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A SIMPLE CORRECTION TO REMOVE THE BIAS OF THE

GINI COEFFICIENT DUE TO GROUPING

Tom Van Ourti and Philip Clarke*

Abstract—We propose a first-order bias correction term for the Gini index
to reduce the bias due to grouping. It depends on only the number of indi-
viduals in each group and is derived from a measurement error frame-
work. We also provide a formula for the remaining second-order bias.
Both Monte Carlo and EU and U.S. empirical evidence show that the
first-order correction reduces a considerable share of the bias, but that
some remaining second-order bias is increasing in the variance. We pro-
pose a procedure that addresses the remaining second-order bias by using
additional information.

I. Introduction

THE Gini index is the most commonly applied inequal-

ity measure in the literature, probably because of its

link with Lorenz curves, which give an intuitive and graphi-

cal representation of inequality. Its main application has

been in the measurement of inequalities in income and

wealth, but it also has a long history in other areas. For

example, it has appeared as an inequality measure of health

indicators (among others, Le Grand, 1987; Pradhan, Sahn, &

Younger, 2003), educational attainment (among others,

Sheret, 1988; Lin, 2007), business concentration (among

others, Hart, 1971; Buzzacchi & Valletti, 2006), scientific

publications and citations (among others Allison & Stewart,

1974), legislative malapportionment (Alker, 1965), astron-

omy (Abraham, van den Bergh, & Nair, 2003), and many

others.

A long-standing problem in calculating the Gini index is

how to deal with data grouped by categories or into ranges

(Gastwirth, 1972; Abounoori & McCloughan, 2003). This

issue commonly arises with income or tax statistics that are

often grouped for confidentiality reasons. Grouped data are

also the main source of information on income distributions

provided through the POVCALNET interactive computa-

tional tool of the World Bank (World Bank, 2008) and the

UNU-WIDER World Income Inequality Database (UNU-

WIDER, 2008). Recent publications on regional inequality

(Guest & Swift, 2008), global income inequality (Mila-

novic, 2002; 2005; Sala-i-Martin, 2006), and global wealth

inequality (Davies et al., 2010) have also used grouped

data.1 Previous empirical research suggests that the group-

ing of income into relatively small number of categories

imparts a nonnegligible downward bias. For example, using

the 1984 U.S. Current Population Survey and the 1979–

1980 Israeli Family Expenditure Survey, Lerman and Yitz-

haki (1989) show that the bias from using grouped data with

ten and five income categories is about 2.5% and 7% of the

Gini as calculated from microdata. Davies and Shorrocks

(1989) report biases of similar magnitude from grouping

Canada’s 1984 Survey of Consumer Finance.

Two solutions have been proposed to cope with the

dependence of the Gini index on the number of groups.

First, a common approach, when average incomes of each

income group are known, is to reduce the bias due to group-

ing by fitting parametric functions that satisfy the properties

of a theoretical Lorenz curve. The estimated parameters are

then used to estimate the Gini coefficient (Kakwani, 1980a,

1986; Villaseñor and Arnold, 1989; Basmann et al., 1990,

Ryu & Slottje, 1996). This approach is popular among

applied researchers (Datt & Ravallion, 1992; Bigsten &

Shimeles, 2007) and has been implemented in the POVCAL

software of the World Bank (2008). A second approach is

to define nonparametric bounds on the Gini index (Gast-

wirth, 1972; Mehran, 1975; Murray, 1978; Fuller, 1979;

Kakwani, 1980a; Ogwang, 2003, 2006), which has the

advantage that, compared to parametric functions, it does

not make any assumption on the shape of the underlying

Lorenz curve, but requires information on the lower and

upper limit of each group. The lower bound of the Gini cor-

responds to the situation where all individuals within a

group are supposed to have the same mean amount of this

group, while the upper bound reflects a situation where

inequality is maximal in each of the groups.

Deltas (2003) has attempted to address the related issue

of small-sample bias. Here the bias arises not because of

grouping, but is due to having only a few observations such
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as might occur when calculating the Gini of subpopulations

using small (sub-)samples or due to few firms in an industry

when studying business concentration. Deltas (2003) ad-

dresses the small-sample bias with a first-order correction

term that depends on only the number of observations.2 The

main advantage of this correction term is its relative simpli-

city and transparency in application, but it neglects that the

small-sample bias of the Gini is distribution specific. Never-

theless, Monte Carlo simulations show that his correction

term manages to reduce the small-sample bias.

Inspired by Deltas (2003), we develop a simple first-

order correction term to deal with the bias of the Gini due

to grouping by treating grouping as a form of measurement

error. Our first-order correction, which at its simplest form

involves multiplying the Gini by K2/(K2�1), where K is the

number of groups, differs from the methods based on fitting

parametric functions and the nonparametric bounds in that

it can be applied without information on the average in-

comes or income ranges of each income group, that is, it

needs only information on the number of individuals in

each income group or range. This has unrivaled advantages

when one only has access to estimates of the Gini index

based on grouped data without observing the underlying

average incomes or income ranges, as is, for example, the

case for the majority of countries in the UNU-WIDER

World Income Inequality Database (UNU-WIDER, 2008).

Also in case the underlying average incomes or ranges are

observed, our correction method has the advantage of being

simple and transparent. However, because it is not exploit-

ing the information on average incomes or income ranges,

its performance will depend on the shape of the underlying

unobserved income distribution. In other words, the bias

in the Gini due to grouping is distribution specific, and a

second-order bias might remain after applying the first-

order correction. While the latter second-order bias is zero

for some specific distributions, Monte Carlo evidence

shows that it is in general low but increasing in the variance

of the underlying distribution. We confirm this Monte Carlo

evidence in an empirical illustration: our first-order correc-

tion term reduces a large share of the bias due to grouping

when applied to the income distributions of fifteen Eur-

opean countries and the United States. We also develop a

procedure that addresses the remaining second-order bias

by imposing additional information. Our results show that

this procedure could be used as an alternative to existing

correction methods involving fitting conventional para-

metric forms to the data.

The remainder of this paper contains four sections. We

start by illustrating the usefulness of OLS in obtaining an

estimate of the Gini. The next section derives our first-order

correction and applies Monte Carlo simulations to increase

the understanding of the remaining second-order bias. We

then illustrate our methods on data for fifteen European

countries and the United States in the fourth section. The

final section contains the conclusions.

II. Estimation of the Gini index

The Gini can be estimated using several equivalent for-

mulas. For our purposes the following one is the most use-

ful (Pyatt, Chen, & Fei, 1980),

Gn ¼
2
P

n

i¼1

yiRi

ny
� 1

¼ 2cov yi;Rið Þ
y

;

ð1Þ

where yi is the income of individual i ¼ 1,. . .,n with indivi-

duals ranked from poor to rich, that is, y1 � y2 � � � �
� yn; Ri ¼ n�1ði� 1=2Þ is the fractional income rank

(Lerman & Yitzhaki, 1989), and y ¼ n�1
Pn

i¼1 yi denotes
average income.3 A simple transformation of equation (1)

shows that the Gini can also be calculated as the

OLS estimate of b (Kakwani, Wagstaff, & van Doorslaer,

1997),

2r2
R

yi

y
¼ aþ bRi þ ei; ð2Þ

where r2
R ¼ (n2 � 1)(12n2)�1 is the variance of Ri (Milanovic,

1997), ei is an error term with zero mean, and a, b are para-

meters. It is important to note that the equality between

equations (1) and (2) holds under the properties of OLS as

arithmetic tool and that no additional assumptions need be

made.

III. The Bias of the Gini due to Grouping

and a First-Order Correction Term

In this section, we present an exact expression for the

bias of the Gini due to grouping and derive and discuss the

properties of a first-order correction term to address this

bias. We start with the easier case of groups of equal size

and next generalize to groups of unequal size. Our approach

proceeds as follows. First, we compare equation (2) for n
observations and for a situation where one constructs K
groups from these n observations.4 In other words, we

assume that an estimate of the Gini based on grouped data

is available and next analyze how this estimate differs from

the one that would be obtained from the underlying indivi-

dual data. Second, we derive an exact expression for the

difference between both estimators by drawing a parallel

with the econometric literature on measurement error mod-

els (for example, Cameron & Trivedi, 2005, chapter 26).

2 It involves multiplying the Gini estimated from a small sample with
the inverse of its potential maximum: n/(n � 1).

3 We discuss the Gini of income, but obviously everything also holds
for any variable whose distribution is analyzed.
4 Note the similarity with the difference between the OLS and between

estimator for panel models (Cameron & Trivedi, 2005).
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Third, an intuitive first-order correction term to address the

bias in the grouped data estimator results from this exact

expression. It is termed first-order since, in contrast to the

existing methods based on fitting parametric functions and

the nonparametric bounds, it does not need information on

average incomes per income group or the income ranges.

A. Groups of Equal Size

In order to understand the bias of the Gini that results

from grouping n observations into K groups of equal size, it

is helpful to see that equation (2) reduces to

2r2
RK

yg

y
¼ aK þ bKRg þ eg; ð3Þ

where we have added K superscripts to refer to the grouped

data case, Rg ¼ K�1 (g � 1/2) is the fractional income rank

of group g ¼ 1,. . .,K, r2
RK ¼ ðK2 � 1Þð12K2Þ�1

is the var-

iance of Rg, and yg is the average income within group g.
The OLS estimate of bK equals the Gini index calculated

from the K groups and is a downwardly biased estimator of

the Gini calculated from n observations due to the convex-

ity of the underlying Lorenz curves,5

bK ¼ GK
n ¼

2
P

K

g¼1

ygRg

Ky
� 1

¼ 2covðyg;RgÞ
y

� Gn ¼ b:

ð4Þ

Next, we establish an exact relationship between Gn and

GK
n in equations (2) and (3). Comparing the latter equations

reveals that both the right-hand side and the left-hand side

differ. The difference in the right-hand side can be inter-

preted as a measurement error problem; we observe the

rank of income at the level of the groups rather than one at

the level of the n observations. More exactly, we add an

equation that describes the measurement error problem:

R
g
i ¼ Ri þ d

g
i ; ð5Þ

where d
g
i is the measurement error and R

g
i is the fractional

income rank of group g defined at the individual level, that

is, every individual in group g gets the fractional income

rank of group g—Rg. Due to the properties of the fractional

income rank, this measurement error is uniformly distribu-

ted and has zero mean. Substituting equation (5) into equa-

tion (2) gives

2r2
R

yi

y
¼ aþ bR

g
i þ ðei � bd

g
i Þ: ð6Þ

It is impossible to estimate b from equation (6) using OLS

(as an arithmetic tool) since we do not observe (ei � bd
g
i ).

6

Instead, we can only estimate

2r2
R

yi

y
¼ aMER þ bMERR

g
i þ gi; ð7Þ

where gi is a zero-mean error term and the superscript MER
refers to measurement error. Using some algebra and

exploiting the fact both d
g
i and R

g
i and ei and Ri are uncorre-

lated (which holds due to using OLS as an arithmetic tool

only), it is easy to show that the OLS estimate of bMER in

equation (7) and the OLS estimate of b ¼ Gn in equation

(2) are related:7

bMER ¼ Gn þ
1
n

P

n

i¼1

d
g
i ei

r2
RK

: ð8Þ

In order to derive an expression relating Gn and GK
n , we

need to establish one additional relationship that addresses

the difference between the left-hand side of equations (2)

and (3). After some algebra, one can establish that

bMER ¼ GK
n

r2
R

r2
RK

 !

¼ GK
n

K2ðn2 � 1Þ
n2ðK2 � 1Þ

� �

;

ð9Þ

which shows that bMER is related to GK
n by the ratio of the

variances of the actual fractional income rank and that of

the fractional income rank of group g.
Combining equations (8) and (9) allows us to come up

with a useful equation that expresses the Gini estimated

from n observations as a function of, among others, the Gini

estimated from a grouping of these n observations:

Gn ¼ GK
n

r2
R

r2
RK

 !

�
1
n

P

n

i¼1

d
g
i ei

r2
RK

¼ GK
n

K2ðn2 � 1Þ
n2ðK2 � 1Þ

� �

� 12K2

K2 � 1

� �

1

n

X

n

i¼1

d
g
i ei

" #

:

ð10Þ

5 A downward bias occurs if there is income variation within at least
one of the K groups; there is no bias if there is no income variation in each
of the K groups.

6 We do not observe (ei � bd
g
i ) since we consider the hypothetical situa-

tion where the actual income levels yi are observed but the corresponding
actual fractional income ranks Ri are not. This assumption makes sense
since equations (5) to (8) focus on the difference between the right-hand
sides of equations (2) and (3), that is, interpreting the difference in the
right-hand side as a measurement error problem; without addressing the
difference in the left-hand side (or in other words, the fact that actual
income levels are observed). The difference in the left-hand side is
addressed in equation (9). Therefore, the assumption of observing actual
income levels, but not their corresponding fractional ranks, is auxiliary,
and not needed to sustain equation (10), which gives an exact expression
for the difference between equations (2) and (3).
7 d

g
i and R

g
i are uncorrelated since R

g
i equals the average Ri of group g,

that is,
P

i2g d
g
i R

g
i ¼

P

i2g ðR
g
i � RiÞRg

i ¼ 0, and hence
Pn

i¼1 d
g
i R

g
i ¼

PK
g¼1

P

i2g d
g
i R

g
i

� �

¼ 0.
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Assuming that n? þ? and K < þ? (that is, the number

of groups in the population and their relative size is fixed)

results in

G1 ¼ K2

K2 � 1
½GK

1 � 12covðdgi ; eiÞ�: ð11Þ

Equation (11) reveals some interesting insights. First, we

have used the properties of OLS only as an arithmetic tool

and the properties of the fractional rank to come up with

equation (11). Second, a first-order correction term to

address the bias of the grouped data estimator of the Gini

and an expression for the remaining second-order bias

result self-evidently from equation (11). The first-order

correction (K2 � 1)�1 K2 does depend on only the number

of income groups (hence ‘‘first-order’’). Therefore, it can, in

contrast to existing methods, also be used to correct esti-

mates of the Gini index based on grouped data without ob-

serving the underlying average incomes or income ranges.

The performance of the first-order correction term can be

inferred from the remaining second-order bias, 12 cov(d
g
i ,

ei)K
2(K2 � 1)�1 and will depend on the shape of the under-

lying unobserved income distribution. In other words, the

expression for the remaining second-order bias reflects that

the bias in the Gini due to grouping is distribution specific.

Third, the first-order correction term has two intuitive inter-

pretations: it equals a ‘‘grouped data’’ adjustment of the var-

iance of the fractional rank, which turns out to be identical

to the so-called attenuation bias in the classical measure-

ment error model (for example, Cameron & Trivedi, 2005,

section 26.2.3), and it is related to the inverse of the covar-

iance between the grouped and actual fractional rank, (K2 �
1)�1 K2 ¼ [12 cov(R

g
i , Ri)]

�1, which implies a low/(high)

first-order correction term for a high/(low) covariance. The

second-order bias also has an intuitive interpretation as it is

a function of the covariance between the measurement error

and the error term from equation (2).

A few things can be said about this covariance. It will be

smaller the higher the number of groups K, which is easily

inferred from the equality cov(d
g
i , ei) ¼ cov(R

g
i , ei). In addi-

tion, its value and sign are unknown since, although one

knows that d
g
i is uniformly distributed with zero mean, the

error term ei is unobservable without the underlying indivi-

dual-level data. Nevertheless, it is straightforward to get an

idea on its sign and magnitude if one has an idea on the

shape of the underlying unobservable distribution function

of yi.
First, if the unobserved yi is uniformly distributed (or

income levels are linearly related to the fractional income

rank), the covariance term will be 0 since the variance of ei
equals 0 and no second-order bias will remain after apply-

ing the first-order correction term. While this is mainly

informative for uniformly distributed attributes, it also

involves an interesting reference case for nonuniformly dis-

tributed attributes, such as income distributions. Second,

the covariance term might also equal 0 for some nonuni-

form distributions. Since the requirement cov(d
g
i , ei) ¼ 0

might hold for an infinite number of distributions, we can-

not enumerate all cases here. An interesting case is the dis-

tribution determined by yi ¼ R2
i . Here the covariance term

equals 0 since ei is symmetrically distributed around the

median fractional rank Ri ¼ 0, 5. Another example is the

beta distribution with parameters 0.5 and 1. However, a dis-

tribution where income is not linearly related to the income

rank will not generally lead to a 0 covariance term. In the

latter case, the covariance term might be negative (implying

an undercorrection after applying the first-order correction

term) or positive (implying an overcorrection).

In order to increase the understanding of the performance

of the first-order correction term under different distribu-

tional assumptions, and consequently the sign and magni-

tude of the remaining second-order bias, we have performed

Monte Carlo simulations for three distributions. First, we

considered the uniform distribution with support on the unit

interval as it is an interesting reference case in the context

of the first-order correction term. Second, we used the log-

normal distribution (with log values distributed normally

with mean 0 and standard deviation ry). We varied ry from

1.5 to 0.25 to infer how it affects the magnitude of the bias

from grouping (and the performance of the first-order cor-

rection term). Third, we used the beta distribution with

values of its parameters equaling 0.5, 1, 3, 5, 10, and 25

(with 36 combinations in total). In contrast to the log-

normal distribution, its variance and kurtosis can vary inde-

pendently from the skewness (Deltas, 2003), and therefore

it allows disentangling the separate impact of these three

moments on the magnitude of the bias from grouping.8 In

addition, the beta is a flexible distribution allowing various

shapes of the density function, including bimodality and left

and right skewness.

For each distribution, 20,000 independent samples of size

n ¼ 10,000 have been drawn.9 For each of these samples,

the Gini was computed after grouping the data into K
groups of equal size for K ¼ 2,3,. . .,10,20,30,40,50, and

next compared to the Gini obtained without grouping.10

The average values of the Gini (and its standard deviation

in the Monte Carlo simulation), the first-order correction

for grouping, and the covariance for the uniform and log

normal distributions are shown in table 1.

Table 1 shows that grouping leads to a downward bias of

the Gini and that the bias is decreasing in the number of

groups. Its magnitude is large compared to the standard

deviation of the Gini and differs across the different distri-

butions. For the log-normal distributions, it seems that the

8 Strictly speaking, these are normalized central moments, but for brevity,
we loosely refer to ‘‘moments.’’
9 Monte Carlo simulations for the uniform and log-normal distributions

with smaller sample sizes (n ¼ 100 and 1,000) confirmed our findings
based on n ¼ 10,000, and thus suggest that the asymptotic formula in equa-
tion (11) might be reasonable in practice.
10 These groupings are of ‘‘equal size’’ for K ¼ 2,4,5,8,10,20,40,50. For

other values of K, these groupings are approximately of ‘‘equal size.’’
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bias is increasing with the value of the standard deviation

ry, but we postpone a more comprehensive discussion of

this issue to the beta distributions. With respect to the per-

formance of the first-order correction, we confirm that it

removes all bias for the uniform distribution and removes a

large share of the bias for the log-normal distributions.

While the covariance terms are always negative for the log-

normal distributions—implying that the first-order correc-

tion ‘‘undercorrects’’ (that is, the first-order corrected Gini

is lower than the one calculated from individual data)—the

first-order correction performs better for log-normal distri-

butions with lower ry.

The results for the beta distributions have been summar-

ized using the response surface methodology (Hendry,

1984). This method summarizes the 36 Monte Carlo simu-

lations (each consisting of 20,000 independent samples of

size n ¼ 10,000) by treating each of the 36 sets of simula-

tions as a single observation in an OLS model; this is done

separately for each value of K ¼ 2,3,. . .,10,20,30,40,50.

More exactly, for each value of K, we first calculate the

average bias (before and after applying the first-order cor-

rection term) for each set of 20,000 simulations and next

use these 36 averages as the dependent variable in an OLS

model. We explain these biases as a function of the normal-

ized variance, normalized skewness, and normalized kurto-

sis of the beta distribution.11

Table 2 gives the resulting OLS estimates for different

values of K, which are in line with our findings for the uni-

form and log-normal distributions in table 1. The R2’s indi-

cate that we explain a major share of the biases. We find

that the bias of the Gini due to grouping is an increasing

function of the variance and that it is hardly affected by the

skewness or kurtosis. The relative importance of the latter

moments increases slightly for the second-order bias, but

the variance remains the most important factor. The much

lower coefficient estimates in the right panel reflect that the

first-order correction removes a major part of the bias, and

the reduction in the size of all coefficients estimates when

K increases reflects that the bias due to grouping and the

second-order bias are decreasing functions of K.
While the response surface methodology is useful for

summarizing the Monte Carlo simulations, two interesting

features are not revealed in table 2.12 First, the first-order

correction term removes a major share of the bias due to

grouping in all 36 simulations, including distributions with

very different shapes from the typically right-skewed

income distributions. This is evident from comparing the

columns Gini and FOC for the beta distributions in table 3

(for completeness, we also present the corresponding sum-

mary percentages for the Monte Carlo simulations based on
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11 We use the normalized versions of these moments to ensure that
results are scale free (Deltas, 2003). The variance is divided by the square
of the mean, and the skewness and kurtosis, respectively, by the cube and
the fourth power.
12 As we mentioned earlier, we also found that the first-order correction

gets it exactly right for a beta distribution with parameters 0.5 and 1.
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the log-normal distributions). Second, cov(d
g
i , ei) was

always negative or 0, except for the beta distribution with

parameters 0.5 and 0.5 (see the far right column in table 3).

While a positive covariance cannot be excluded a priori,

our simulations indicate that it will only rarely occur: it was

negative or 0 for a wide range of shapes of the density func-

tion including left and right skewness but did show up posi-

tive in our Monte Carlo simulations for the beta distribution

with parameters 0.5 and 0.5. The density function of the lat-

ter distribution is symmetric around 0.5 and bimodal with

high spikes at the minimum and maximum income levels,

and low density at intermediate income levels. For example,

the 15% (4%) highest and lowest incomes each account for

more than 25% (one-eighth) of total income. Hence, the

error of equation 2 and the measurement error defined in

equation 5 are on average positive for the lowest and nega-

tive for the highest incomes within each income group. This

is most easily seen from the most extreme bimodal and

symmetric distribution: a density with 50% of mass at the

income level 0 and 50% at the income level 1, but will hold

true more generally as long as the density function will

have sufficient mass at both the minimum and maximum

income levels. It should be clear from this discussion that a

positive covariance is unlikely to occur in practice, and

especially so for income distributions that tend to be right

skewed rather than bimodal with spikes of comparable

height at the maximum and minimum income levels. But

even when a positive covariance might occur, the two far-

right columns in table 3 show that the first-order corrected

Gini index removes a major share of the dependence on

grouping. The fact that it ‘‘overcorrects,’’ rather than ‘‘under-

corrects,’’ in this case, seems unimportant in light of the

share of the dependence on grouping it tends to remove.

A final issue concerns whether one can correct for the

remaining second-order bias after having used the first-

order correction term. While the Monte Carlo simulations

gave some idea on the magnitude of the bias, one would in

theory need the unobservable underlying individual-level

data to get rid of the second-order bias in practical applica-

tions. In a related context, Deltas (2003) has noted that ‘‘it

might sometimes be possible to account, at least partially,

for the second-order bias if some information can be

obtained about the distribution. In particular, one may be

able to estimate the density . . . and then compare . . . with

TABLE 3.—BIAS OF THE GINI DUE TO GROUPING: SUMMARY PERCENTAGES OF THE SIMULATION EXERCISES

Log Normal Beta Distribution, except Beta(0,5;0,5)

Gini FOC Gini FOC Beta(0.5;0.5)

Groups min mean max min mean max min mean max min mean max Gini FOC

50 99.68 99.84 99.92 99.72 99.88 99.96 99.89 99.93 99.96 99.93 99.97 100.00 99.97 100.01
40 99.54 99.77 99.88 99.60 99.83 99.94 99.84 99.89 99.94 99.90 99.96 100.00 99.95 100.01
30 99.29 99.62 99.80 99.40 99.74 99.91 99.73 99.81 99.89 99.84 99.92 100.00 99.91 100.02
20 98.67 99.26 99.56 98.91 99.51 99.81 99.43 99.60 99.75 99.68 99.85 100.00 99.79 100.04
10 96.19 97.63 98.41 97.16 98.62 99.41 98.02 98.51 99.00 99.01 99.50 100.00 99.18 100.18
9 95.54 97.18 98.07 96.74 98.39 99.30 97.61 98.18 98.77 98.83 99.41 100.00 98.98 100.22
8 94.69 96.57 97.60 96.19 98.10 99.15 97.06 97.74 98.44 98.60 99.29 100.00 98.71 100.28

7 93.53 95.72 96.93 95.48 97.71 98.95 96.27 97.09 97.96 98.28 99.12 100.00 98.32 100.36
6 91.88 94.47 95.93 94.51 97.17 98.67 95.11 96.13 97.22 97.83 98.87 100.00 97.70 100.50
5 89.40 92.53 94.32 93.13 96.39 98.25 93.27 94.57 96.00 97.16 98.51 100.00 96.69 100.72
4 85.35 89.22 91.47 91.05 95.17 97.57 90.08 91.79 93.75 96.08 97.91 100.00 94.80 101.13
3 77.90 82.76 85.65 87.63 93.10 96.36 83.72 86.08 88.89 94.19 96.84 100.00 90.69 102.03
2 60.93 66.76 70.35 81.24 89.01 93.79 67.70 70.92 75.00 90.27 94.56 100.00 78.54 104.72

All results are presented as a proportion of the Gini calculated without grouping. Gini: Gini index; FOC: Gini after the first-order correction; mean (min/max): the mean, minimum, and maximum value across the

simulation exercises, that is, 5 log-normal and 35 beta distributions. The final column shows the results for the beta distribution with parameters 0.5 and 0.5.

TABLE 2.—BIAS OF THE GINI DUE TO GROUPING: RESPONSE SURFACE ESTIMATES USING THE BETA DISTRIBUTION

Dependent Variable: Bias of Gini Due to Grouping Dependent Variable: Second-Order Bias

Groups Variance Skewness Kurtosis Constant R2 Variance Skewness Kurtosis Constant R2

50 0.0003*** 0.0000** �0.0000** 0.0001*** 0.9555 0.0001*** 0.0000*** �0.0000*** 0.0000** 0.8851

40 0.0004*** 0.0000** �0.0000** 0.0001*** 0.9555 0.0002*** 0.0000*** �0.0000*** 0.0000** 0.8828
30 0.0007*** 0.0000** �0.0000** 0.0002*** 0.9553 0.0003*** 0.0000*** �0.0000*** 0.0000** 0.8793
20 0.0016*** 0.0000* �0.0000* 0.0004*** 0.9549 0.0006*** 0.0000*** �0.0000*** 0.0001** 0.8742
10 0.0059*** 0.0000 �0.0000 0.0013*** 0.9531 0.0020*** 0.0000*** �0.0000** 0.0003** 0.8624
9 0.0072*** 0.0000 �0.0000 0.0017*** 0.9526 0.0023*** 0.0000*** �0.0000** 0.0003* 0.8600
8 0.0090*** 0.0000 �0.0000 0.0021*** 0.9521 0.0028*** 0.0000** �0.0000** 0.0004* 0.8574
7 0.0116*** 0.0000 �0.0000 0.0027*** 0.9513 0.0035*** 0.0000** �0.0000** 0.0005* 0.8539

6 0.0154*** 0.0000 �0.0000 0.0036*** 0.9502 0.0045*** 0.0000** �0.0000** 0.0006* 0.8496
5 0.0217*** 0.0000 �0.0000 0.0051*** 0.9486 0.0060*** 0.0000** �0.0000** 0.0008* 0.8440
4 0.0327*** 0.0000 �0.0000 0.0078*** 0.9461 0.0084*** 0.0000** �0.0000** 0.0011* 0.8354
3 0.0554*** 0.0000 �0.0000 0.0136*** 0.9415 0.0127*** 0.0000** �0.0000** 0.0016* 0.8207
2 0.1157*** �0.0000 0.0000 0.0294*** 0.9314 0.0219*** 0.0000* �0.0000* 0.0028 0.7889

The response surface estimates are based on 36 observations, obtained from the underlying Monte Carlo simulations using the beta distribution with all combinations of parameters equaling 0.5, 1, 3, 5, 10, and 25.

The dependent variable in the left panel is the bias of the Gini due to grouping: Gn � GK
n . The right panel uses the second-order bias: Gn � GK

n {[K2(n2 � 1)]/[n2(K2 � 1)]}. Variance: normalized variance (divided by

square of mean); skewness: normalized skewness (divided by cube of mean); kurtosis: normalized kurtosis (divided by fourth power of mean). Significance levels are ***1%; **5%; *10%.
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standard parametric distributions . . . to calculate the bias

correction term’’ (p. 231). In the empirical section, we

follow this logic but estimate equation (10) from individual-

level data rather than relying on standard parametric

distributions.

B. Groups of Unequal Size

Until now we have assumed that the K groups are equally

sized. Equation (10) is, however, easily generalized to groups

of unequal size. Assume that nu is the number of observations

in group u ¼ 1,. . .,K (with u referring to unequal group size),

that Ru ¼ nð Þ�1
1=2nu þ

Pu�1
j¼1 nj

� �

equals the fractional

income rank of group u, and that the variance of the latter is

defined as r2
RK
u
¼ ðnÞ�1 PK

u¼1 nuðRu � 1=2Þ2. We have now

sufficient information to derive the equivalent expressions of

equations (3) and (4):

2r2
RK
u

yu

y

ffiffiffiffiffi

nu
p ¼ au

ffiffiffiffiffi

nu
p þ buRu

ffiffiffiffiffi

nu
p þ eu

ffiffiffiffiffi

nu
p

; ð12Þ

bu ¼ GK;u
n ¼

2
P

K

u¼1

nuyuRu

ny
� 1

¼
2
P

K

u¼1

nu
n

� �

yuRu

� 	

y
� 1 � Gn ¼ b:

ð13Þ

Equation (12) is a WLS generalization of equation (3), and

equation (13) reduces to equation (4) if all groups have

equal size. The relationship between GK;u
n and Gn is estab-

lished by combining equation (2) with an unequal size gen-

eralization of equation (5),

Ru
i ¼ Ri þ dui ; ð14Þ

where dui is the measurement error with zero mean and Ru
i is

the fractional income rank of group u defined at the indivi-

dual level. This results in

Gn ¼
r2
R

r2
RK
u

GK;u
n �

1
n

P

n

i¼1

dui ei

r2
RK
u

: ð15Þ

It is straightforward to see that equations (10) and (15) are

identical except for the unequal group sizes. It is still the

case that the first-order correction term (a) is related to the

so-called attenuation bias of the classical measurement

error model in that it measures the ratio of the variance of

the actual fractional rank and that of the fractional rank of

group u, (b) it is easy to calculate, and (c) it depends on

only the relative size of the groups. The expression of the

second-order bias also still reflects the performance of the

first-order correction term and the covariance interpretation

remains. The same can be said about the main findings of

the Monte Carlo simulations before, although the interplay

between the shape of the underlying distribution and the

relative size of the groups is now an additional factor.

IV. Empirical illustration

A. Data

In this section, we illustrate the dependence of the Gini

index of income on the number of groups and show the per-

formance of the first-order correction term in reducing the

bias if applied to income distributions. We analyzed this

bias for fifteen European countries and the United States

using microdata from the European Community Household

Panel (ECHP) and the Medical Expenditure Panel Survey

(MEPS).13 The ECHP was designed and coordinated by

EUROSTAT. It contains socioeconomic information for

individuals aged 16 or older, uses a standardized question-

naire, and covers fifteen EU member states: Austria, Bel-

gium, Denmark, Finland, France, Germany, Greece, Ireland,

Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden,

and the United Kingdom. We use the first wave (the 1994

wave) for all countries except for Austria (joined the survey

in 1995), Finland (joined in 1996), and Sweden (joined in

1997). We supplement this with U.S. income microdata from

the 2000 wave of the MEPS. We use the first wave of the

ECHP because it does not suffer from attrition, and thus has

more observations, which is useful for illustrating the first-

order correction term and the dependence of the Gini on the

number of income groups. Note that all calculations in this

section serve only the purpose of illustrating the methods

explained in the previous sections, not to deliver any hard

evidence on income inequality in the EU and United States.

The key variable for this study is income. The ECHP and

MEPS income measures provide annual equivalent disposa-

ble (after-tax) household income. Table A1 reports descrip-

tive statistics of equivalent income in each of the countries.

As we are analyzing the behavior of estimates of the Gini

index for varying grouping sizes, it is reassuring to note that

all samples are large (at least 5,500 observations, except for

Luxembourg, which has about 2,000 observations).

The analysis takes three steps. First, we calculate the Gini

index based on the ECHP and MEPS data sets. Second, we

create income categories from the full samples and analyze

the effect that follows from these groupings. Third, we

illustrate the performance of the first-order correction term

in terms of reducing the underestimation. We also present

similar evidence on a procedure to address the remaining

second-order bias.

B. Gini Index and Number of Income Groupings

We present the estimates of the Gini indices based on the

full samples of the ECHP and MEPS in table 4 (see row

13 We also used Dutch administrative data on more than 5 million indi-
vidual income tax files for 2004. The findings based on these Dutch
administrative data are very much in line with those resulting from the
European and U.S. microdata.
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‘‘full’’) and have ranked countries from low to high relative

income inequality. These estimates in this study are consid-

ered the benchmark estimates against which the effect of

grouping the data is evaluated. Similar to the Monte Carlo

simulations in section III, we have subdivided the full

sample into K ¼ 2,3,. . .,10,20,30,40,50 equally sized

(equivalent) income categories and used the average

equivalent incomes of each income category to calculate

the Gini index using equation 3. The resulting estimates for

each value of K are presented in the ‘‘Gini’’ column in table 4

and are expressed as a proportion of the Gini’s estimated

from the full sample in figure 1 and in the ‘‘Gini’’ column

in table 5—100 � (GK
n /Gn).

We confirm the findings on the bias due to grouping

obtained from the Monte Carlo simulations. First, due to

the convexity of Lorenz curves, the Gini index based on

grouped data always underestimates the one in the full sam-

ple. Second, figure 1 and table 5 reveal that the underesti-

mation, expressed in relative terms, is similar across coun-

tries. The range of the underestimation across countries is

low, suggesting that the shape of the underlying income dis-

tributions is similar across countries but that the spread dif-

fers, which is in line with the Monte Carlo evidence that the

bias is an increasing function of the variance. Third, the

underestimation of the Gini index due to grouping the data

increases at an increasing pace when lowering the number

of income categories, and matches the findings of Davies

and Shorrocks (1989). It seems that most of the action is

taking place for twenty or fewer income groups. In the

extreme case of two income groups, the Gini index based

FIGURE 1.—GINI, ITS DEPENDENCE ON INCOME GROUPING, AND CORRECTING FOR

THIS DEPENDENCE IN THE EU AND UNITED STATES

All results are presented as a proportion of the Gini calculated from the full sample. Gini: the Gini esti-

mated from grouped income data; FOC: the Gini after applying the first-order correction term; SOC_r:

Gini after the first-order correction and the second-order correction where the latter is derived from the

OLS regression in equation (16) on individual-level data; median (min/max): the median (line), and

minimum and maximum value (shaded region) across countries.
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on grouped income data is only between 65% and 69% of

the one based on the full sample. For five income groups, the

underestimation is between 7% and 9%, and for ten income

groups, the underestimation still amounts to about 2% to 3%.

We can safely conclude that these percentages represent

important underestimations since we find that the magnitude

of the underestimation is substantial compared to the sam-

pling variability of the Gini index14 (which confirms the

Monte Carlo evidence), and since it is large compared to the

evolution of the Gini over time in the full sample.15

C. Reduction of Underestimation after First-Order

Correction

This section discusses the performance of the first-order

correction term as applied to income distributions. Tables 4

and 5 and figure 1 also present results for a procedure that

corrects for the remaining second-order bias, after having

applied the first-order correction term (see also the final

paragraph in section IIIA), and tables 4 and 5 also include

estimates obtained from the POVCAL software tool (World

Bank, 2008).

The results for the first-order correction term (see FOC)

are obtained by multiplying the values of the Gini calcu-

lated from grouped data (see Gini) by r2
R




r2
RK

¼ ½K2ðn2 � 1Þ�



½n2ðK2 � 1Þ�. Conditional on observing a

grouped data estimate of the Gini, the first-order correction

term thus requires information on n¼ size of the full sample

(all observations) and K¼ number of groups. (Obviously the

size of each group is n/K under the assumption that each

group is of equal size). The procedure to remove the second-

order bias (see SOC_r) uses an empirical estimate of

n�1
Pn

i¼1 d
g
i ei and next applies equation 10 to the Gini calcu-

lated from grouped data.16 While it is impossible to observe

this covariance term without observing the underlying

individual-level data, one might obtain an estimate from

income distributions with a similar shape that are recorded at

the individual level. To this means, we have used the

between-country variation in the underlying individual-level

data of all sixteen countries to identify one covariance term

lK ¼ n�1
Pn

i¼1 d
g
i ei for each value of K ¼ 2,3, . . . ,49,50.

Next, we have applied this single estimate of the covariance

term to correct for the second-order bias in all countries.

More exactly, we use the regression model that results from

rearranging and dividing equation 10 byGn,

GK
n

Gn

¼ n2ðK2 � 1Þ
K2ðn2 � 1Þ þ lk

12

Gn

n2

ðn2 � 1Þ ; ð16Þ

and apply OLS (excluding a constant) on 784 observations:

49 income groupings for sixteen countries. We find that the

latter regression fits the data very well (the uncentered and

standard R2 equal 1 and 0.982, respectively), and is there-

fore preferable over a simple mean or median over the six-

teen countries of these covariance terms since it imposes

the relationship implied by equation (10) on the covariance

terms. All 49 covariance terms are negative, take a low

value that increases monotonically with the number of

income groupings, and all terms are precisely estimated.

We report these 49 terms in table A2.

Finally, we have also calculated results using the POV-

CAL software tool of the World Bank (2008). Our main goal

for reporting these results (see POVC) is to compare our pro-

cedure to correct for the second-order bias with an existing

method.17 Note that the first-order correction has far lower

information requirements than the parametric functional

forms implemented in POVCAL, as the latter also require

information on the average incomes per income group. The

POVCAL software tool estimates Gini indices from grouped

data by fitting a parametric Lorenz curve to the average

incomes of each income group. It uses the general quadratic

Lorenz curve (Villaseñor & Arnold, 1989) or the functional

form proposed by Kakwani (1980b). In order to put our pro-

cedure to correct for the second-order bias to a strong com-

parative test, we present the functional form closest to the

benchmark estimate obtained from the full sample data.18

Note from tables 4 and 5 and figure 1 that the first-order cor-

rection term (FOC) reduces a large share of the underestima-

tion in each of the sixteen countries, but the remaining under-

estimation is higher at a low number of income groups. Also,

application of the first-order correction term never results in

an overestimation of the Gini index. Both observations are in

line with theMonte Carlo evidence presented before.19

14 We obtained 95% confidence intervals for the Gini index using the
bootstrap (see, e.g., Mills & Zandvakili, 1997). For all countries, the Ginis
resulting from six or fewer income groupings were not included in these
confidence intervals.
15 For all countries in the ECHP, we have calculated the proportional

change in the Gini between the first available and last wave using a
balanced panel, and calculated the underestimation that results from
grouping the data in the first wave of the balanced panel. We find that in
all countries, the proportional change in the Gini over time (eight years
for most countries) is smaller than the underestimation, expressed in rela-
tive terms, resulting from five income groups.
16 The extension to groups of unequal size is straightforward and based

on equation (15).

17 We did not calculate nonparametric bounds as the latter provide a
range rather than a point estimate of the Gini and are therefore a less
interesting point of comparison.
18 Note that POVCAL reports no results for two income groups since

three coefficients need to be estimated for the general quadratic Lorenz
curve and the one proposed by Kakwani (1980b). In some cases, POVCAL
reports no results for three income groups since the conditions for a valid
Lorenz curve were violated, that is, going through (0,0), (1,1), monotoni-
cally increasing and convex.
19 We also confirmed that the first-order correction might be helpful in

cross-country comparative research when there are different numbers of
income groupings per country, especially when the underlying average
incomes per income group are not observed. For example, using the esti-
mates in table 4, we checked how income grouping in one country (and
using the full sample indices for the other countries) affects the income
inequality ranking of the sixteen countries based on the original full sam-
ples and how this effect is neutralized by using the first-order correction.
We find that changes in the income inequality ranking occur frequently,
especially in case of a low number of income groups, and that the first-
order correction often neutralizes the latter effect. We reached similar
conclusions when studying the effect of income groupings on longitudinal
variation, which, for example, refers to the case where the number of
income categories used in a questionnaire changes over time.
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Columns SOC_r and POVC in tables 4 and 5 and figure 1

present evidence on the empirical performance of our pro-

cedure to address the second-order bias. We find that it

reduces the impact of grouping in all countries; the result-

ing second-order corrected Gini is much closer to the Gini

calculated from the full sample. Table 4 also shows that the

second-order correction might overcorrect (that is, the second-

order corrected Gini is higher than the one calculated from

individual data in several countries). Nevertheless, the sum-

mary percentages in columns FOC and SOC_r in table 5 show

that it always outperforms the first-order correction.

Comparing columns SOC_r and POVC in tables 4 and 5

reveals how our procedure to address the second-order bias

compares with the results obtained from the POVCAL soft-

ware tool. We find that SOC_r always outperforms POVC

for two and three income groupings for obvious reasons

(see note 18). For four or more income groups, table 5

shows that both methods perform equally well on average

(consult columns ‘‘Mean’’), but POVC has a lower range

compared to SOC_r (compare columns ‘‘Min’’ and

‘‘Max’’). Note also that both methods might give rise to an

overcorrection (see the ‘‘Max’’ columns). While the com-

parison based on the range might seem unfavorable for

SOC_r, it should not distract attention from the fact that

SOC_r outperforms POVC in four countries for each value

of K ¼ 4,5, . . . ,49,50, while this occurs only twice for

POVC. Therefore, it thus seems that neither of the underly-

ing assumptions is unequivocally superior in removing the

underestimation due to grouping, that is, imposing a speci-

fic functional form in case of POVCAL, or imposing an

estimate of the covariance term in the other case. The latter

is always feasible (for example, by using the values

reported in this study), while the former requires informa-

tion on the average incomes per income group. Neverthe-

less, there is always an issue of external validity when

imposing an estimate of the covariance term. This is likely

to be important when the covariance terms are estimated

from a single data set, but in this empirical application, we

have used income distributions of sixteen countries that dif-

fer greatly in degree of income inequality.20 This does not

mean that fewer assumptions are imposed when using

POVAL since one has to impose the functional form.21

Overall, we conclude that the first-order correction per-

forms well empirically and removes a large share of the

underestimation due to grouping (and this is backed by

extensive Monte Carlo evidence). When information on the

average incomes per income group is available—which is

not always the case, such as, for example, for the majority

of countries in the UNU-WIDER World Income Inequality

Database (UNU-WIDER, 2008)—or when estimates of the

covariance term are available (for example, by using

the values reported in this study), one might address the

remaining second-order bias by fitting parametric functions

or imposing a value of the covariance term. Neither method

unequivocally outperforms the other, and both methods dif-

fer in informational requirements.

V. Discussion and Conclusion

This paper analyzes the downward bias of the Gini index

due to grouped data complicating comparisons of Gini

indices calculated from such data. We develop a first-order

correction term that results from studying the Gini in a mea-

surement error framework and show that it resembles the

so-called attenuation bias in the classical measurement error

model and that it is inversely related to the covariance

between the fractional rank at the individual and group

levels. Besides its simplicity and transparency, the first-

order correction allows, in contrast to existing methods,

addressing the bias due to grouping in case one has access

to estimates of the Gini index based on grouped data with-

out observing the underlying average incomes or income

ranges. Instead, it needs only information on the number of

individuals in each income group or range. We have also

derived an exact and intuitive expression for the remaining

and distribution-specific second-order bias, allowing asses-

sing a priori the performance of the first-order correction.

We show that the second-order bias is zero for specific dis-

tribution functions and that the first-order correction term

generally results in a small undercorrection. In addition,

Monte Carlo evidence reveals that the first-order correction

performs well for a wide range of underlying distribution

functions (including bimodality and left and right skew-

ness) and that the second-order bias is increasing in the var-

iance of the underlying distribution.

Using microdata from the ECHP and MEPS on income

distributions of fifteen European countries and the United

States, we illustrate that the underestimation from income

groupings is similar across the sixteen countries. We further

illustrate that the underestimation increases at an increasing

pace when lowering the number of income categories and

that the underestimation is substantial relative to the sam-

pling variability of the Gini index, its evolution over time,

and cross-country differences in the value of the Gini. Next,

we illustrate the performance of our first-order correction

term and show that it reduces the underestimation of the

Gini due to income grouping considerably in all countries.

We also illustrate that one can address the remaining

second-order bias if one is willing to impose additional

information. Our results show that this procedure could be

used as an alternative to existing correction methods invol-

ving fitting conventional parametric forms to the data, but it

does not require information on the average incomes per

income group.

20 The fact that we impose these terms to each country (and thus each
country being used to estimate these terms) is unimportant since we have
sixteen countries.
21 We also note that we have presented the estimates based on the func-

tional form that is closest to the benchmark estimate obtained from the
full sample. In several cases, this choice did not coincide with goodness-
of-fit measures reported by POVCAL.
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A final issue concerns the terminology we have used

throughout this paper. We have deliberately used ‘‘income

groupings’’ to abstract from a situation where the individuals

in each income group have the same income. In the latter

case, the Gini index estimated from grouped data is not

biased, and thus application of our correction term would

introduce an upward bias. ‘‘Income groupings’’ instead point

to a situation where microdata, official income statistics, and

so forth are grouped into a limited number of income groups,

and thus neglecting within-income-group income variation

leads to an underestimation.

Although the empirical part of this paper deals with the

bias due to income groupings of the Gini index, our Monte

Carlo simulations suggest that it should be successful in

addressing the bias due to grouping in other distributions

such as health, education, business concentration, and

astronomy. Our simulations encompassed a wide range of

distributions, including bimodality, left and right skewness,

and the first-order correction improved on the grouped data

estimate in all cases. The first-order correction should also

be useful for the widely used concentration index that has

been applied to taxation (Lambert, 2001) and used to mea-

sure inequalities in the health domain (Wagstaff, Paci, & van

Doorslaer, 1991; Wagstaff & van Doorslaer, 2000). Its main

difference with the Gini is that the fractional rank and the

cumulative shares refer to different variables, and thus the

bias of the concentration index can be both downward and

upward as the underlying concentration curves need not be

convex and may have inflection points (Clarke & Van Ourti,

2010).

An important assumption in the theoretical and empirical

part of this paper is that we consider measurement error

within income groups only. This assumption allows studying

the bias due to income groupings of the Gini in isolation but

neglects misclassification bias—that an individual might be

classified into the wrong income group based on his or her

misreported income. It is clear that misclassification and bias

due to income groupings might be offsetting each other, and

these issues have been analyzed for a Dutch survey for the

variance of log incomes, the Theil and Atkinson inequality

index by van Praag, Hagenaars, and van Eck (1983).

Although we believe future research should analyze the rela-

tive importance of both biases in the Gini index, our results

show that the bias from income groupings in surveys and

administrative data can be considerable.
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TABLE A2.—COVARIANCE TERMS TO ADDRESS SECOND-ORDER BIAS

Groups Covariance Groups Covariance Groups Covariance Groups Covariance Groups Covariance

50 �0.0000305 40 �0.0000429 30 �0.0000669 20 �0.0001219 10 �0.0003270
49 �0.0000315 39 �0.0000445 29 �0.0000703 19 �0.0001314 9 �0.0003774

48 �0.0000325 38 �0.0000465 28 �0.0000740 18 �0.0001423 8 �0.0004418
47 �0.0000336 37 �0.0000484 27 �0.0000782 17 �0.0001548 7 �0.0005281
46 �0.0000346 36 �0.0000504 26 �0.0000828 16 �0.0001689 6 �0.0006415
45 �0.0000358 35 �0.0000529 25 �0.0000877 15 �0.0001853 5 �0.0007999
44 �0.0000372 34 �0.0000553 24 �0.0000931 14 �0.0002048 4 �0.0010298
43 �0.0000384 33 �0.0000576 23 �0.0000991 13 �0.0002273 3 �0.0013757
42 �0.0000399 32 �0.0000604 22 �0.0001059 12 �0.0002541 2 �0.0018256

41 �0.0000413 31 �0.0000634 21 �0.0001133 11 �0.0002863

Covariance equals lK ¼ n�1
Pn

i¼1 d
g
i ei and is estimated from equation 16.

TABLE A1.—DESCRIPTIVE STATISTICS OF EQUIVALENT INCOME

Observations Mean s.d.

Sweden 8,889 137,947 63,268
Denmark 5,899 131,497 69,759
Finland 8,171 86,900 50,580
Netherlands 9,351 28,788 15,363

Austria 7,382 214,317 123,594
Belgium 6,664 609,200 507,861
Luxembourg 2,044 866,215 563,721
Ireland 9,890 7,715 7,081
Germany 9,390 31,414 24,164
Italy 17,323 15,943 10,558
Spain 17,757 1,107,543 763,037

France 13,794 94,265 98,806
United Kingdom 10,484 9,431 9,664
Greece 12,423 1,562,758 1,347,131
Portugal 11,445 887,748 750,996
United States 17,399 30,011 23,662

Mean and s.d. are denoted in national currencies.
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