A simple cosmology: General relativity not required
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A pedagogical cosmology illustrates general relativity concepts, without requiring general or special
relativity. Topics examined are the existence of a global time scale, proper vs coordinate variables,
the variation of light speed in an expanding universe, the look-back paradox, the horizon, the red
shift, the age of the universe, and the dynamics of the universe. An Appendix is devoted to space
and time in general relativity, but can be skipped by readers unfamiliar with general relativity.
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[. INTRODUCTION Il. THE BASICS OF THE MODEL

This pedagogical article examines a simple, one- Let x represent proper distance as measured by the fixed
dimensional model expanding universalt is readily under- ruler. The ruler is laid out on a stretched rubber band at some

standable to physics students who have no background #Me.to, on which the comoving distanck,, is marked on

contrasts many general relativistic features of cosmology. contracted_, th_e distances between those ruler mark_s stretch or
The model universe of this article is an expanding rubbe€ontract with it, so that a mark on the rubber band is always

band marked with a uniform string of dot galaxies. The ongocated at the same comoving distance. If the end of the

spatial expanding distance is the radial direction in an isotrofUbber band is stretched at a constant rate, then, as time

pic, homogeneous universe. The dots represent comovir@asses’ a SP?C'“C dot on the rubber band moves farther away

distances, as well as galaxies. The comoving system is 20M the origin, according fo

spatially expanding system with a common clock, which is ¢ ¢

useful in solving the GR field equation. In GR, one such  y(t)= —.x,=— . x., (2.1

universe, which we will be simulating here, is the flat to t

Robertson—Walke(FRW) universe, which begins with a ) ) _

singularity at time zero, and expands forever with a continuWherex(t) is the dot's proper locatiorx, is the dot’s loca-

ally decreasing expansion rate. The usual measure of digion along the ruler in this epoch, and whete, the comov-

tance to a point on this system, the proper distance, equal8g value of that specific dot on the rubber band, never

the comoving distance multiplied by the expansion factor forchanges as time proceeds. Proper distaxcand comoving

the universe as a whole. In the model presented here, a fixedistancexc, coincide in this epoctt,. The timet will turn

stationary ruler adjacent to the expanding rubber band meaut to be a universal time, just as most people visualize it. It

sures this distance. The left end of the rubber band is ats also proper time in FRW coordinates. GR readers see the

tached to the left end of the ruler, and the right end of theAppendix. The non-GR reader is advised that GR deals with

rubber band is stretched. The spatial coordinates on the rul§locks whose reading depends on gravity and velocity. How-

ber band grid coincide with the comoving system on theever, there is no need to deal with such subtleties in this

ruler at timet,, called the epoch, the time that we now live Paper, because the tirieloes turn out to be a universal time,

in. as already mentioned in Sec. I.

In this epocht,, we can observe light that was emitted One basic assumption must be built into the model. We

early in the universe, even though the galactic material tha‘fviII assume that light propagates through the rubber band

emitted that light is now far from us. Light, initially emitted grid at constant physical speedwhether or not the grid is

close to us, moved away from us early in the expansioneXpandmg’ so that the proper speed of light, relative to the

carried by the expansion itself. As the expansion slowed, th’r‘auler, IS

light reversed direction and came toward us. Eventually it dx
increased its speed of approachctahe normal velocity of (_
light, when it reached us. That light's spectrum is shifted dt
along with the expansion of the grid of the universe. We dx
discover both how far out radially we can see in this uni- (_) _
verse, and the classical dynamics of the model universe. dt proper, of grid relative to ruler
Some calculations are performed in FRW coordinates, al-

though the speed of light is not constant in FRW coordinatesThe velocity addition expressed by EQ.2) is a nonrelativ-
Other calculations are done using the comoving systemistic assumption, which should be familiar from everyday
where a comoving time is defined so that the comovingexperience, but which will still give many of the GR fea-
speed of light is a constant. An Appendix discussing the GRures.  Substituting  dX/dt) yoper, relative 10 gid ¢~ and
concepts of proper time and distance is included for reader&dx/dt) yroper, of grid relative to ruigr X/t from the derivative of
familiar with GR. Eq. (2.1 gives'

dx
Cdt . 4
proper proper, relative to grid

(2.2
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dx X what is measured on clocks on the fixed ruler measuring
at *c+ T (2.9  proper distance, but actually is measured on clocks fixed to
the rubber band. See the Appendix.

as the basic equation for radial light propagation. In ) A useful comoving timets, can be assigned to accom-
the positive sign corresponds to outward traveling light, anchany the comoving distance defined in Ef.4). This co-
the negative sign corresponds to inward traveling light. Heremoving time is a mathematical convenience to make this
we have a basic result of GR—a variable speed of lightmodel simulate FRW, but not the time on clocks attached to
understood quantitatively without the aid of GR or even spethe moving rubber band, where proper time is stibee the
cial relativity. Appendix. Substitutinge from Eqg. (2.4) into Eq.(2.5) gives

In Eqg. (2.1, (t/ty) is the factor by which the universe has £ 123 gx
expanded since the present epoch. This factor can easily be ( ) _’c
generalized to a more realistic GR model by replacing the to dt

(t/to) scale factdt by (a(t)/ag), wherea(t) is the cosmic  The comoving timé, t., can now be defined, so that Eq.

scale facjtor for a realistic GR solégion, aagl'= a(ty). Fora (2.9 becomes the constant light speed equatixg /dtc
FRW universé, (a(t)/ag) = (t/to)**. Equations(2.)) and  — ¢, in terms of comoving time and comoving distance.

(2.3 are replaced by the more realistic The comoving timetc, is found from the chain rule to be
2/3

==+c. (2.8

_ 2R t {13
(Galaxies x(t=| | xo=|| % @y s (G) 1]+, 2.9
and where the times have been evaluated so that both proper and
_ dx 2% comoving times agree &}. The comoving light equation is
(Light) a=ic+ 3t (2.5  then
. . dXc
The general solution of Eq2.5) is T +c, (2.10
(Light) x=A(ct)23+ 3ct, (2.6) < _ ,
so that light travels atonstantspeed using pure comoving
whereA is a constant of integration to be evaluated dependindependent variables.
ing on the particular initial conditions. Although either set of independent variables can be used

The proper timé is a global time, useful not only for the for the same calculation, one set is often much more efficient
fixed ruler, but also for the expanding grid in the sense thathan the other. Using comoving variables:(tc) it is im-
all galaxies on the grid can agree on the same time, anghediately obvious that communication times are indepen-
that the travel time of light is independent of the directiondent of the direction of light travel, since the speed of light is
of light travel. To understand this happening, suppose thagonstant, and hence a global comoving time exists. This
we at the origin emit a light signal at timiy, and that it same result was obtained earlier using) variables, but it
propagates radially outward with variable light proper speedequired two calculations of relative travel time, each being a
as determined by Eq22.5. A dot galaxy, which, at this relative speed problem with nonconstant speeds.
emission timet,, is atx=Xxg, receives this signal somewhat
later. When is the signal received, and where is the galaxy
then located? Evaluating E@2.6) at emission time gives Ill. LOOK BACK, RED SHIFT, AND HORIZON
A= —3(cty)®. This light is received by the galaxy when

Xeaay=Xo- (/)23 i equal 1o X ign=3ct[1— (to/t)¥3], Our ordinary Earth experience might lead us to conclude

that we can see no farther than halfway back to the time of

giving the singularity’'° Consider matter speeding outward from
Xo |2 Xo |2 the origin at the fastest possible speed, nearly the speed of
treceive=To- | 1+ 3cty) @ Jreceive Xo° 1+ 3ct (2.7 light, emitting radiation at a time that is half the present age

of the universe. That light requires essentially the same time

On the other hand, suppose the distant galaxy locategl at to travel back to us at the origin. We see that light as it was
at timet, emits a light signal at the same tin. Equation  at half the age of the universe. Of course, light reaching us
(2.6), with A evaluated toA=(x,+3cto)/(cts)?? shows how from slower moving mattefe.g., a nearby galaxy
that we, at the origin, receive this signal at the same time a¥/ould have been emitted more recently. Therefore, it may
the time in Eq.(2.7) when our signal was received by the Se€em that we should be able to see no farther back in time
distant galaxy, and that the distant galaxy was at the sami@an half the way back to the singularity.

location, Eq.(2.7), as when it received our signal. Therefore, Using our rubber band model universe, we get a dilzrfqeerent
a universal timet can unambiguously be assigned to every'@Sult, which is confirmed by an accurate GR treatrient

point on the expanding grid, so thattifs used, the elapsed using universal tir_ne. Our model exp!ains tha}t d_ifferent result
time is independent of the direction in which the light trav- @S follows. Consider the event of light emission at proper
eled. Hence, events can be universally described on the sarf€ation and time Xemit, temi), SO €arly in the history of the
universal time scale, with no problem of lack of simultaneity, universe that the outward expansion proper speed,
such as that encountered in special relativity. This universa®Xemif3temit. Of the grid was greater than the inward proper
time is a key feature of the full GR treatment of comoving speed, ¢, of the light traveling through the grid, or
coordinate systems as described in the FRW metric. How2Xemi/3temic>C. That inward traveling light is actually car-
ever, although proper distance and proper time are associateéd outward(proper distancefor a while by the faster mov-
together in this article, this does not imply that proper time ising grid. As time proceeds, the light travels inward along the
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grid to regions of slower grid expansidh.There comes wheredtc gmir and dtc receive@re the comoving periods. Dif-
some time ., When this light travels inward through the ferentiation of Eq(2.9) converts comoving periods to proper
grid exactly as fast as the grid expands outward. At thigeriods to give

moment, the inward light actually stands sfifiroper dis-
tance and time It is at its maximum proper distancgyay,

from us at the origin. Subsequently the outward proper speed
of the grid becomes less than the constant inward Prope&ince the local s ; ; ;

) . . ) peed of light is both at the emitter at
tsrgt\elztlj(grfoi)heer gggzﬁ]ésvigrg the gi::g'lI;nt?lér;%rll'tgpéatéi%g‘iéoemission time and at the receiver at reception time, multiply-
at the origin at our present proper timtg, in this epoch. Ing Eq. (3.7) by ¢ gives the wavelengths=cdt,

Applying standard max—min techniques to E2.6) yields

tPro i 3

_ per,receiv

dtProper,receive_ ( t . dtProper,emit (37)
Proper,emit

t o\ 23
Proper,recelvj (3 8)

Proper,receive A Proper,emé tP ]
roper,emit

PO PP, IO e .0 e
max— 57 3Ctemy ™ TMmaxX g 3Ctemi) oMt Comparing Eq(3.8) with Eqg. (2.4) shows that a proper light
(3.1  Wwave expands along with the expansion of the universe as a
) . . ] o . whole. This is the same result that is obtained from the full
Equations(3.1) are valid only if the inward light is moving GR treatment of FRW.
physically outward at the time of emission, which means that |f the proper light horizon is defined as the greatest proper
oy distance of light, emitted at the origin since the singularity,
temit<ﬂ (3.2  then the proper horizon isc3,, from Eqg. (2.6) with the
3c constantA evaluated so that=0 whent=tg,;— 0.
; ; ; _ Suppose one defines the comoving light horizon as the
gglrg ilrzﬂctli.a(lz c?))n é?t?(?nu?#ziili:zaiqwleﬁpn:;ﬂ; r;;?v:aenaf)?/n comoving distance through which light has traveled since the
Eq. (3.1). beginning of the universe at proper tinte=0. From Eq.

As a numerical example, consider radiation emitted af2-9, the comoving timef.=—2t,, corresponds td=0
temi=1o/1000, and suppose that this ancient radiationP"OPer time. This light expanding out to proper tirmet,

reaches us at the origin now, at epagh Equation(2.6)  €orresponds to comoving time to, since proper and co-
yields moving times are defined to be identical in the present epoch.

Hence, elapsed comoving time i3 Light has traveled at a
(to/temn*—1 constant comoving speedor a comoving time &, since the
(to/temiy singularity. The comoving horizon isc3,.

The proper particle horizon is defined as the present dis-
as the proper distance at the emission ttgi@000. Equation  tance of the objects that emitted the oldest light that we can
(3.1 yields presently observ€ Equation (3.5), in the (temi/to)—0

8. _ a4 limit, gives a proper particle horizon ofc3,. The comoving
tmax= 2710 =0-300, Xmax=5Clo=044t,. 34 particle horizon would also bec3,, since comoving and
This radiation emitted at proper time 0.@9had proper dis- proper distances coincide &t
tance of only 0.02dt, at the time of emission. The inward
traveling light was actually dragged outwafgdroper dis-

tance until it slowed to an instantaneous stop at a time of
30% the present proper age of the universe at a proper dié\-/' HUBBLE DISTANCES AND MODEL DYNAMICS

tance of 0.48t,. It required the last 70% of the age of the  cosmojagical distances are measured using the Hubble

universe to plow its way inward, through the ever-slowing, re|ation, stating that the distance to a galaxy is proportional
outward-expanding grid, to reach us now at epeghThe {5 jts red shift, as long as the distances are not too great. The
matter that emitted the early light is now at a proper distancgqypble parametei, is defined to be the ratld

of
a(t)
temit s U=—- (4'1)
1—(t—) }=2.7cto. (3.5 o
0 wherea(t) is the expansion parameter of the universe, given
Equations(2.4) and (3.3) were combined to solve foxg by Eq. (2.4) for our model universe. Thus, for our spatially
above. According to Eq3.5), the galaxy is now so far away flat universe,
that it had to travel at an average speed of nearly three times 5
the speed of light. This result, impossible in special relativ- t)=—,
ity, is understandable here in terms of our model universe. 3t
To determine the red shift of the ancient light reaching us, \e|.known resuff for the FRW universe in GR. There
2%\’ dailgtzﬁggr:)(gcgulze)afhveazgamgg\?ilslz tsopg:g gfﬁ?}?‘\{'ggcgwe can actually be several different Hubble parametéts.
stant,(b) the emitting galaxy is motionless, aig) we at the —2/3t0_ in our epoch, alt’hough it was larger at earlier epochs.
origin are motionless. Therefore there is no comoving red?ecalling that a galaxy’s speed is=2x/3t,
shift, so 1
|

dtC,receive: dtc,emitr (3.6 Ho

Xemit=3Cto —0.02%t, (3.3

XO= 3Ct0'

(4.2

Vo (43)
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would give the distance to a galaxy in this epoch, if its speedhat allows its light to arrive at our location in the present
were known in this epochV, is determined from the red epoch. Note that it is
shift, Z, defined® by

Hemit

_ Mo~ Nemit (4.4) Ho (14 Zeasured nos)tgl2 “.13
Nemit that is the Hubble constant for our epoch, although it is the
giving various values of the individual and differeft,,,;s that are
actually measured using the galactic red shifts.
X i-Z (4.5 The following two numerical examples illustrate the
Ho ' process. First, consider a red shift & 99, illustrative of

for relatively nearby galaxied.q is the normal wavelength in the .background radlatlon._ThetgmiFt0/1000 is In-our
our epoch. For more distant galaxies, the travel time of ligh€arlier example. Thenx,=3cto(1—1/y1+99)=2.7ct,
is a significant fraction of the age of the universe. Th05e><emit:Xo/(1+lg9):0-02710: vo=2Xol3to=1.8,  vemit
more distant galaxies, whether the Hubble relation gives the= vo(to/temi) ™ °= 18C, Hemit= Vemit/ Xemit= 6674y, and Hg
galactic distances and velocities as they were when they Hepi/ (1+ 99)%2=0.667t,. As a somewhat realistic ex-
emitted their light, or as they are now in the present epochample of a quasar, begin with a measured red shifZ of
can be resolved by deriving the exact Hubble relation for the=3.  Then t,,=ty/(1+3)¥2=0.128,, Xo=3cty(1
rl_JblberI t;gntd r‘r&odetljlur'\iverEse v;itj]outdr((ag%urs_e to GR or spe-_ 1 F+3)=1.50t0, Xemi=Xo/(1+3)=0.37%ty, g
cial relativity. Combining Eqs(2.4) and (3.3) gives =2%0/3to=C, Vemi=o(to/tem) ¥*=2C, Homi=Vemit/Xemit

tomicl 13 Xo =5.33t,, andHy=H i/ (1+3)%?=0.6671,. Note thatH,

| 17 3t (4.6 s the same in either case, although the two valuesfgr,
) ] ] . are quite different. Also note that the quasar was traveling at
This equation, along with Eq$4.4) and (3.8), yields a proper speed of twice the proper speed of light when it
emitted its radiation that we see now, and that it has slowed
_ _ 1 down to its present speed of exactly the speed of light. These
Xo=3Ctg| 1 4.7 ! .

J1i+7Z are astounding statements for students accustomed to special

) o . relativity, but are simple results from the rubber band model
as the locationxo, in this epochto, of the matter that emit-  ynjverse. Note also that the quasar is now at a proper dis-
ted the earlier light, whose light we receive now at titge  tance 50% greater than a beam of light could travel at con-
Using Eqs.(2.4) and(4.6) in Eq. (4.7) gives stant speect during the entire evolution of the universe.
Such scenarios occur in the rubber band model and in the

N 3¢ty 1 - 4.9 actual general relativistic FRW universe, because the proper
emit (1+2) J1+7 ' speed of light changes during the evolution of the universe.

) o ) ) ) The dynamic of this rubber band model and the FRW
as the location of the emitting matter when it emitted itsynjverse, which it imitates, is realized by evaluating the total
radiation. Eliminatingx, between Eq.(4.6) and Eq.(4.7)  mechanical energy of the expanding rubber band dot galax-

gives ies. LetAM be the mass of a comoving expanding spherical
to shell andp be the uniform density of matter within this shell
temi=""——=3 (4.9  at some time during the expansion, in the Newtonian sense
(1+2) that mass is independent of speed. The classical total me-
as the time at which the radiation was emitted. chanical energyAE, of the expanding shell is the sum of the
As in Eq. (2.5, the proper speed of a dot galaxy on the classical(Newtonian gravitational potential energy of the
expanding grid is shell due to the matter within it plus the classi¢slewton-
ian) kinetic energy of this expanding shell. Classically, the
p= % (4.10 total mass within the shell is constant, and is (4#83p0,
3t where X, is the proper radius of the shell in the present
so epoch. Then, using Eq&.5) and(4.10, AE at any time can
be written in terms of parameters in the present epoch as
Homie L2 =2 (4.12) to) 43
M Xemit  temit ' (AE),=(AE)y- (TO) ,
is the Hubble parameter for the universe when the galaxy 5 (4.14
emitted the light that we observe now, at epdgh Using 1 , 4wGpoxy
Egs.(4.1), (4.9, and(4.11) gives (AB)o=AM ) 51— — :
B 3/2_2(1+Zmel.,lsu,ed no)ﬁ’z Conservation of total classical mechanical energy during the
Hemitted™ Ho* (1+Zmeasured nos)v = 3t, . expansion requires that
(4.12 (AE);=(AE)y=0, (4.15

The advantage offered by E@t.12 is that it can be used in jying

conjunction with Eq(4.11) to yield a value foH, that is the 5

same for all galaxies, whereas E@.11) yields different :i.H2 (t)=po- b (4.1
values forHqn,;, as each galaxy has its own emission time 078G 0 P Por| ¢ ’
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as the mass density of galaxies in the universe in the presenteasured in a coordinate frame in which those two events

epoch. Since the change pris entirely due to the expansion occur at the same location. Expressing these concepts math-

of the universe, ematically, proper distance and proper time are defined in
3y 3 terms of the metric expression for the squared differential

PO XD =p(to) - X(to). (4.1 interval, (ds)?, as follows. The differential proper distance,
Therefore, the rubber band model universe has the dynanmxp, satisfied’ (ds)?= —O+(dxp)2 at constant time. The

ics of a classical, isotropic, homogeneous universe, expanditferential proper timedt,, satisfie® (ds)2= —c?(dt,)?

ing so that its total mass and energy are separately cong g at constant location.

served, with total energy always zero. It is only this zero

mechanical energy universe that is imitated by the rubber

band model. Nonzero mechanical energy universes evolvg Comoving coordinates

differently. Those with positive total mechanical energy ex-

pand toward infinity faster than our model. Those with nega- The FRW metric for a flat expanding universe is

tive total mechanical energy expand slower, and eventually a(t)\?

reach a maximum sizgn the sense that the expansion factor  (ds)2= —c2(dt)2+ _> [(dr)2+r2(de)?

a(t) for those universes reaches a maximum for some value Ao

of t] and then collapse upon themselvés®

2
it)) (dr)?,

+r2sir? (de)?]— —c2(dt)*+
ao

V. SUMMARY
(A1)

The rubber band model universe is used to explain, com, here the arrow recognizes that this article deals only with

pare, and contrast many GR features of a FRW expanding I . In thi 9 o5 is th ing di y

universe, without ever resorting to GR itself. The model dial motion. In this metricy is t € comoving Istance,

gives a speed of light that is variable, even reversing in diXc: Of the rubber band model, artdis the imet szthe

rection, because of the expansion of the rubber band grid. fubber band model. Settindt=0 and @s)"=(dx)" in

defines proper time, proper distance, and comoving distanded. (A1) gives the differential proper distancelx,, as

to be the same as in the FRW universe. It defines a comovingx,= (a(t)/ap) -dr— (t/t))?* dxc, which, for constant

time so that the comoving speed of light is constant. The, integrate$' to x in Eq. (2.4). Settingdr=0 and @s)?

existence of a global proper time, in the sense that transmis= —cz(dtp)z in Eq. (A1) shows that,=t, to within an ad-

sion of light signals is independent of the direction of theditive constant here taken to be zero. Thus, using comoving

signal, is verified using both proper and comoving variablescoordinates, proper distance and proper time are, respec-

The look-back paradox is explained and resolved with a nutively, the x andt of this article.

merical example. Light speeds much greater thare en-

countered and understood in the model universe. The red

shift formula shows that light expands along with the grid of 3. Fixed ruler coordinates

the model universe. The light horizon and the particle hori- )

zons, both proper and Comoving, are derived. The Hubble Clocks attached to the fixed ruler are at a constant

parameter is derived in terms of redshift, and the Hubble=a(t)-r. Following Fletche¥” and Gautrea:; for such a

parameter at emission is distinguished from the Hubble paclock, differentiating R=a(t)-r gives O=a(t)dr

rameter at reception. Two numerical examples are presented.a(t)rdt, where the dot indicates differentiation

It is shown that this model universe corresponds to both avith respect tot. The metric for constantR becomes

classical isotropic, homogeneous universe expanding Witklds)2=—cz[l—(RH(t)/c)z](dt)Z, not simply (dS)Z

zero total energy and constant mass, and to the FRW uni= —c2(dt)2 as it does for fixed in comoving coordinates.

verse. Here H(t) is the Hubble variable, which for FRW id(t)
=a(t)/a(t)=2/3t. A change of variables from(R,) to
ACKNOWLEDGMENT (R,tp) is required to bring the metric into the fornu $)?

I would like to acknowledge insightful and helpful assis- = —f/z(ﬂuzconstant R Integration givestp(Rt)

tance of an anonymous referee who encouraged the inclusiont- V1 —(2R/3ct)*+2R-sin '(2R/3ct)/3c+ f(R),  where

of this GR addition to the article. f(R) is a function of onlyR, and wheredt,(R,T)/JR is
chosen to eliminate a cross product metric term. Both
APPENDIX: TIME AND DISTANCE IN GR Fletcher and Gautreau discuss the complete transformation,

_ _ _ _ _ but such is beyond the scope of this article. Ttyjss the
This section reviews some of the GR details relating to thgyroper time measured in fixed ruler coordinates in termi of
concepts of time and distance used in the simplified model ofndt. Note that only atR=0 is t,=t [if f(0) is properly

this article. This Appendix may be skipped by those readerghoseﬂ, but at all other values dR, the timet, depends on

not acquainted with GR. both R andt in a nontrivial way. Hencet works well to
o measure time aR=0, butt is neither a proper time nor a
1. Definitions universal time for clocks attached to the fixed ruler, where

The definition of proper distance is based on the concepfistance is measured 1. _
that the proper distance between two events is measured in aHolding proper time constant, the metric becomes)¢
coordinate frame in which those two events occur simulta=(dR)*/[1—(RH/c)?], showing thatR is not the proper
neously. The definition of proper time is based on the condistance when using proper tintg, as the measure of time.
cept that the proper time between two events is the timélowever, when using the time as defined in the rubber
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band model, constantyields (ds)?=(dR)? in Eq. (A1), so "The grid speed that is addedddn Eq.(2.5) is found by differentiating the

that R is proper distance when usin@,) to measure dis- ~09arithm of Eq.(2.4) 0 give (dX/dt)praper, grid reaive to riér 2X/3t.
tance and time. For emphasis, the comoving time is not the time on clocks on the rubber

band, but merely a useful mathematical time to accompany the comoving
. ) distance.
4. Comoving time 9See Robert C. Fletcher, “Light exchange in an expanding universe in fixed

The FRW metric of Eq(A1) can be manipulated into coordinates,” Am. J. Phys62, 648—656(1994). Fletcher presents an el-

. . . egant and detailed calculation for this paradox for a matter-dominated
a form having a constant speed of light by factoring | ierse of three spatial dimensions.

out (t/te)*3, giving (ds)?= (t/te) ¥ [(to/t)*3c?(dt)? Jayant V. Narlikar, “Spectral shifts in general relativity,” Am. J. Ph§g,
+(d r)z], and making the change of time variable from time 903-907(1994, especially Eq(1).
t to comoving timet. defined by Eq.2.9), resulting in a HRobert C. Fletcher, “Light exchange in an expanding universe in fixed

FRW transformed metric coordinates,” Am. J. Phys2, 648—-656(1994).
! 2The decrease in the overall rate of grid expansion as time proceeds hastens

1/tc 4 the slowdown of light effect.
(ds)?= 3T +2|| -[—c?(dte)?+ (dxe)?], (A2) 13steven WeinbergGravitation and Cosmology: Principles and Applica-
0 tions of the General Theory of Relativityiley, New York, 1972, p. 489.

expressed in terms of the article’s comoving distance andCharles W. Misner, Kip S. Thorne, and John Archibald WhedBsavi-

time. With the metric in this form, it is obvious that light 2ton (W. H. Freeman, New York, 1973p. 709, Eq(10). _
Steven WeinbergGravitation and Cosmology: Principles and Applica-

propagat_|on, defined _byis: 0, 'S_ constant 'Speed,' as ex- tions of the General Theory of Relativityiley, New York, 1972, p. 483,
pressed in Eq(2.10. It is also obvious from this metric form  gq. 15 3.15; Silkjbid., p. 335.

that (Xc ,tc) do not constitute proper distance and time, evert®c. Borner, The Early UniversdSpringer-Verlag, Berlin, 1988p. 7.
though these coordinates may be useful for calculations,In GR, Egs.(4.13—(4.19 arise from a solution of the GR tensor field

since the speed of light is constant in terms of them. equations, where the only mass-energy for the mass-energy tensor is that
of the mass of the galaxies. Gravitational potential energy is not a part of

this tensor setup; it is incorporated in the metric one uses for GR. The
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STRING THEORY

String theory is an example of science being driven by fashion. And | have mixed feelings
about it. Some of the mathematical notions which people associate with string theory are very
appealing. But just because they are appealing doesn’t mean that they are right.

Roger Penrose, New York Times, 19 January 1999, p. D3.
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