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where Eo is the  strength  of  the  incident  electric field and is a 
dyadic  diffraction  coefficient.  The field of  (16) is that  due  to  an 
elemental  length dt of  the edge, and  the  total edge contribution 
may  be  obtained  by summing all elemental_ contributions in  a 
contour integral along  the edge. The  product 2-j is 

2 ; = [d& cos y + dL& sin y + dll,;; cos y 
- 

+ dl, I, q sin. 71 (17) 

and  it is necessary to use equations  (3-46A)  through (3-67) 
of Mitzner’s report to evaluate the  components  of  (16).  There is 
an error  in  the last term of Mitzner’s (346A),  and  the func- 
tion sin (0, + &)/2 appearing therein  must  be replaced with 

When the  components  of (17)  are  evaluated and inserted in 
sin Ga, - Pi)/2. 

(16), one  obtains  the expression 

sin 
- (DX - DL) - COS y 

SlIl p’ 1 
where  the  primed  diffraction  coefficients are physical optics 
terms.  It  might  be  noted  that  the  reader will not find (18)  written 
explicitly anywhere in Mitzner’s report,  nor  the  diffraction coef- 
ficients summarized  below. 

The  unprimed  diffraction  coefficients in  (18)  are identically 
those  of  Gchaeli, 

DL = Dm, Dll = D e ,  DX = D e ,  sin 8’. 
The primed diffraction coefficients  are 

sin Q 
Di = U+ - u- sin (nn - 0) 

cos a1 + cos @‘ cos a2 + cos (ns - 0‘) 

sin (b’ sin (n7r - 0‘) 
Oil = -U+ - u- 

cos a1 + cos @’ cosaz + cos (nn - f) 

Q cos (b D’ = -ui - cos p’ 
cos a1 + cos 9‘ 1 

+ u- [ (2 c o s ( n ~  - 
cos a2 + cos (n77 - @’) 

- cos p’ 1 
where  the  step  functions are 

1 ,  for “plus” face illuminated 

0, otherwise 

u-= { 1, for “minus” face illuminated 

0, otherwise. 

These  step  functions toggle the  components  of (20) through (22) 
on  or  off,  depending  on  whether  the  upper or lower face of  the 
wedge  is  illuminated by  the  incident wave. 

If  it were not for  the  primed  coefficients in Mitzner’s result 
(18),  it would be  identical t o  Michaeli’s (15). The reason for 
the  difference is that Mitzner’s diffraction  coefficients give the 
field due to the edge alone, while Michaeli’s includes  the con- 
tribution  from  the surface  as well as the edge. Thus Michaeli’s 
equivalent current  approach  extends Keller’s theory  of diffrac- 
tion [4] to directions  not on the Keller cone, while Mitzner’s 0 
incremental  length  diffraction  coefficient similarly extends 
Ufmtsev’s  theory [5]. 

As such,  the Keller-like coefficients in Michaeli’s solution will 
become singular along the  shadow  and reflection boundaries, 
while the Ufimtsev-like coefficients  in Mitzner’s solution will 
remain finite  there.  The singularities in Michaeli’s coefficients 
can be  attributed  to a  surface term  which is cancelled in Mitzner’s 
solution  by  the singularity in the physical optics  term.  The 
price one  pays  for  this highly  desirable  result is that two separate 
computations are  required for  any  finite edged body. One  is the 
edge contribution as given by (18), and  the  other is  a  physical 
optics integral  over the illuminated  surface of  the  body. 
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A Simple  Derivation of the  Basic  Design  Equation for 
Offset Dual  Reflector  Antennas  with  Rotational 

Symmetry and Zero  Cross  Polarization 

ROBERT A. SHORE 

Absfruct-A simple  geometric  derivation  is  given of the  equation  for 
designing an  offset dual  reflector  antenna with perfect  rotational symmetry 
and zero  cross  polarization. 

The  work  of several investigators [I  J -[3] has established that 
offset  dual  reflector  antennas can be designed with  perfect 
rotational  symmetry  and linear polarization to  within  the geo- 
metrical  optics  approximation.  These objectives  can be achieved 
with a  paraboloid  main reflector  and an ellipsoid or hyperboloid 
subreflector provided that  the  eccentricity of the  subreflector 
and  the relative orientations of the  axes  of  the  feed,  subreflector, 
and  main  reflector  satisfy  what is called here  “the basic  design 
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Fig. 1. Geometry of convex hyperboloidal system. 

equation.”  One  form of the basic  design equation was derived 
by Mizuguch e t  al. [21, [4] using  a somewhat  lengthy  argument 
based on obtaining  an  equation expressing the image on the  main 
reflector  aperture  of  an  arbitrary ray from  the feed center, while 
an equivalent and  more  convenient  form was obtained  by Dragone 
[3] using a conformal  mapping  argument.  The  purpose of this 
communication is to show that a simple geometric  argument 
suffices to derive the basic design equation. 

We consider the  four cases of a 1) convex hyperboloid, 
2) concave hyperboloid, 3) concave  ellipsoid, and 4) convex 
ellipsoid subreflector (see Figs. 1-4). In all cases the main  reflec- 
tor  focus is at F,, confocal  with  the  subreflector whose other 
focus is at F,. The  interfocal  distance is denoted  by 2c. The 
feed  axis F,I is determined  by  that  one of the  two  points of 
intersection  of  the main reflector  axis  with  the  parent subreflec- 
tor surface  which  is consistent  with  the  placement  of  the  main 
reflector  and  subreflector. This method  of  constructing  the feed 

‘axis,  due  to Dragone, is obtained  from his principle that  for  the 
reflector system to be rotationally  symmetric,  the  direction  of 
the  central ray must  be unchanged after consecutive reflections 
at  the  actual  subreflector,  the main reflector,  infinity (regarding 
the  paraboloid as the limiting case of an  ellipsoid with  one  focus 
at  infinity),  and  the  parent  subreflector surface. 

Consider  first the convex hyperboloidal system of Fig. 1. 
Applying the law of sines to  the triangle FoFII ,  

sin (a) sin [n - (a + B)] sin (0) 
r2 2c TI 

-- - - - (1) 

with rl and r2 given by a standard  polar  form  for  conic  sections 

(c/e)l e2 - 1 I (c/e)(e2 - 1) 
rl = 

e cos (a) + 1 e cos ( p )  - 1 
: r2 = 

and  where e is the  subreflector  eccentricity (e> 1 for  hyperboloid, 
0 < e < 1 for ellipsoid)  and a and /3 are the angles formed  by 
the  subreflector  axis FoFl with  the  feed axis and  the  paraboloid 
axis, respectively. The first equality of (1) gives 

2 e s i n ( a ) - s i n ( a + p ) - e 2   s i n ( a - b ) = o  (2) 

readily transformable to  

I e2 - 1 I sin (0) 
(e2 + 1) cos (0) - 2 e  

tan (a) = 

while the second equality yields 
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Fig. 3. Geometry of concave ellipsoidal system. 
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Fig. 4. Geometry of convex ellipsoidal system. 

Equations (3) and (5) are the  Japanese  form of the basic design 
equation. Adding and  subtracting (2) and (4) gives 

sin (a) + sin @) - e sin (a - 0) = 0 (6 )  
and 

e[sin (a)  - sin (b)] - sin (a  + p) = 0. (7) 

Taking the  difference  of (6) and (7) and rearranging gives 
e +  1 

tan ( 4 2 )  = - tan ( O D )  (8) 
l e -  11 

which is Dragone’s form  of  the basic equation. (Dragone uses 
2a and 2p to  denote  the angles we call a and 0, respectively.) 

For the concave hyperboloidal system of Fig. 2, the law of 
sines applied  to triangle F,F,I again gives (l), now with 

- 1) (cle)l e2 - 1 I 
rI = 

e cos (a) - 1 e cos (0) + 1 
r2 = 

The resulting equations are thus  the same as those for the  con- 
vex hyperboloid  with a and 0 interchanged. 

For  the concave  ellipsoidal system,  the  same  procedure as  used 
for  the convex hyperboloidal system starting  with  the law of sines 
applied to triangle F o F I I  of  Fig. 3 again yields (3), (5), and (8). 
The design equations  for  the convex  ellipsoidal system  of Fig. 4 
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are then readily shown  to be the  same as those  for  the convex 
ellipsoidal  system with IY and f l  interchanged. 
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Comments on “A New  Method of Analysis of the  Near 
and  Far Fields of Paraboloidal Reflectors” 

HEWING BACH 

In  the above paper‘  the  radiated far  field from a reflector  an- 
tenna is predicted  by a “new” method,  that  determines  the far 
field by a  spherical wave expansion  of  the near  field on a  sphere 
enclosing the  antenna,  once  the near  field has been found using 
the  geometrical  theory  of  diffraction (GTD). However, this  tech- 
nique of  combining  a  spherical near-field (SNF)  transformation 
and a  near-field computation based on  the geometrical theory  of 
diffraction is identical to  the  SNFGTD  method originally  used by 
F. Jensen an! F. H. Larsen in 1977 [ l ] .  The  method was  de- 
scribed in  detiil  by H. Bach in the  report [2] ,  the  contents of 
which were presented  at  the NATO  Advanced Study  Institute in 
Norwich  1979.  In  the following years  the  method was further  in- 
vestigated by several researchers. Thus in 1981 an  analysis of  its 
accuracy as compared to  physical optics (PO) and  moment  meth- 
ods (MM) was performed  by Bach, Frandsen,  and  Larsen.  Some 
of  their results  are reported in [3], which also contains a  descrip- 
tion of the near-field  calculation and  the  transformation  tech- 
niques. Further analyses and  applications were  presented  in [4] - 
[6] ~ and  recently  the  method has  been mentioned in the  book  by 
Dr. B. Westcott [7] .  

In their  paper’  Narasimhan and  Christopher claim that  “it is 
evident  that  the  present  method gives very good  agreement  with 
measured results” and later that the  results can be made still 
more  accurate  by improving the near-field calculation  and  by  in- 
creasing the  number  of spherical modes  in  the near field to  far- 
field transformation.  Although  this  has  not been done,  one can 
read  in the  abstract  that “it is demonstrated  that  the  technique 
proposed can predict  the fields radiated by  the reflector with 
greater accuracy by comparing the calculated results with  the 
available measured results.” Thus  it is indicated  to  the reader that 
the  SNFGTD  method is superior to  other  methods in  this  respect. 

In [3] ,  which was brought  to  the  attention of Narasimhan and 
Christopher  by  the referee of their  paper,  the curves shown in 
Fig. 1  were presented. These  curves demonstrate  that  for a 20 
wavelength  reflector antenna  fed  by a dipole, practically identical 
H-plane patterns are obtained using SNFGTD,  moment  methods 
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Fig. 1. Comparison of SNFGTD, mm, and PO for 20 wavelen,gh reflector 
antenna. 

and physical optics.  The  only significant  differences occur in the 
region beyond  120”  where physical optics  (not using far field 
GTD) differs  from  the  other curves as could  be  expected.  Thus, 
in  1981,  it  had been demonstrated  that  the  method  when used 
to calculate the  H-plane  pattern  of a 20 wavelength antenna 
excited  by a dipole yields  results  which  are  practically identical 
to  those  of  other  methods. 

In  order  to restrict this  communication  as  much as  possible, I 
shall comment on only  one of Narasimhan  and  Christopher’s 
results, namely  the  H-plane  radiation  pattern  shown  in Fig.  2 of 
their  paper.’ There  they consider  a  focused  parabolic reflector 
antenna  with a diameter D = 10.65 wavelengths,  an F/D ratio = 
0.25  and  illuminated  by a dipole, a configuration  for  which Afifi 
[8]  made  measurements in 1967.  First  of all, serious errors are 
observed  in  Narasimhan and Christopher’s plot of the PO-GTD re- 
sults of Koyoumjian  [9].  For instance the level of  the  first side- 
lobe, as computed  by Narasimhan and  Christopher, is coincident 
with Afifi’s measurements,  but  differs  from physical optics  by 3 
dB  approximately. This  implies that physical optics  predicts  the 
level of the first  sidelobe with an error of  3 dB  approximately, a 
fact  that I feel must  be a big surprise to  most  antenna engineers. 
Furthermore, while  measured and calculated  results are almost 
coinciding on  the  center  part of Kouyoumjian’s  curves they dif- 
fer strongly in Narasimhan and Christopher’s plot. These dis- 
crepancies may  be  due to bad plotting  techniques,  but in any 
circumstance  it is not easy to  accept  the  conclusions of Narasim- 
han  and  Christopher  with regard to  the-accuracy  of  the  SNFGTD 
method based on  this  background. 

In Figs. 2(a) and 2(b) are presented  patterns  for  the  antenna in 
question  computed  at Technical  University  of Denmark  by  SNF- 
GTD  and physical optics  supplemented  by far field GTD in the 
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