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Abstract

In this Note we propose a simple definition of a locally compact quantum group in reduced form. By

the word ‘reduced’ we mean that we suppose the Haar weight to be faithful, and hence we define in

fact arbitrary locally compact quantum groups represented on the L
2-space of the Haar weight. We

construct the multiplicative unitary associated with our quantum group. We construct the antipode

with its polar decomposition, and the modular element. We prove the unicity of the Haar weights,

define the dual and prove a Pontryagin duality theorem.

1 Introduction

Following the common paradigm that C∗-algebras are quantized locally compact spaces, Woronowicz

proposed to use the C∗-algebra framework to define locally compact quantum groups ([14]). The most

general definition of a locally compact quantum group available up to now is formulated in the von

Neumann algebra framework by Masuda and Nakagami ([7]) and a C∗-version of this was announced

by Masuda, Nakagami and Woronowicz in some lectures ([8]). There is however an objection to their

definition: they propose a long list of axioms and hence they suppose in fact a priori a lot of the nice

properties one would like to prove from a simpler definition. Nevertheless they are able to obtain the

dual and to prove it satisfies again all the axioms. That is their major result.

In this Note we will present a simple definition of a reduced C∗-algebraic quantum group and we show

that all the axioms of [7] hold in this case. Following [3] we also construct the dual and prove a Pontryagin

duality theorem. The fact that we assume the Haar weight to be faithful – that is what ‘reduced’ means –

is not essential. All the theories of Kac algebras over multiplicative unitaries to the Woronowicz algebras

of [7] are reduced as well. The reduced case is just a form in which an arbitrary locally compact quantum

group comes to us when represented on the L2-space of its Haar weight.

Because we think an existence proof of a Haar weight is still far away, our definition seems to be the

simplest one can hope for at the moment.

In this Note we give an overview of our results, for more details and proofs we refer to [5].

2 Conventions

Our results will depend heavily on the theory of weights on C∗-algebras. For the usual conventions we

refer to [2]. By a proper weight we will mean a lower-semicontinuous, densely defined weight which is

non-zero. All weights in this Note will be proper. Let ϕ be a proper weight on a C∗-algebra A. Recall

the following notation introduced by Combes:

Gϕ = {α ω | α ∈]0, 1[, ω ∈ A∗
+, ω ≤ ϕ }.

1Research Assistant of the Fund for Scientific Research – Flanders (Belgium) (F.W.O.)
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Then Gϕ is directed, when equiped with the usual order on A∗
+. We have ϕ(x) = lim(ω(x))ω∈Gϕ

for all

x ∈ A+. When (Hϕ, πϕ, Λϕ) is a GNS-construction for ϕ we can define for every ω ∈ Gϕ a unique element

ω̃ ∈ πϕ(A)′′∗ such that ω̃ πϕ = ω. Then we can define for x ∈ (πϕ(A)′′)+

ϕ̃(x) = lim
(

ω̃(x)
)

ω∈Gϕ
.

So ϕ̃ is a normal and semi-finite weight on the von Neumann algebra πϕ(A)′′. We will call our proper

weight ϕ approximately KMS when ϕ̃ is faithful. We will call ϕ KMS when there exists a norm continuous

one-parameter group σ of automorphisms of A such that

• ϕσt = ϕ for all t ∈ IR.

• ϕ(a∗a) = ϕ
(

σ i
2

(a)σ i
2

(a)∗
)

for all a ∈ D(σ i
2

),

where D(σ i
2

) denotes the domain of the analytic continuation of σ in i
2 . This is not the usual definition

of the KMS-property, but equivalent with it, as the first author proves in [4]. We will call σ a modular

group for ϕ and this is uniquely determined when ϕ is faithful. Note that a KMS weight is approximately

KMS.

For a proper weight ϕ it is possible to define the slice map ι ⊗ ϕ in such a way that it becomes a

useful object. We refer to [6] and [5]. When ϕ is an approximate KMS weight with GNS-construction

(Hϕ, πϕ, Λϕ) it is possible to define a canonical GNS-construction (Hϕ ⊗ Hϕ, πϕ ⊗ πϕ, Λϕ ⊗ Λϕ) for the

tensor product weight ϕ ⊗ ϕ.

We will denote with M(A) the multiplier algebra of a C∗-algebra A. When ∆ : A → M(A ⊗ A) is

a non-degenerate ∗-homomorphism we will call a proper weight ϕ on (A, ∆) left invariant (resp. right

invariant) when

ϕ((ω ⊗ ι)∆(a)) = ω(1)ϕ(a) resp. ϕ((ι ⊗ ω)∆(a)) = ω(1)ϕ(a)

for all a ∈ M+
ϕ and ω ∈ A∗

+.

3 The definition of a reduced C∗-algebraic quantum group

We will now give our main definition.

Definition 3.1 Consider a C∗-algebra A and a non-degenerate ∗-homomorphism ∆ : A → M(A ⊗ A)

such that

• ∆ is coassociative, meaning that (∆ ⊗ ι)∆ = (ι ⊗ ∆)∆.

• We have the following density conditions : the closed linear spans of

{ (ω ⊗ ι)∆(a) | ω ∈ A∗, a ∈ A } and of { (ι ⊗ ω)∆(a) | ω ∈ A∗, a ∈ A }

are both equal to A.

Assume moreover the existence of

• a faithful left invariant approximate KMS weight ϕ on (A, ∆),

• a right invariant approximate KMS weight ψ on (A,∆).

Then we will call the pair (A, ∆) a reduced C∗-algebraic quantum group.
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Remark : The last axiom, concerning the right invariant weight, is a bit unusual. But we could as well

suppose the existence of a ∗-antiautomorphism θ of A such that ∆ θ = χ (θ ⊗ θ)∆ where χ denotes the

flip map on A ⊗ A. This would give us a definition which looks like the definition of a Kac algebra, but

which is even simpler. In this case ϕθ would give a right invariant approximate KMS weight. Later on

we will show that the existence of such a θ follows from the definition we give. It will be the unitary

antipode. Hence both kinds of definitions are equivalent.

From now on we will fix weights ϕ and ψ on (A,∆) satisfying the conditions of the definition. We can

show that in this case ψ is automatically faithful as well. We will also fix a GNS-construction (H,π, Λ)

for ϕ.

The next theorem is crucial, but the proof is involved.

Theorem 3.2 The weights ϕ and ψ are KMS.

4 The multiplicative unitary

Definition 4.1 Define the operator W ∈ B(H ⊗ H) such that

W ∗Λ(a) ⊗ Λ(b) = (Λ ⊗ Λ)(∆(b)(a ⊗ 1))

for all a, b ∈ Nϕ.

It is easy to check that W ∗ is well defined and isometric. We want to prove that W is unitary, and then

W will be a multiplicative unitary. For the proof of the unitarity of W we will walk along different paths

as [3] or [7] and give an inversion formula for W ∗.

Proposition 4.2 Let a, b ∈ Nψ and c, d ∈ Nϕ. Put x = (ψ ⊗ ι ⊗ ι)
(

∆13(a
∗c)∆12(b)

)

. Then x(d ⊗ 1) ∈

Nϕ⊗ϕ and

W ∗(Λ ⊗ Λ)(x(d ⊗ 1)) = Λ(d) ⊗ Λ
(

(ψ ⊗ ι)(∆(a∗c)(b ⊗ 1))
)

.

Notice that we use the ‘leg-numbering’ notation. For instance ∆12(b) = ∆(b) ⊗ 1.

Once we have this formula at our disposal it is not so difficult any more – although a bit subtle – to prove

that the range of W ∗ equals H ⊗ H. So we have

Theorem 4.3 The operator W is unitary and satisfies the pentagonal equation W12W13W23 = W23W12.

Again we used the leg-numbering : W12(ξ1 ⊗ ξ2 ⊗ ξ3) = W (ξ1 ⊗ ξ2) ⊗ ξ3 for instance.

5 The antipode and its polar decomposition

We still have to define the antipode of our reduced C∗-algebraic quantum group in this section, but we

would like that S is an antihomomorphism and that it satisfies the relation

S
(

(ψ ⊗ ι)((x∗ ⊗ 1)∆(y))
)

= (ψ ⊗ ι)(∆(x∗)(y ⊗ 1)).

When working with Kac algebras one would call this relation the ‘strong right invariance’. We will define

S through its polar decomposition and hence it is not surprising that it would be nice to define a (possibly

unbounded) operator G in H such that G Λ(x) = Λ(S(x∗)), in order to make the polar decomposition of

G afterwards. Taking into account these remarks the first step lies in the possibility of the next definition.
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Definition 5.1 There exists a unique closed densily defined anti-linear operator G in H such that the

elements

{Λ
(

(ψ ⊗ ι)(∆(x∗)(y ⊗ 1))
)

| x, y ∈ N ∗
ϕNψ }

span a core for G and such that

G Λ
(

(ψ ⊗ ι)(∆(x∗)(y ⊗ 1))
)

= Λ
(

(ψ ⊗ ι)(∆(y∗)(x ⊗ 1))
)

for all x, y ∈ N ∗
ϕNψ.

Remark that we immediately get that G is involutive. By making the polar decomposition of G we obtain

operators which potentially induce the polar decomposition of the antipode.

Definition 5.2 • We define N = G∗G, so N is a strictly positive operator in H.

• We define the anti-unitary I on H such that G = IN
1

2 .

Because G is involutive we get I2 = 1, I∗ = I and IN = N−1I. Because we expect the mapping

x 7→ S(x∗) to be multiplicative the following proposition is not so surprising. Its proof however is

technical and not completely straightforward.

Proposition 5.3 Consider a, b ∈ Nψ. Then we have

π
(

(ψ ⊗ ι)(∆(b∗)(a ⊗ 1))
)

G ⊆ Gπ
(

(ψ ⊗ ι)(∆(a∗)(b ⊗ 1))
)

.

Recall that the weights ϕ and ψ are KMS and faithful. We will denote their (unique) modular groups by

σ and σ′ respectively. For technical reasons we need a Tomita algebra:

Tψ = { a ∈ A | a is analytic w.r.t. σ′ and σ′
z(a) ∈ Nψ ∩N ∗

ψ for all z ∈C }.

By making, in a certain sense, the polar decomposition of the commutation in the previous proposition

we obtain the following.

Proposition 5.4 Consider a, b ∈ Tψ. Then we have

N−it π
(

(ψ ⊗ ι)((b∗ ⊗ 1)∆(a))
)

N it = π
(

(ψ ⊗ ι)((σ′
−t(b

∗) ⊗ 1)∆(σ′
−t(a)))

)

and

I π
(

(ψ ⊗ ι)((b∗ ⊗ 1)∆(a))
)∗

I = π
(

(ψ ⊗ ι)(∆(σ′

− i
2

(b∗))(σ′

− i
2

(a) ⊗ 1))
)

.

Taking into account that π is faithful we can now define the antipode with its polar decomposition.

Definition 5.5 • There exists a unique norm continuous one-parameter group τ of automorphisms

of A such that π(τt(x)) = N−itπ(x)N it for all t ∈ IR and x ∈ A.

• There exists a unique ∗-antiautomorphism R of A such that π(R(x)) = Iπ(x)∗I for all x ∈ A.

• We define S = R τ− i
2

where τ− i
2

denotes the analytic continuation of τ in − i
2 .

Before stating some properties of R, τ and S we want to stress that these objects still depend on the

particular choice of ϕ and ψ we made in the beginning of the story. Later on however we will show that

they are really independent of ϕ and ψ. We will denote by D(S) the domain of S.

Proposition 5.6 • We have the following commutations

∆ σ′
t = (σ′

t ⊗ τ−t)∆ ∆ σt = (τt ⊗ σt)∆

∆ τt = (τt ⊗ τt)∆

4



• For all x ∈ D(S) we have S(x)∗ ∈ D(S) and S(S(x)∗)∗ = x.

• We have χ (R ⊗ R)∆ = ∆ R, where χ denotes the flip map on A ⊗ A.

Proposition 5.7 For all a, b ∈ Nψ we have (ψ ⊗ ι)((a∗ ⊗ 1)∆(b)) ∈ D(S) and

S
(

(ψ ⊗ ι)((a∗ ⊗ 1)∆(b))
)

= (ψ ⊗ ι)(∆(a∗)(b ⊗ 1)).

The linear span of such elements (ψ ⊗ ι)((a∗ ⊗ 1)∆(b)) is a core for S.

For all a, b ∈ Nϕ we have (ι ⊗ ϕ)(∆(a∗)(1 ⊗ b)) ∈ D(S) and

S
(

(ι ⊗ ϕ)(∆(a∗)(1 ⊗ b))
)

= (ι ⊗ ϕ)((1 ⊗ a∗)∆(b)).

The linear span of such elements (ι ⊗ ϕ)(∆(a∗)(1 ⊗ b)) also gives a core for S.

We can now argue that R, τ and S do not depend on the particular choice of ϕ and ψ. Because of the

previous proposition we get that S does not depend on ψ, and neither on ϕ. But from proposition 5.6

we get that

τt

(

(ι ⊗ ω)∆(a)
)

= (ι ⊗ ωσ−t)∆(σt(a))

for all ω ∈ A∗, a ∈ A and t ∈ IR and hence the density condition in definition 3.1 gives that τ does

not depend on ψ. Analogously it does not depend on ϕ. Because S = R τ− i
2

we see that R does not

depend on ϕ or ψ. So we can call (S, R, τ) the antipodal triple of the reduced C∗-algebraic quantum

group (A, ∆). We call R the unitary antipode and τ the scaling group of (A, ∆).

From now on we will fix a faithful left invariant approximate KMS weight ϕ on (A, ∆) and we will make

a particular choice for ψ, namely ψ = ϕR. Because of proposition 5.6 ψ is right invariant, and it is

obviously approximately KMS.

6 Relative invariance properties

Before we can define, in the next section, the modular element as the Radon-Nikodym derivative of the

right Haar weight with respect to the left Haar weight, we will need a certain commutation between the

Haar weights. To prove this we need a unicity result for our Haar weights. This is not the strongest

result we can prove (cfr. section 8) but we first need this version.

The proof of the next proposition can be given by lifting everything to the same von Neumann algebra,

using Radon-Nikodym there, and mimicking the proof of [3]. However also a more elementary proof is

possible, see [5].

Proposition 6.1 Consider a left invariant proper weight η on (A, ∆) such that there exists a number

λ > 0 satisfying η σt = λtη for all t ∈ IR. Then there exists a number r > 0 such that η = r ϕ.

This proposition can be used to prove the following.

Proposition 6.2 • We have the commutation ∆ τt = (σt ⊗ σ′
−t)∆ for all t ∈ IR.

• The automorphism groups σ, σ′ and τ commute pairwise.

• There exists a number ν > 0 such that

ϕ σ′
t = νt ϕ ψ σt = ν−tψ

ψ τt = ν−t ψ ϕ τt = ν−t ϕ

5



We call the number ν > 0 the scaling constant of (A, ∆). This terminology will be justified once we will

have established the uniqueness of the Haar weights in section 8. In order to satisfy the axioms of [8] one

needs this scaling constant to be one. We still do not have an example in which ν 6= 1, but we think the

appearance of ν is very natural in this theory.

Because of the previous proposition we can define a strictly positive operator P in H such that P it Λ(a) =

ν
t
2 Λ(τt(a)) for all t ∈ IR and a ∈ Nϕ. Then one can verify that P

1

2 ‘manages’ the multiplicative unitary

W , and hence we obtain, refering to definition 1.2 of [12], the following.

Proposition 6.3 The multiplicative unitary W is manageable.

7 The modular element

Let (Hψ, πψ,Λψ) be a GNS-construction for ψ. Then we prove that there is a unique ∗-isomorphism

θ : πψ(A)′′ → π(A)′′ such that θ πψ = π. Using this and the remarks in section 2 we can canonically lift

ψ to a weight ψ̃ on the von Neumann algebra Ã = π(A)′′. We can also lift ϕ to ϕ̃. From proposition 6.2

it follows that ϕ̃ σ̃′
t = νt ϕ̃ for all t ∈ IR where σ̃′ denotes the modular group of the normal semi-finite

faithful weight ψ̃. By the Radon-Nikodym theorem of [10], which is a generalization of [9], we obtain the

existence of a strictly positive operator δ̃ affiliated with Ã such that σ̃t(δ̃) = νt δ̃ and ψ̃(x) = ϕ̃(δ̃
1

2 x δ̃
1

2 )

for x ∈ Ã+ formally. It is easy to check that

W ∗(1 ⊗ π(x))W = (π ⊗ π)∆(x)

for all x ∈ A. Hence we can extend the comultiplication ∆ on A to a comultiplication ∆̃ on the von

Neumann algebra Ã by defining ∆̃(y) = W ∗(1⊗ y)W for all y ∈ Ã. In this section we want to prove that

∆̃(δ̃) = δ̃ ⊗ δ̃. Before we can do so we need the following lemma, which is interesting on itself because

it gives a serious meaning to the formula (ι⊗ ψ)∆(a) = ψ(a) δ−1 which exists on the algebraic level (see

[11]).

Lemma 7.1 Consider a ∈ Mψ̃ and v, w ∈ D(δ̃−
1

2 ). Then (ωv,w⊗̄ι)∆̃(a) ∈ Mψ̃ and

ψ̃
(

(ωv,w⊗̄ι)∆̃(a)
)

= ψ̃(a) 〈δ̃−
1

2 v , δ̃−
1

2 w〉.

Remark that ωv,w denotes the vector functional defined by ωv,w(x) = 〈xv,w〉. Using this lemma it is not

so difficult to prove the following lemma. We use the notation ∆̃(2) = (∆̃⊗̄ι)∆̃ = (ι⊗̄∆̃)∆̃.

Lemma 7.2 Consider a ∈ M+

ψ̃
and v ∈ D(δ̃−

1

2 ⊗ δ̃−
1

2 ) ∩ D(∆̃(δ̃−
1

2 )). Then

ψ̃(a) ‖(δ̃−
1

2 ⊗ δ̃−
1

2 )v‖2 = ψ̃
(

(ωv,v⊗̄ι)∆̃(2)(a)
)

= ψ̃(a) ‖∆̃(δ̃−
1

2 )v‖2.

Remembering that σ̃′
t(σ̃−t(x)) = δ̃it x δ̃−it for all x ∈ Ã and t ∈ IR and using the commutation rules of

propositions 5.6 and 6.2 it is easy to prove that ∆̃(δ̃) and δ̃⊗ δ̃ commute. The previous lemma gives then

the following.

Proposition 7.3 We have ∆̃(δ̃) = δ̃ ⊗ δ̃.

A standard trick now allows to prove that δ̃ is affiliated with π(A) in the C∗-algebra sense ([1],[13]). So

we can define the modular element of our reduced C∗-algebraic quantum group as the strictly positive

element affiliated with the C∗-algebra A such that π(δ) = δ̃. We can then pull down the properties of δ̃

and obtain that ∆(δ) = δ ⊗ δ, τt(δ) = δ for all t ∈ IR and R(δ) = δ−1. The fact that δ is affiliated with

A is a quantum version of the fact that the modular function of a locally compact group is continuous.
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8 Unicity of the Haar weights

Using the modular element defined in the previous section we can prove that every left invariant proper

weight on (A,∆) automatically satisfies the extra condition of proposition 6.1. Hence we obtain

Theorem 8.1 Consider a left invariant proper weight η on (A,∆). Then there exists a number r > 0

such that η = r ϕ.

By applying the unitary antipode R and using proposition 5.6 we can immediately deduce

Theorem 8.2 Consider a right invariant proper weight η on (A, ∆). Then there exists a number r > 0

such that η = r ψ.

9 The reduced dual of a reduced C∗-algebraic quantum group

In this section we construct the dual of a reduced C∗-algebraic quantum group following chapter 3 of [3]

and relying on [12].

Definition 9.1 We define

• The set Â as the norm closure of { (ω ⊗ ι)(W ) | ω ∈ B(H)∗ }.

• The injective linear map ∆̂ : Â → B(H ⊗ H) such that ∆̂(x) = ΣW (x ⊗ 1)W ∗ Σ for all x ∈ Â.

We use the flip map Σ on H ⊗H to guarantee that the dual weight constructed from ϕ will again be left

invariant, rather than right invariant. In [3] and [7] it is done in the same way, but on the algebraic level

of [11] the flips are left out.

Because we already mentioned the manageability of W we now get the following theorem for free, thanks

to theorem 1.5 and proposition 5.1 of [12].

Theorem 9.2 The set Â is a non-degenerate sub-C∗-algebra of B(H) and the mapping ∆̂ is a non-

degenerate ∗-homomorphism from Â into M(Â ⊗ Â) such that

• (∆̂ ⊗ ι)∆̂ = (ι ⊗ ∆̂)∆̂.

• ∆̂(Â)(Â ⊗ 1) and ∆̂(Â)(1 ⊗ Â) are dense subsets of Â ⊗ Â.

We will now introduce a notation which strengthens the analogy with the classical group case. We define

L1(A) to be the closed linear span of { aϕ b∗ | a, b ∈ Nϕ } in A∗. We use the notation (a ϕ b∗)(x) =

ϕ(b∗xa). For every ω ∈ L1(A) there is a unique ω̃ ∈ Ã∗ such that ω̃ π = ω and hence we can define the

contractive linear mapping π̂ : L1(A) → Â such that π̂(ω) = (ω̃ ⊗ ι)(W ). In the group case this is the

left regular representation of L1(G) on L2(G) given by convolution.

We also mention that the expression ω µ = (ω ⊗ µ)∆ turns L1(A) into a Banach algebra, and that π̂

becomes multiplicative this way. Now we want to define a left invariant weight on (Â, ∆̂). We start off

the same way as in [3] and copy their definition 2.1.6.

Definition 9.3 We define the subset I of L1(A) as follows:

I = {ω ∈ L1(A) | There exists a number M ≥ 0 s.t. |ω(x∗)| ≤ M ‖Λ(x)‖ for all x ∈ Nϕ } .

It is clear that I is a subspace of L1(A). By Riesz’ theorem for Hilbert spaces, there exists for every ω ∈ I

a unique element v(ω) ∈ H such that ω(x∗) = 〈v(ω),Λ(x)〉 for x ∈ Nϕ. We should think of ω 7→ v(ω) as a

part of the GNS-map of the still to be constructed dual weight ϕ̂. Hence we want ϕ̂(π̂(ω)∗π̂(ω)) = ‖v(ω)‖2

for all ω ∈ I. We will construct ϕ̂ with the inverse GNS-construction of [4]. So we have to define the

modular group of ϕ̂.
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Proposition 9.4 The expression ρt(ω)(x) = ω(δ−it τ−t(x)), for ω ∈ L1(A), x ∈ A and t ∈ IR, defines a

norm continuous one-parameter representation ρ of IR on L1(A). There exists a unique norm continuous

one-parameter group σ̂ on Â such that σ̂t(π̂(ω)) = π̂(ρt(ω)) for all t ∈ IR and ω ∈ L1(A).

Using this one-parameter group σ̂ we can now execute the techniques of [4] and hence we get the following.

Proposition 9.5 There exists a unique closed densely defined linear map Λ̂ from D(Λ̂) ⊆ Â into H such

that π̂(I) is a core for Λ̂ and Λ̂(π̂(ω)) = v(ω) for all ω ∈ I.

There exists a unique KMS weight ϕ̂ on Â such that (H, ι, Λ̂) is a GNS-construction for ϕ̂. We have

moreover that ϕ̂ is faithful and that σ̂ is its modular group.

We have a remarkably easy proof for the following fundamental proposition.

Proposition 9.6 The weight ϕ̂ on (Â, ∆̂) is left invariant.

We now want to show that (Â, ∆̂) is actually a reduced C∗-algebraic quantum group. So we must produce

a right invariant approximate KMS weight on (Â, ∆̂). The most easy way to do this is the classical way

(see [3]), by producing the unitary antipode of (Â, ∆̂).

Proposition 9.7 There exists a unique ∗-antiautomorphism R̂ on Â such that R̂(π̂(ω)) = π̂(ω R) for all

ω ∈ L1(A). This ∗-antiautomorphism satisfies the relation χ (R̂ ⊗ R̂)∆̂ = ∆̂ R̂.

So we get that ϕ̂ R̂ is a right invariant KMS weight on (Â, ∆̂) and hence we can conclude the following.

Theorem 9.8 The pair (Â, ∆̂) is a reduced C∗-algebraic quantum group.

We call the pair (Â, ∆̂) the reduced dual of (A, ∆). In the next proposition we identify the antipodal

triple of (Â, ∆̂).

Proposition 9.9 • The linear space { (ω ⊗ ι)(W ∗) | ω ∈ B(H)∗ } is a core for the antipode Ŝ of

(Â, ∆̂) and Ŝ
(

(ω ⊗ ι)(W ∗)
)

= (ω ⊗ ι)(W ) for all ω ∈ B(H)∗.

• The ∗-antiautomorphism R̂ is the unitary antipode of (Â, ∆̂).

• There exists a unique norm continuous one-parameter group τ̂ on Â such that τ̂t(π̂(ω)) = π̂(ω τ−t)

for all ω ∈ L1(A). This one-parameter group τ̂ is the scaling group of (Â, ∆̂).

Finally we will give the multiplicative unitary of (Â, ∆̂) and from this we will be able to conclude a

Pontryagin duality theorem.

Proposition 9.10 We have for all x, y ∈ Nϕ̂ that

(ΣWΣ)(Λ̂(x) ⊗ Λ̂(y)) = (Λ̂ ⊗ Λ̂)(∆̂(y)(x ⊗ 1))

Hence we have that ΣW ∗Σ is the multiplicative unitary of (Â, ∆̂) in the GNS-construction (H, ι, Λ̂) for

ϕ̂. From definition 9.1 now follows the following fundamental theorem.

Theorem 9.11 The reduced C∗-algebraic quantum groups (A, ∆) and (Â̂, ∆̂̂) are isomorphic. More

specific, the mapping π : A → Â̂ is a ∗-isomorphism such that (π ⊗ π)∆ = ∆̂̂ π.

As a concluding remark we mention that ϕ̂̂ π = ϕ, although a priori we only know that ϕ̂̂ π and ϕ are

proportional.

8



References

[1] S. Baaj, Multiplicateurs non bornés. Thèse 3ème cycle, Université Paris 6 (1980).
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