch
data near the punctures, and since small spherical surfa
centered at the puncture of Schwarzschild data are ou
trapped surfaces (with outside referring to the asympto
region away from the punctures), this indicates that t
region near the punctures is inside black holes. As
[7], several punctures may be hidden behind a comm
horizon, which we confirmed numerically but will not
discuss here.

We now come to the numerical implementation of ou
proposal. We found that a full approximation storag
3608
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multigrid method built around a nonlinear Gauss-Seide
relaxation scheme [15] performs very well for (9) on a
finite Cartesian grid with a Robin boundary condition
Note that the standard representation ofDu by centered
finite differences is only first order at the punctures. On
could use a different prescription at the puncture point
but in numerical tests we found that the correspondingl
lower rate of convergence is contained in a surprisingl
small neighborhood of the puncture points, whether thos
are part of the grid or not.

The multigrid program is part ofBAM, a bifunctional
adaptive mesh package for elliptic and hyperbolic prob
lems in three-dimensional numerical relativity (see [16] fo
the hyperbolic part; we do not use adaptivity here). Sinc
in general the Hamiltonian constraint has to be solved nu
merically, it is important to provide at least one efficien
numerical implementation. There is no reason to believ
that the multigrid method is the only good method. How
ever, when available, multigrid methods have proven to b
among the best performers. We consider the absence
irregular boundaries in our method to be a valuable featu
since it makes a straightforward multigrid implementation
possible.

As a test, let us compute the correction to the conform
factor for two equal mass black holes boosted towar
one another when we keep only terms of smallP (the
momentum of each hole) andL (the coordinate positions
of the holes along thez axis being6L). Considerb to
be of ordere, and consider the MWBL solution to be
the zeroth order solution to the Hamiltonian constrain
u ­ us0d 1 eus1d ­ 1 1 eus1d. We now have

eDus1d ­ 2bs1 1 ad27. (15)

The ADM mass to first order ine is

MADM ­ 2
1

2p

I
r­`

=a

µ
1
a

∂
dSa

1
1

2p

Z
bs1 1 ad27 dV

­ 2m 1 m

µ
P
m

∂2∑11
50

µ
L
m

∂2

2
24
35

µ
L
m

∂4∏
. (16)

This equation predicts the correction to the ADM mas
resulting from the full nonlinear solve to within about5%
whenPym # 1.0 andLym # 0.2 and the grid is a cube
whose sides have a length of about 16m and are resolved
with 67 zones.

This calculation provides one test for the correctness o
the solution of the data set, at least for the ADM mas
of the spacetime for perturbative cases. This is valuabl
because the code cannot be tested for the case wh
Kab ­ 0 since then the solution is trivially the MWBL
solution.

As a general 3D strong field example we present i
Table I data comparable to the A2B8 data set of [9]. Not
that the data sets produced by the two methods are n
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TABLE I. Results for the A2B8 data set of [9]. All units
are in terms ofms2d, h is the grid spacing,n the number of
grid points, d is the residual,t the truncation error,s the
convergence rate, andMADM is the ADM mass of the box.

A2B8, box of size 32

ms1d ­ 2 ms2d ­ 1
$rs1d ­ s0, 0, 4d $rs2d ­ s0, 0, 24d

$Ps1d ­ s15, 0, 0d $Ps2d ­ s215, 0, 0d
$Ss1d ­ s220, 20, 0d $Ss2d ­ s0, 20, 20d

h n kdk2 ktk2 s MADM

4.000 113 1.159e-08 3.813e-03 4.029 9.209
2.000 193 5.350e-08 1.984e-03 22.119 10.097
1.000 353 2.141e-07 5.400e-03 0.838 10.601
0.500 673 2.582e-07 1.216e-02 1.121 10.833
0.250 1313 1.552e-07 2.222e-02 1.430 10.917
0.125 2593 6.629e-08 3.383e-02 1.712 10.942

identically the same. They are equally generic, but ea
has a different gravitational wave content.

There are two punctures with different mass paramet
of order one, and with comparatively large values f
boosts and spins. The results are obtained for a single
centered around the origin for various grid spacings. Ea
run was performed for the same multigrid parameters su
that the values for the residua reflect the efficiency w
which the discretized equations are solved at differe
resolutions. We chose to make the residua much sma
than the truncation error estimate, which turns out
be in a range compatible with the still rather large gr
spacing. The convergence ratess are based onu at
three resolutions. As expected, we found in this a
other examples that the convergence rate at the punc
points was one order less than elsewhere, but we a
found that convergence was only affected very close to
punctures. As the resolution increases, the mass estim
converges with a rate comparable tos.

To summarize, we have introduced a new setup for t
initial data problem for multiple black holes with arbitrar
mass, momentum, and spin in three dimensions. Co
paring with the wormhole constructions of black hole
the key difference is how the various asymptotically fl
regions are defined on a single copy ofR3. Instead of
using an isometry condition at interior spheres, we r
move the inner boundary by compactification and look f
a solution to a modified Hamiltonian constraint equatio
on R3, for which we have existence and uniqueness.
corresponding proof should be possible for the isomet
wormhole data, although to our knowledge, such a pro
has not been given yet.

There are two obvious numerical advantages compa
to the wormhole approach. First, note that the soluti
Kab to the momentum constraint is all we need; i.e
since we do not impose the isometry condition there is
ch
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need for the method of images. Second, in the solutio
of the Hamiltonian constraint we avoid the numerica
complications due to an inner boundary. Compared t
the standard Cartesian (Cadez) method, one (two) leve
of sophistication less are required for an implementation
which should make general black hole initial data more
widely available.

Finally, note that black hole puncture data has al
ready been successfully evolved in the case of 3D
Schwarzschild initial data [17,16], which is possible even
when the punctures are part of the numerical grid sinc
there are no physical singularities on the initial slice. Fo
a long term evolution of black holes, one may start with
data obtained by either the throat or puncture constru
tion, and then cut out the interior regions at the apparen
horizon to avoid the physical singularities on future slice
[12,18].
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