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A simple cut and stretch assay 
to detect antimicrobial resistance 
genes on bacterial plasmids 
by single‑molecule fluorescence 
microscopy
Gaurav Goyal1,7, Elina Ekedahl1,7, My Nyblom1, Jens Krog2, Erik Fröbrant2, Magnus Brander2, 
Tsegaye Sewunet3, Teerawit Tangkoskul4, Christian G. Giske3,5, Linus Sandegren6, 
Visanu Thamlikitkul4, Tobias Ambjörnsson2 & Fredrik Westerlund  1*

Antimicrobial resistance (AMR) is a fast-growing threat to global health. The genes conferring AMR 
to bacteria are often located on plasmids, circular extrachromosomal DNA molecules that can be 
transferred between bacterial strains and species. Therefore, effective methods to characterize 
bacterial plasmids and detect the presence of resistance genes can assist in managing AMR, for 
example, during outbreaks in hospitals. However, existing methods for plasmid analysis either provide 
limited information or are expensive and challenging to implement in low-resource settings. Herein, 
we present a simple assay based on CRISPR/Cas9 excision and DNA combing to detect antimicrobial 
resistance genes on bacterial plasmids. Cas9 recognizes the gene of interest and makes a double-
stranded DNA cut, causing the circular plasmid to linearize. The change in plasmid configuration from 
circular to linear, and hence the presence of the AMR gene, is detected by stretching the plasmids on 
a glass surface and visualizing by fluorescence microscopy. This single-molecule imaging based assay 
is inexpensive, fast, and in addition to detecting the presence of AMR genes, it provides detailed 
information on the number and size of plasmids in the sample. We demonstrate the detection of 
several β-lactamase-encoding genes on plasmids isolated from clinical samples. Furthermore, we 
demonstrate that the assay can be performed using standard microbiology and clinical laboratory 
equipment, making it suitable for low-resource settings.

The growing incidence of antimicrobial resistance (AMR) has been classified as one of the main threats to 
global health1,2, and important measures need to be taken to limit the spread of genes conferring resistance to 
antibiotics3. Bacterial resistance genes are often carried by circular, extra-chromosomal DNA molecules called 
plasmids. Plasmids can range in size from one to several hundred kilobasepairs (kbp) and replicate independently 
of the chromosomal DNA. Many antibiotic resistance genes are located on plasmids, such as those encoding 
enzymes that break down the antibiotic molecules or pumps that expel antibiotics from the bacterial cell. Bacte-
rial conjugation can transfer the plasmids from one cell to the other by direct cell-to-cell contact, thereby confer-
ring antibiotic resistance to the receiving bacterium. Plasmids that can spread via conjugation are typically larger 
than ~ 50 kbp4. Importantly, one plasmid can harbor many different resistance genes, which means that a single 
conjugation event can make a bacterium that was previously susceptible to most antibiotics, multidrug-resistant. 
One key step in limiting the global spread of AMR is the rational use of antibiotics. This necessitates the devel-
opment of novel techniques that can diagnose antimicrobial resistant infections, as well as confirm the spread 
of resistant bacteria in hospital settings so that proper antibiotic therapy can be prescribed, and appropriate 
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infection prevention and control measures can be employed. Since the healthcare infrastructure, social hygiene 
practices and economic status of a country are directly correlated to the prevalence of AMR5, the diagnostic 
technique also needs to be fast, simple and cost-effective for favorable deployment in low-resource settings.

Despite their importance, methods for detailed characterization of plasmids are limited in the type of informa-
tion they can reveal. In some methods, such as pulsed-field gel electrophoresis (PFGE) with S1 restriction, one 
can determine the number of plasmids in a sample and their size, but no information on the presence of specific 
(resistance) genes can be obtained6. PFGE could potentially be combined with southern blotting to target genes; 
however, it is then challenging to use in low-resource settings. Other methods, such as polymerase chain reac-
tion (PCR) can detect a specific gene in a sample, but no further information on the plasmid composition can 
be obtained. Short-read next-generation sequencing with a typical read length of < 400 bp often fails to assemble 
full circular plasmid contigs due to the frequent presence of repeat regions larger than the read length, offering 
only limited information in the context of plasmids. To obtain complete information on the plasmid composi-
tion in a sample, the only existing general solution is long-read sequencing7, which requires extensive sample 
preparation and bioinformatics analysis.

We have previously reported a method for investigating single DNA molecules using nanofluidic channels and 
a labeling scheme based on optical DNA mapping (ODM), for detailed analysis of bacterial plasmids8,9. Using 
ODM, several important characteristics of plasmids can be obtained in a single experiment, including how many 
different plasmids there are in an isolate, their size, as well as a barcode that can be used for identification and 
tracing the spread of plasmids10–12. By adding a step where the circular plasmids are linearized with CRISPR/Cas9 
excision, we can also determine on which plasmid a specific (resistance) gene is located13 which is important to 
track the potential spread of plasmids, for example during AMR outbreaks14–16.

In the current format of the ODM assay, the DNA molecules are stretched by confinement in nanochannels 
and imaged using advanced fluorescence microscopy, which limits its general use. An alternate strategy to image 
single DNA molecules is to stretch them on glass surfaces by a process called DNA combing17–19. This strategy 
offers an inexpensive alternative that does not require access to a nanofabrication facility. Several groups have 
reported different DNA combing methods and the parameters affecting the combing efficiency20–23. DNA comb-
ing has been demonstrated for stretching DNA on a megabase scale for fiber-FISH analysis24 and high-resolution 
optical mapping for bacterial genome analysis and species identification25–27. However, most reported combing 
strategies rely on DNA ends fraying to bind to the hydrophobic surface for combing to happen28,29 and can 
therefore not be used for stretching circular DNA molecules.

In this report, we present a simple “cut and stretch” assay based on CRISPR/Cas9 mediated targeting of 
AMR genes and linearization of circular plasmids13. When DNA is stretched on glass, the linearized plasmids 
appear twice as long compared to their circular form30,31, indicating the presence of the AMR gene. Our assay is 
inexpensive, fast, reliable and can find broad application in AMR gene detection. It can be performed on simple 
fluorescence microscopes that are present in many microbiology and clinical laboratories, even in low- and 
middle-income countries. The images can even be acquired by a smartphone camera mounted on the eyepiece 
of the microscope, lowering the critical barrier for adopting this new plasmid characterization method. We 
demonstrate the assay using a simple microscope that is identical to setups already present in many African 
countries via a tuberculosis diagnosis program32–34. Our method could replace S1-PFGE and complement PCR 
in plasmid analysis routines and has the potential to become a general tool in plasmid microbiology as well as 
in epidemiology and diagnostics.

Results and discussion
We present herein an assay to determine the number of plasmids in a sample, their size and, importantly, on 
which plasmid a specific (resistance) gene is located, based on fluorescence microscopy of single plasmids 
stretched on functionalized glass coverslips. The fundamental principle behind the gene detection is that when 
fully stretched, a linear plasmid molecule will be twice the length and half the emission intensity per pixel of 
the corresponding circular configuration30,31. Hence, if Cas9 causes a double-stranded break at a gene of inter-
est in a plasmid, this can be detected since the circular plasmid will be converted into its linear configuration13 
(Fig. 1a). By comparing data between a control sample and a sample where Cas9 is targeting a gene of interest, 
it is possible to directly confirm if a plasmid has been linearized or not, and hence confirm the presence of that 
gene. We demonstrate detection of the two β-lactamase resistance gene groups blaCTX-M group-1 and blaNDM 
in different bacterial isolates of varying plasmid complexity. These genes encode for β-lactamase enzymes that 
inactivate β-lactam antibiotics (including the last-resort carbapenems in the case of blaNDM) and hence confer 
multidrug-resistance. The principle is however general, and any gene encoded on a plasmid can be identified by 
using the corresponding guide RNA (gRNA) for specific Cas9 cleavage. Most plasmids used here were extracted 
from Escherichia coli or Klebsiella pneumoniae isolated from urine, fecal or sputum samples from patients admit-
ted to Siriraj Hospital in Bangkok, Thailand during 2018 and 2019.

DNA combing, molecule detection and first proof‑of‑concept.  To stretch the DNA, we functional-
ized glass coverslips with a 1% (v/v) mixture of Allyltrimethoxysaline (ATMS) and (3-Aminopropyl) trimethox-
ysilane (APTES) in acetone (see “Methods”)35,36. The functionalized coverslips were assembled on a microscope 
glass slide and YOYO-stained DNA was dispensed at the edge of the coverslip. The DNA solution was pulled 
between the two glass surfaces by capillary force and DNA molecules were instantly stretched on the silanized 
glass surface (Fig. 1b). Previously reported protocols for DNA combing typically use vertical dipping or mov-
ing droplet methods17,29,37, where DNA molecules attach to the hydrophobic glass surface and stretch because 
of the receding fluid meniscus. These methods have been exclusively used for combing linear DNA molecules 
and rely on the fraying of DNA ends (and a very narrow pH range, 5.5–6.0) to attach to the glass surface. After 
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stretching, the DNA molecules are in the air phase and the samples are dried/baked (and sometimes rehydrated) 
before imaging27. In contrast, we did not use an air–liquid interface to stretch DNA and in our setup, combing 
took place entirely in the liquid phase. Surface modification with ATMS and APTES resulted in a mix of vinyl 
(hydrophobic) and amino (hydrophilic and positively charged) groups on the glass surface. When the liquid was 
pulled between the two glass surfaces, the DNA molecules attached to the amino groups on the top glass surface 
by electrostatic interaction. At the same time, the molecules also experienced a shear-induced deformation/
stretching force38, which stretched the DNA in the direction of the fluid flow. The combination of the binding 
and stretching forces that DNA experienced at the solid–liquid interface resulted in DNA molecules partitioning 
onto the glass surface in an almost fully stretched conformation, where they were stabilized by multiple attach-
ment points. Since our method does not rely on fraying DNA ends, it is more tolerant to solution pH and could 

Figure 1.   Experimental workflow. (a) Cas9-gRNA is added to the plasmid sample. If the AMR gene is 
present, Cas9 makes a double-stranded excision, resulting in plasmid linearization. (b) Glass coverslips are 
functionalized with a mixture of silanes with amine and vinyl terminal groups. DNA molecules are stained with 
YOYO-1 and stretched by capillary force between the silanized coverslip and a glass slide. (c) Image processing 
to detect molecules. A Laplacian of Gaussian (LoG) filter is used for edge detection and molecular length, width, 
eccentricity, and straightness filters are used to accept or reject the detected molecules. Examples of molecules 
not accepted are marked with yellow (too wide), blue (too curved) or green arrows (overlapping molecules), 
respectively. (d) Representative images of molecules observed during imaging. Molecules i-iv (red bar) are 
rejected and molecules v-x (green bar) are accepted. (e) Intensity profile for molecules in (d) along the dotted 
yellow line. Intensity is higher where two strands of the circular plasmid are localized together. Scale bar 15 µm. 
(f) Length vs. intensity plot for a sample carrying a single plasmid. Data for Cas9 targeting the blaCTX-M gene is 
shown as red dots and control as black dots. (g) Length histograms of the data in (f).
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be used to stretch both linear and circular DNA molecules under the same combing conditions. We typically 
used 3 µl of 0.12 µM DNA concentration to comb the DNA and it resulted in optimally spaced molecules for 
imaging and analysis. This corresponds to ~ 200 pg DNA for one stretching attempt. As the fluid flowed between 
the two glass surfaces and DNA molecules got deposited on the coverslip, a density gradient was established 
where the loading side had more molecules per unit area. During imaging, areas of the coverslip with sufficient 
molecule density and optimal spacing were imaged. A lower DNA concentration can be easily used, since a lower 
density of molecules on the surface only means more time is needed to image sufficient molecules to build up 
the statistics.

After combing, the stretched DNA molecules were imaged, and the images were processed with custom 
MATLAB routines, to extract molecule length and average intensity per pixel. We used the Laplacian of Gauss-
ian (LoG) edge detection algorithm to detect molecules, followed by shape filtering based on length, width, 
eccentricity, and straightness (molecule-to-convex-hull ratio) of the detected molecules. Figure 1c shows the 
molecule detection workflow where some representative molecules typically rejected by the algorithm are marked 
with yellow (too wide), blue (too curved) or green arrows (overlapping molecules), respectively. Figure 1d shows 
representative images of stretched molecules. The molecules in the top panel (red bar, molecules i–iv) are circular 
molecules in a stretched elliptical configuration with two strands visible. In our experience, such configuration 
adds significant variation to the plasmid length and intensity per pixel data and such molecules were therefore 
rejected during shape filtering. The molecules in the lower panel (green bar, molecules v–viii) have the best 
possible configuration (rod-like shape) with the two strands of the circular molecules almost co-localized. Mol-
ecules satisfying such shape criteria were accepted and used for further analysis. Molecules ix and x are linear 
molecules. Figure 1e shows the intensity profile of molecules in Fig. 1d measured along the vertical dotted yellow 
line (single-pixel wide line). Note that for molecules i–iv, two peaks corresponding to two strands of stretched 
circular molecules were seen. For molecules v–viii, only one intensity peak was seen since the two strands of 
the circular plasmids were co-localized, and the intensity values were higher30,31 than for molecules i–iv. The 
intensities for molecules ix and x were similar to molecules i–iv. This difference in average intensity per pixel 
for the detected molecules was used to distinguish circular stretched (rod-like shaped) molecules from linear 
molecules of similar length.

As the first demonstration of our method, we selected a previously characterized sample with only one plas-
mid carrying the blaCTX-M gene. This plasmid, designated as pUUH239.2, is a 220 kbp plasmid originally isolated 
from a clinical K. pneumoniae strain that caused a hospital outbreak in Uppsala, Sweden39. The plasmid prepara-
tion was treated with Cas9 using either a gRNA targeting the blaCTX-M gene or a decoy gRNA (a gRNA targeting 
a human gene). After the Cas9 reaction, plasmids were stained and stretched on glass slides. As hypothesized, 
we observed longer molecules for the plasmid sample treated with Cas9 with blaCTX-M gRNA compared to the 
control case with decoy gRNA (Fig. 1f). Length histograms (Fig. 1g) were fitted with multiple Gaussian curves 
to identify different populations in the data. Figure 1g shows that in the control case the dominant population 
(75.2%) was 45.4 ± 3.4 µm long. However, after plasmid digestion targeting blaCTX-M, the fraction of plasmids 
that were ~ 45 µm long was reduced from 75.2% to 52.0% and a new population (32.3%) emerged with a length 
of 98.3 ± 10.1 µm, which is close to twice the length of the original population. This result indicates that Cas9 
targeting the blaCTX-M gene linearized the circular plasmid and the change in length distribution could be used 
to infer the presence of the gene of interest. The fitting parameters for the length histograms in Fig. 1g are sum-
marized in Supplementary Table ST1.

There is a possibility that two or more copies of an AMR gene are present on a plasmid. It is important to 
understand if a plasmid is carrying more than one copy of the gene as it may affect assay results and interpreta-
tion; however, from a clinical standpoint the more important question is if the gene is present or not, since the 
bacteria will become resistant irrespective of the number of copies of the gene. When multiple copies of the same 
gene are present on a plasmid, Cas9 will cut the plasmid at multiple locations and the length of the linearized 
molecules will be different from the predicted length. The change in length of the linearized plasmid due to 
multiple Cas9 cuts will show as a shift in the length histogram and the ability to detect two copies of gene on a 
plasmid will depend on how far apart on the plasmid they are located (see Supplementary Note 1).

Extended‑spectrum β‑lactamase and carbapenemase gene detection in complex sam‑
ples.  For the second demonstration, we used our assay for two samples with multiple plasmids. Since the 
assay is based on single DNA molecule imaging, we can easily detect sub-populations in the sample, allowing 
us to determine the number of plasmids present in the sample and which plasmid that  is carrying the AMR 
gene. This information is important from a microbiology and epidemiology perspective and can help in tracing 
the spread of plasmids that cause AMR. Another important aspect of plasmid analysis is to understand if two 
different (resistance) genes are located on the same plasmid. This is particularly relevant since if the two genes 
are located on the same plasmid they will conjugate together, meaning that bacteria that receive this plasmid 
will simultaneously acquire two genes, potentially encoding two different resistance mechanisms. By using Cas9 
targeting two different genes of interest (extended-spectrum β-lactamase and carbapenemase genes in this case) 
it was possible to detect if they were on the same plasmid or not. Figures 2a–f show data for an E. coli sample 
with two plasmids (Fig. 2a) where we used Cas9 targeting either the blaNDM gene family or the blaCTX-M group 1 
gene family. When the sample was digested with Cas9 targeting the blaNDM gene, the smaller circular plasmids 
disappeared, and long linear molecules could be observed (purple arrows in Fig. 2b). As shown in Fig. 2c for the 
control case, two major peaks at 16.2 ± 1.2 µm (74.5% population) and 33.6 ± 1.7 µm (17.9% population) were 
observed. After the sample was digested with Cas9, the locations of the two peaks were 16.3 ± 1.3 µm (11.1% 
population) and 32.7 ± 2.3 µm (56.2% population). Although the location of the two peaks in the control and 
blaNDM reactions were similar, the shift in the percentage of the population from one peak to the other indicated 
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linearization of the smaller plasmid, as was also observed in the microscopy images. The interpretation of the 
results for this sample was non-intuitive since one plasmid was approximately twice the length of the other 
plasmid and when the smaller plasmid was linearized, we ended up with two populations of similar lengths, one 

Figure 2.   Extended-spectrum β-lactamase and carbapenemase genes in samples with multiple plasmids. 
Representative images of plasmids after control (a) and blaNDM (b) reactions. In the control case, two circular 
populations (green and blue arrows) were observed, along with linear molecules (red arrow). After the blaNDM 
reaction (b), two plasmid populations of similar lengths (blue and purple arrows), but different emission 
intensities, were observed. Scale bars 10 µm. (c) Length distribution of plasmids after control and blaNDM 
reactions for the control sample (green histogram) and the blaNDM reaction (purple histograms) (d–f) Scatter 
plots with GMM clustering after control (d), blaNDM (e) and blaCTX-M group 1 (f) reactions, respectively. (g–i) 
Carbapenemase gene detection in a sample with three plasmids. (g) Representative image showing plasmid 
composition of the sample. The three different sized plasmids are marked with green, blue and red arrows. 
All molecules in the image are circular. Scale bar 15 µm. (h–i) GMM clustering results for the three-plasmid 
sample after the control reaction (h) and after the blaNDM reaction (i). The population clusters identified by the 
algorithm are presented in different colors in the scatter plots. The mean values are marked with the ‘ + ’ signs 
(scaled to the weights of the clusters). The percentage values represent the percentage of the population in that 
cluster. The colored ellipses around the clusters represent standard deviations of the mean. The sizes of the dots 
are scaled to the probability of belonging to that cluster.
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linear and one circular. In Fig. 2d–f, we complemented the molecular extension data with the average emission 
intensity per pixel for each molecule. The rationale behind this is that circular DNA molecules are double-folded 
when they are stretched on glass, which means that the emission intensity per pixel is approximately twice that 
for a linear DNA molecule30,31. This can then be used to cluster the data in two dimensions, instead of one, which 
can help to distinguish between circular and linear plasmid populations showing comparable molecular exten-
sion. This is particularly helpful when plasmids of different lengths are present in a sample. The data points in 
the scatter plots were clustered using the Gaussian mixture model (GMM) employing the expectation–maximi-
zation algorithm.

As seen in Fig. 2d, we observed two major plasmid populations (at 69.9% and 14.4%) at high emission 
intensities per pixel and a third cluster (15.6%) made up of linear molecules from chromosomal DNA or plas-
mid shearing. After the blaNDM reaction, the data points from the cluster corresponding to the smaller plasmid 
moved into a new cluster with a mean length of 32.7 ± 2.5 µm and representing 56.7% population (Fig. 2e). We 
then observed two clusters with mean lengths close to 32 µm, but with very different intensities per pixel, which 
confirmed that the smaller plasmid in the sample was carrying the blaNDM gene and was cut at the gene site by 
Cas9 and linearized. When the plasmids were digested with Cas9 targeting the blaCTX-M group 1 gene (Fig. 2f), 
the results were similar to the blaNDM reaction. A fraction of the smaller plasmids was linearized and a new cluster 
at 33.7 ± 4.7 µm (47.9%) emerged. These results indicate that the smaller plasmid in this sample was carrying 
both the blaNDM and blaCTX-M group 1 genes. We also stretched linear λ-DNA (48.5 kilobase pairs) on glass (see 
Supplementary Note 2 and Fig. S2) and used it as a molecular ruler to estimate the size of the plasmids observed 
in the sample. The sizes of the two plasmids in this sample were estimated to be ~ 98 kbp and ~ 180 kbp, respec-
tively. The presence of the blaNDM gene in the plasmid preparation and plasmid size was validated using optical 
DNA mapping in nanochannels (see Supplementary Note 3 and Supplementary Fig. S6), a technique that has 
been extensively validated with long-read sequencing13,14. All fitting parameters and population percentages are 
summarized in Supplementary Table ST2.

We also wanted to explore the minimum number of data points needed in the length vs. intensity plots to 
classify the data into different clusters and interpret the results. It is difficult to propose a fixed number as it 
depends on relative sizes and abundances of different plasmid populations as well as on noise and spread of data. 
To understand how our results may be affected if data is sparse, we randomly sampled different fractions of the 
data in Fig. 2d and applied the GMM algorithm to cluster. We obtained similar data classification and cluster 
parameters even with 10% of the data or 30 total data points and interpretation of the result was not affected 
(see Supplementary Fig. S9).

Next, we demonstrate the detection of carbapenemase-encoding genes in a K. pneumoniae sample with 
three plasmids of different lengths (Fig. 2g). The lengths of three circular plasmids, as identified in the control 
sample (Fig. 2h), were 16.2 ± 1.8 µm, 22.2 ± 1.3 µm and 33.5 ± 2.9 µm, respectively, with 60% of data forming the 
cluster for the smallest plasmid. After the blaNDM Cas9 reaction (Fig. 2i), we observed the emergence of a new 
cluster at 31.4 ± 2.2 µm carrying 33.6% of the molecules and a simultaneous reduction in the ~ 16 µm cluster that 
was observed in the control sample. The mean length for the new cluster was close to twice the mean length of 
the ~ 16 µm cluster, and the mean intensity per pixel was lower, which indicated linearization of plasmids and 
the presence of the blaNDM gene on that plasmid. The sizes of the three plasmids in this sample, when converted 
to kilobase pairs, were ~ 95kbp, ~ 120 kbp, and ~ 180 kbp, respectively, and the blaNDM gene was on the smallest 
plasmid. The presence of the blaNDM gene in this plasmid preparation and the plasmid size was validated using 
optical DNA mapping in nanochannels (see Fig. S7). All fitting parameters and population percentages are sum-
marized in Supplementary Table ST2.

When working with a sample with multiple plasmids, there is a possibility that two plasmids of similar lengths 
are present. In such a case, the ability of the method to distinguish between the two sub-populations is important. 
The minimum size difference detectable depends on the standard deviation or the spread of the population and 
in our assay if two sub-populations are three standard deviations of the mean apart from one another, they can 
be resolved (see Supplementary Note 4). If there are two plasmid populations with mean lengths less than three 
standard deviations of the mean apart and one of them carries an AMR gene, the two plasmids can be distin-
guished as one of them will get linearized by Cas9.

Detection of carbapenemase genes.  In the next example, we demonstrate that the assay can address 
the clinically important question if a plasmid sample carries a gene that produces an enzyme that degrades a 
specific type of antibiotic, but where the exact identity of the gene is not as important. In this case, it is possible 
to use a cocktail of gRNAs targeting a group of AMR genes and if the Cas9 reaction results in the linearization of 
a plasmid, the presence of that type of gene can be confirmed40. This approach can, for example, provide infor-
mation to the healthcare staff about the predicted resistance and assist them in making quick clinical decisions, 
such as avoiding administering certain classes of antibiotics or isolating patients that carry pathogens with par-
ticularly problematic resistance. Once the AMR gene group is confirmed, it is possible to confirm the presence 
of a specific gene by separate Cas9 reactions. One group of enzymes that are of relevance in this context is car-
bapenemases, enzymes that degrade carbapenems that are often considered as a group of last-resort antibiotics. 
Clinically important carbapenemase genes include blaNDM, blaOXA-48, blaKPC, blaVIM and blaIMP.

We demonstrate the detection of carbapenemase-encoding genes in a plasmid preparation from E. coli (Fig. 3), 
where we targeted blaNDM and blaKPC genes. Figure 3a shows the two plasmids in the sample in their circular 
configuration. In the control sample, we observed two major populations of plasmids at lengths of 12.3 ± 0.3 µm 
and 19.0 ± 0.7 µm representing 26.9% and 42.4% of the total population (Fig. 3b). The cluster at 13.8 ± 2.8 µm 
(marked in red) identified by the clustering algorithm can be attributed to subsets of the main plasmid popula-
tions stretching non-uniformly. When the sample was treated with a Cas9-gRNA cocktail targeting the two 
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carbapenemase-producing genes (blaNDM and blaKPC), the longer plasmid was linearized and a new cluster was 
observed at 33.9 ± 2.7 µm (35.6% of the total population), confirming that this plasmid carried a carbapenemase-
encoding gene (Fig. 3c). The length for the new cluster was close to double the length for the cluster at ~ 19 µm in 
the control sample. The appearance of the new cluster was also accompanied by thinning of the corresponding 
previous cluster (after the Cas9 reaction we observed a very broad distribution with a mean of 17.5 µm repre-
senting 28.7% of the population). We then set up two separate Cas9 reactions, using gRNAs targeting either the 
blaNDM or the blaKPC gene. The larger plasmids seen in the control case disappeared when using Cas9 targeting 
blaNDM and instead long linearized molecules were observed (Fig. 3d). As can be seen in Fig. 3e–f, the clustering 
and population distribution for the blaKPC reaction were similar to the control case and those for blaNDM were 
similar to when the plasmids were linearized. From this, we inferred that the carbapenemase-encoding gene in 
the sample was blaNDM, and not blaKPC, and that it was present on the larger plasmid. The presence of the blaNDM 
gene in the larger plasmid was confirmed using optical DNA mapping in nanochannels (see Fig. S8). All fitting 
parameters and population percentages are summarized in Supplementary Table ST3.

AMR gene detection with a simple microscope and smartphone imaging.  All experiments so far 
were performed on a high-end fluorescence microscope (Zeiss, AxioObserver.Z1) equipped with a scientific-
CMOS camera (Photometrics Prime 95B), a 100 × α Plan-Apochromat oil objective (Zeiss, NA = 1.46) and an 
LED illumination source (Colibri, Zeiss). To make the method applicable for broad use, it is important to dem-
onstrate that it can also be used on simple fluorescence microscopes. We decided to use a Zeiss Primo-Star iLED 
microscope (Fig. 4), equipped with a Zeiss Axiocam mono-202 CMOS camera, a 100 × Plan-Achromat oil objec-
tive (Zeiss, NA = 1.25) and a 455 nm LED illumination source. One important reason for using this specific 
microscope is that it is used in low- and middle-income countries for diagnosing tuberculosis32–34. This means 

Figure 3.   Carbapenemase gene detection in a sample with two plasmids. (a) Image of plasmid sample after the 
control reaction. The two plasmids observed are marked with green and blue arrows, respectively. (b,c) Length 
and intensity per pixel after the control reaction (b) and the carbapenemase gRNA cocktail reaction (c) clustered 
using GMM. (d) Image of plasmid sample after the blaNDM reaction. The larger plasmid in (a) was not observed. 
The smaller plasmid is marked with green arrows and the linearized larger plasmid is marked with purple 
arrows. (e,f) Data clustered after separate blaKPC (e) and blaNDM (f) reactions. The population clusters identified 
by the algorithm are presented in different colors. The mean values are marked with ‘ + ’ signs (scaled to the 
weights of the clusters). The percentage values represent the percentage of the population in that cluster. The 
colored ellipses represent the standard deviations of the mean. Scale bars 10 µm.
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that our method can be directly transferred to such a setting for simple genetic analysis of plasmids. We also 
coupled a smartphone camera (Huawei P30 main camera, 40 megapixels) to the microscope eyepiece (using 
Carson HookUpz 2.0 Optics Adapter for Smartphone) and imaged the stretched DNA using the smartphone 
camera to evaluate if comparable results could be obtained with smartphone imaging which would make the 
method even more general.

Figure 4 shows images and data for a plasmid preparation from an E. coli isolate after the control and blaNDM 
reactions, taken using the Axiocam mono-202 camera and the Huawei P30 camera on the PrimoStar microscope, 
respectively. The images shown in Fig. 4 were taken from the same location on the coverslip for direct comparison 
between the two cameras. The images were captured in .tiff format on the Axiocam mono-202 (default mode) 
and .jpeg format with the smartphone. Although Huawei P30 offers the possibility of image acquisition in the 
.RAW format, we wanted to work with .jpeg images to demonstrate that any smartphone that can capture .jpeg 
images can be used for data acquisition.

The DNA sample used for this experiment was the same sample as in Fig. 2a–f and the sample contained 
two plasmids. Imaging the same sample provided the possibility of comparing assay performance between 
the high-end AxioObserver.Z1 and the simple PrimoStar microscope. One very clear difference compared to 
AxioObserver.Z1 was that the images on PrimoStar suffered from non-uniform illumination across the field of 
view and appear curvilinear (pincushion distortion, typical of wide-angle lenses) when the smartphone camera 
was used. This resulted in more noise in the length and intensity per pixel data for DNA molecules compared 
to the data from AxioObserver.Z1 (Fig. 2a–f). DNA molecules in the images were detected as described earlier 
and the extracted data was used to create the histograms and scatter plots in Fig. 4. For the control case, a domi-
nant population was seen at around 16 µm and after the Cas9-blaNDM reaction, this population thinned and a 
new population at around 32 µm emerged (see length histograms). A similar shift in population distribution 
was detected with images acquired from Axiocam mono-202 and Huawei P30 cameras. The data was clustered 
using Gaussian mixture models and the number of clusters, the cluster parameters, and the shifts in population 
distributions were similar for the two cameras and also similar to the data acquired using AxioObserver.Z1 (for 
more discussion on data presentation, see Fig. 2a–f). These results demonstrate that even a simple fluorescence 
microscope equipped with a smartphone camera can be used to detect the presence of the blaNDM gene on the 
plasmid. Moreover, plasmid linearization is evident in the images, which makes detection of AMR genes pos-
sible even “by eye”. This completely eliminates the need for cameras, allowing even simpler microscopes to be 
used for simple plasmid genetics.

Plasmid length validation.  To validate the estimated size of the plasmids by DNA combing, we compared 
the length data between DNA combing and stretching in nanochannels. Since confining DNA in nanochan-

Figure 4.   Use of a simple fluorescence microscope and smartphone camera for carbapenemase gene detection. 
(a) Zeiss PrimoStar iLED microscope equipped with Axiocam mono-202 and Huawei P30 smartphone camera 
was used to image plasmids stretched on glass. (b) DNA images for the control and blaNDM reactions captured 
using the Axiocam mono-202 camera (top) and the corresponding length histograms (middle) and cluster 
plots (bottom). (c) DNA images and data analysis for images acquired for the sample using the Huawei P30 
smartphone camera. Images shown are acquired from the same location on the coverslip. The population 
clusters identified by the algorithm are presented in different colors. The mean values are marked with ‘ + ’ signs 
(scaled to the weights of the clusters). The percentage values represent the percentage of the population in that 
cluster. The colored ellipses represent the standard deviations of the mean. Scale bars:20 µm.
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nels for plasmid analysis is a very established assay in our laboratory and can give an accurate estimate of DNA 
length30, we wanted to evaluate if the length data from DNA combing matched the data from nanochannels. In 
Fig. 5, data for ten plasmids (including the plasmids used in the demonstrations in Figs. 1, 2, 3, 4) ranging in size 
from ~ 30 kbp to ~ 250 kbp were plotted and fitted with a straight line. We obtained a coefficient of determination 
(R2) value of 0.968, suggesting a high concordance in the size of plasmids measured using the two techniques, 
and verifying the size measured by combing.

Conclusions
We demonstrate how the change in plasmid configuration, from circular to linear, when excised with Cas9 target-
ing a specific gene and combed on functionalized glass, can be used to detect the presence of that gene encoded 
on a specific plasmid. The assay also determines the number and sizes of plasmids in a sample. The plasmid size 
measurement was in very good agreement with the size estimate obtained from confining DNA in nanochannels. 
The assay can be carried out with simple equipment, using microscopy setups available in most laboratories. The 
ease and simplicity of the assay means that it can potentially be developed into a tool for plasmid microbiology, 
epidemiology, and AMR gene detection, particularly in low-resource settings.

Methods
Plasmid preparation.  Bacterial samples were isolated from urine, feces or sputum of the patients admit-
ted to Siriraj Hospital, Bangkok, Thailand in 2018 and 2019. The plasmid extraction was done with the plasmid 
purification kit NucleoBond® Xtra Midi (Macherey–Nagel). Each isolate was cultured overnight in 100 ml low 
salt LB media (Sigma-Aldrich) and pelleted with centrifugation, 5000 rcf for 10 min at 4 °C. Next, the pellet was 
resuspended in resuspension buffer and further lysed and purified on columns according to Macherey–Nagel’s 
instructions. Precipitation of the plasmid DNA was done with isopropanol and then washed with ethanol (70%). 
Next, the sample was dried at room temperature and reconstituted in 50 μl TE-buffer. Nanodrop was used to 
determine the DNA concentration.

Sample preparation/CRISPR‑Cas9 reaction.  The first step of the CRISPR-Cas9 reaction was the crea-
tion of a sequence-specific guide-RNA (gRNA). The 20-nucleotide CRISPR-RNA (crRNA) corresponding to the 
blaNDM, blaKPC and blaCTX-M group 1 genes and a decoy crRNA (control, with no potential target sites on bacterial 

Figure 5.   Size estimate comparison between DNA stretching on glass and in nanochannels for ten plasmids, 
ranging in size from 30 to 250 kbp, plotted and fitted with a straight line.
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plasmids) were designed and synthesized via Dharmacon (Horizon Discovery Ltd.). The target sequences of 
crRNAs for different genes were:

blaNDM: 5′ CCG​CTG​CAT​TGA​TGC​TGA​GC 3′
blaKPC: 5′ CAA​CCA​CCG​CAT​CCG​CGC​GG 3′
blaCTX-M: 5′ CCG​TCG​CGA​TGT​ATT​AGC​GT 3′
decoy: 5′ GGT​CCT​TGT​AAC​CAT​CGG​TG 3′
The gRNA was created by mixing 0.5 nmol crRNA and 0.5 nmol trans-activating CRISPR RNA (tracrRNA, 

Dharmacon) in 1 × CutSmart® Buffer (50 mM Potassium Acetate, 20 mM Tris–acetate, 10 mM Magnesium Ace-
tate, 100 µg/ml BSA, pH 7.9 at 25 °C, New England Biolabs) into a 0.5 ml Eppendorf tube. The final volume was 
adjusted with milli-Q water to 15 µl. The mixture was incubated for 30 min at 4 °C. Next, 10 µM (0.05 nmol) 
gRNA, 600 ng Cas9 protein (Sigma-Aldrich), and 1 × CutSmart® Buffer were added to a new Eppendorf tube and 
pre-incubated for 10 min at room temperature (25 °C). Finally, 60 ng DNA of plasmid sample and milli-Q water 
were added to the mixture to a final volume of 15 µl before incubation for 15 min at 37 °C.

Activation of glass slides.  Molecular combing was done on functionalized microscope cover glasses 
(Uncharged Cover Glass, 22 × 22 mm, Marienfeld). The cover glasses were incubated in a petri dish with a mix-
ture of Allyltrimethoxysilane (ATMS, 95%, Sigma-Aldrich), (3-aminopropyl) triethoxysilane (APTES, ≥ 98%, 
Sigma-Aldrich) and Acetone (Sigma-Aldrich) in a 1:1:100 ratio for at least 30 min at room temperature. Next, 
the coverslips were cleaned with acetone and MilliQ water before drying with nitrogen. A functionalized cover-
slip was placed onto a Menzel-Gläser (Cut edges, frosted end, 76 × 26 mm, Thermo Scientific) and 3.7 µl of the 
DNA sample was pipetted onto the edge of the coverslip. The capillary force between the Menzel-Gläser and the 
treated coverslip pulled the solution under and the DNA was stretched and aligned on the surface of the glass. 
The edges were sealed with nail polish before placing onto the fluorescence microscope.

YOYO‑1 staining.  The DNA was stained with 4.8 µM YOYO-1 (YOYO, Invitrogen) for visualization and 
diluted with 0.5 × TBE (Tris–Borate-EDTA, Medicago, diluted with mill-Q water from 10 × tablets) to a DNA 
concentration of 0.7 µM. Next, the mixture was incubated for 5 min at room temperature before dilution with 
0.5 × TBE to a final DNA concentration of 0.13 µM. To reduce the risk of photo-nicking, β-mercaptoethanol 
(BME, Sigma-Aldrich) at 1% (v/v) was added to the mixture.

Microscopy settings.  The DNA molecules were visualized with a fluorescence microscope (Zeiss, AxioO-
bserver.Z1) equipped with a scientific-CMOS camera (Photometrics Prime 95B), an LED light source (Colibri, 
Zeiss) and a 100 × oil immersion objective (Zeiss, NA = 1.46). The wavelength of the light used to excite YOYO 
was 475 nm and the emission filter was a fluorescein isothiocyanate (FITC) filter.

A cost-efficient and easy-to-use fluorescence microscope (Zeiss, Primo Star iLED) that is available in low- 
and middle-income countries was used to explore the adoption of the method to low resource settings. The 
microscope is equipped with a 100 × Plan-Achromat oil objective (Zeiss, NA = 1.25) and a single wavelength LED 
fluorescence illuminator with a 455 nm wavelength that was used to excite YOYO. It is also equipped with a 2 
megapixels Zeiss Axiocam mono-202 camera.

Smartphone camera imaging.  The main camera of the Huawei P30 phone (camera model ELE-L29) 
was used at 1 × magnification for image acquisition. The images were acquired as .jpeg images in manual mode 
using the following settings – F-stop: f/1.8, Exposure time: ¼ seconds, ISO speed: ISO-4000. The camera was 
mounted on the microscope eyepiece using Carson HookUpz 2.0 Optics Adapter for Smartphone (Article 
no.: 301791001001, available through www.​skogma.​se).

Data analysis.  Custom MATLAB routines were used to segment the microscopy images. The segmentation 
software was based on applying a Laplacian-of-Gaussian (LoG) filter to each image. The width (scale parameter), 
σ, of the kernel of the LoG filter was set equal to the standard deviation, σPSF, of the system’s optical point spread 
function. After thresholding the LoG-filtered image at 0 (using MATLAB’s built-in function imbinarize), we 
were left with a black-and-white image, where ideally a white region (a connected component of white pixels) 
corresponded to points along a DNA molecule. To remove false-positive regions, some post-processing steps 
were applied. First, for each white region, an edge score was calculated. The edge score was calculated by follow-
ing the normal direction for the edge point and summing up the intensities in the inward and outward directions 
over a distance ω (where ω = 2.5σPSF). The edge score was then the difference of intensities in the inward and 
outward directions. Hence, a large jump in intensity across the boundary gave a large edge score. Finally, the total 
edge score for a region was obtained by summing up the edge scores for all boundary points of that region. A 
threshold for the total edge score was set by MATLAB’s graythresh method. In the second post-processing step, 
we filtered out molecules based on length (major axis length), width (minor axis length), eccentricity and mol-
ecule-to-convex-hull ratio. Molecule-to-convex-hull statistic is the area of the “filled area” (signal) divided by 
the area of the smallest convex hull that can be fitted around the molecule. This was done using the regionprops 
method and dividing the property “FilledArea” by the property “ConvexArea” in MATLAB. The typical edge 
detection threshold and filter settings used were: threshold = 4.54e−05, width = 1–25 pixels, length = 160–Inf pix-
els, minimum eccentricity = 0.5–0.7, minimum molecule-to-convex-hull ratio = 0.5–0.7. The parameters varied 
slightly from sample to sample but the same parameters were used for all images of a sample. Through these 
postprocessing steps, unstretched or fragmented DNA molecules could, to some extent, be excluded. Once all 
molecules were identified, the length of each molecule was calculated in pixels and the mean intensity value for 
each pixel was measured along the stretched molecule. The intensity values were then averaged to give a mean 

http://www.skogma.se
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intensity per pixel for every molecule. Molecule length in pixels was converted to micrometers by multiplying 
with the pixel size for images from different cameras. To account for experimental differences in intensities 
between samples, the mean intensities per pixel were normalized and scaled for data collected for each sample.

The output data after segmentation was analyzed using unsupervised clustering using the Gaussian Mixture 
Model (GMM) implemented in Python. The GMM clustering is a soft clustering approach without definitive 
boundaries between clusters. The clustering was performed in two dimensions where the first dimension cor-
responded to molecule length, and the second dimension corresponded to the mean intensity per pixel. The 
data was clustered in the number of clusters corresponding to minimum Bayesian information using the Bayes-
ian Information Criterion (BIC). Each data point (defined by the tuple (length, mean intensity per pixel)) was 
assigned a probability of membership of a cluster. Each data point was assigned to the cluster with the highest 
probability and the sizes of plotted data points were scaled to visualize the probability of belonging to that cluster. 
This means that data points at the core of the cluster were visually larger than the data points at the interface of 
the two clusters. For each cluster, the mean value was marked with a ‘ + ’ sign and scaled to the relative weight 
of the cluster in the population.

Ethical declarations.  Sample collection and study design were approved by the Institutional Review Board 
of the Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (Si 571/2015) and all experi-
ments were carried out as per prescribed guidelines and regulations of relevant institutions. All subjects who 
provided clinical specimens have signed the informed consent form at Siriraj Hospital, Mahidol University, 
Bangkok, Thailand.

Data availability
The imaging data and analysis routines used for molecule detection are available and can be obtained by making 
a reasonable request to the corresponding author.
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