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1 Introduction

The seminal transition from a deconfined phase to a confining one is one of the most

important processes in elementary particle physics. It is of relevance both for the physics

of the early universe and for the process of transforming quark-gluon plasma into the

observed hadrons in the course of heavy-ion collisions. In addition to the observational and

experimental motivations, also from a theoretical point of view the study of the deconfined

to confining transition is a fundamental and poorly understood building block of QCD.

Some time after the discovery of the holographic duality, it has been realized that the

gravitational backgrounds may serve as useful laboratories to study separately confining

and deconfined dynamics and then also the transition between them. A variety of holo-

graphic backgrounds have been proposed for that purpose; some of them are bottom-up

models and others are top-down ones.

In the early years of the AdS/CFT correspondence, phase transitions were primarily

studied in the equilibrium setting by comparing the free energies of two distinct dual

gravitational backgrounds. The issue of describing a passage through the phase transition

in real time has only been addressed quite recently in a number of works, starting from a

linearized analysis [1, 2] to fully dynamical studies of phase separation and domain wall

dynamics [3–10].

These studies could deal successfully primarily with cases where both phases of the

relevant theories were deconfined. The full gravitational description in the most physically

interesting case of a transition between a confining and a deconfined phase has proved

so far to be prohibitively difficult, apart from the pioneering work [11] dealing with the

time evolution of plasma-balls. The goal of the present paper is to propose a simple

description of the coexisting phases and domain walls from the boundary field theory point

of view, which could serve potentially as a proxy for the full gravitational description in

the same sense as hydrodynamics corresponds to dual gravitational backgrounds through

the fluid/gravity duality [12]. We believe, however, that the range of applicability of the

proposed description is in fact very general and goes beyond holography.

Let us mention here two lines of research, whose scope partially overlaps with our

approach.

In [4], a boundary description of evolving domain walls in theories with two deconfined

phases was proposed in terms of second order “spatial” hydrodynamics. Since our main

focus of interest are theories with the confining/deconfined transition, a purely hydrody-

namic description would not be applicable. Moreover, we would like to obtain analytically

the very simple looking domain wall profiles which are seen in a wide variety of holographic

models.

Reference [13] studied Linde’s approach to tunneling at finite temperature [14, 15]

in a theory with the confining/deconfined transition through a certain specific Ansatz

on the gravitational side. Our approach is, in contrast, based on boundary field theory

considerations and is a-priori applicable to very general dynamical configurations including

hydrodynamic flows on the deconfined side. There are, nevertheless, marked qualitative
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similarities as a scalar field with a double well kind of potential appears naturally both

here and in [13] (see also the earlier work [16]).

Our present work is based on a prototype model utilizing the idea of [17] of compactify-

ing the Euclidean time coordinate and one space coordinate on an S1. The analysis of this

model made in [17] and [18] yielded the holographic confining/deconfined phase diagram.

The two dimensional sub-manifold of the full geometrical background that is spanned by the

compact coordinate and the holographic coordinate, can have a topology of either cylinder

(cy.) or a cigar (ci.). It is well known that for a ci. topology that involves the Euclidean

time direction the background is that of a black-hole and it is the dual of the thermal

deconfined phase. On the other hand the ci. that involves a space coordinate corresponds

to a confining phase [19]. For backgrounds that depend only on the holographic coordinate

there are only two non-trivial and non-singular possibilities that are depicted in figure 1.

A numerical holographic study of a static domain wall interpolating between back-

grounds that correspond to a confining and deconfined phases at T = Tc was made in [20].

In principle a similar type of analysis could be done also for a dynamical domain wall at

T 6= Tc. However, the gravitational description of such a composite system is extremely

complicated. Because of that we adopted in this paper a strategy of analyzing the sys-

tem at the level of the energy-momentum tensor of the boundary field theory, and use

the known numerical plasma-ball domain wall solution [20] as additional holographic input

which constrains both the overall structure and the precise coefficients of the field theory

energy-momentum tensor. The main observation from the analysis of the data from [20] is

that, in particular, the energy density throughout the domain wall can be fitted to a good

precision with a simple Ansatz involving the hyperbolic tangent function.

The guideline idea of this paper is to write down the energy momentum tensor as a

linear combination of the energy-momentum tensors of the two coexisting confining and

deconfined phases and of the domain wall. The linear combination is controlled by a scalar

field γ(x, t) which in the static case takes the form of a hyperbolic tanh function of x the

coordinate perpedicular to the domain wall. We identified two options for the interpolation

and the dependence of the surface tension on γ. We find a very good fit with the numerical

results for both of these two options.

We determine an action for γ. The solution of the corresponding equations of motion

for the static case is the hyperbolic tanh function mentioned above. For the non-static

case of T 6= Tc we couple the action of γ to a hydrodynamical action so that the full action

is built from the “fields” γ and T the temperature. It turned out that the coupling to the

hydrodynamics rendered the symmetric potential of γ with two minima into an asymmetric

one. For a small deviation from the critical temperature we solve the equations of motion

and determine an accelerating domain wall solution.

We then present several applications based only on the general structure of the pro-

posed energy-momentum tensor: (i) First we link its parametrization to the surface tension

of the domain wall. (ii) Then we compare equations for an equilibrium circular droplet

with standard thermodynamic considerations. (iii) Finally we reproduce the formula for

thermodynamic nucleation probability from [21] using Euclidean solutions as suggested

by Linde [14, 15].
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The description proposed in the present paper was developed based on a conformal

version of the holographic model [17] for which there exists the numerical solution of the

domain wall [20]. We believe, however, that the resulting framework should have a much

more general range of applicability.

Indeed quite different (nonconformal) holographic models, which have a 1st order phase

transition between two deconfined phases exhibit a domain wall profile which is very well

fitted by a tanh function [7, 9]. Since an underlying tanh shape of the domain wall arises

analytically in our framework, this suggests that the framework could also be applied in

those settings. We verified this explicitly in the case of the nonconformal model of [5] also

with two deconfined phases.

Let us mention finally an interesting interpretation of our proposed framework. Ex-

tracting the free energy as a quartic polynomial in γ essentially provides a Landau type

description of a 1st order phase transition. Our formulation (8.4), in one of the two op-

tions, can be then understood as promoting the Landau order parameter γ to a dynamical

effective field and coupling it in a natural way with hydrodynamic degrees of freedom. In

this sense our approach bears some similarity that of [22], for example, where the coupling

of Landau-like order parameter to hydrodynamics was also used to study the dynamics

of a 1st order phase transition. In our approach, however, the hydrodynamics and the

order parameter are degrees of freedom of a single theory, and only the deconfined phase

is described through hydrodynamics.

The study of the holographic transition between confining and deconfined phases and of

plasma balls was presented in many other publications. In addition to the ones mentioned

earlier, a partial list includes [23–28] and references therein, [29–41]. Recently, applications

of holography to first order phase transitions in the early universe and to the production

of gravitational waves has received a lot of attention [42–45].

The paper is organized as follows. After the introduction at section 1, we review

in section 2 the basic holographic setups that correspond to a confining phase and to a

deconfining one. We use the prototype of Witten’s model with a (ci, cy) geometry for the

confining phase and (cy, ci) geometry for the deconfined phase. We spell out the geometrical

parameterization and its corresponding parameters of the large Nc gauge theory for both

the low and high temperature phases. We then review the computation of the difference of

the classical gravity action between the two phases that translates to the difference of the

free energies in boundary field theory, and present a sketch of the phase diagram. Section 3

is devoted to the plasma-ball domain wall. We review the numerical solution of the domain

wall [20] that interpolates between the confining and deconfined phases. The structure of

the domain wall is then analyzed in section 3.2. We discuss some observations on how

this structure arises in gauge/gravity duality in section 3.3. The next section, section 4

is devoted to the covariant description of the domain wall from the point of view of the

boundary field theory. The general structure of the energy-momentum tensors is discussed

in section 4.1 and in section 4.2: we address the comparison of the energy-momentum

tensors with the holographic results which can be done by using two different options.

We denote them as option A and option B. We compare the solution with the numerical

solution and analyze the equation of motion for γ. section 5 is devoted to an action density
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formulation of the system. We start with an action for perfect fluid hydrodynamics in

section 5.1, and then in section 5.2 we present the action for the scalar field γ and finally

in section 5.3 we write down the final formulation. In section 6 we discuss some generic

physical applications. The domain wall surface tension is described in section 6.1. Next

we analyze the circular droplet in section 6.2. Thermodynamic nucleation probability and

Euclidean solutions is determined in section 6.3. For T 6= Tc the domain wall is not static.

The accelerating planar domain wall solution is written down in section 7. This includes the

effective actions and the corresponding accelerating solutions in section 7.1 and the coupling

to hydrodynamics in section 7.2. Comments on generality are made in section 8 and in

section 9 we summarize, conclude and write down several open questions. In appendix A

we generalize the construction of the domain wall also to a six-dimensional setup. In

appendix B we checked that indeed our description works quite well also for domain walls

in the non-conformal bottom-up holographic model of [5] with two deconfined phases for

which we had numerical data. Finally in appendix C we derive the nµnν terms in the

energy-momentum tensor in the Witten model from an action.

2 The basic holographic setup

To describe using holography the transition between the confining and deconfined phases

of the YM theory, one needs a holographic background that at low temperature is dual to

the former phase and at high temperature to the latter. The distinction between these two

phases can be made by the expectation value of a rectangular Wilson line that stretches

along the time and one space directions: the confining and deconfined phases are charac-

terized by an area and perimeter law behaviours of the expectation value of such Wilson

lines respectively. In [19] the holographic stringy duals of Wilson lines were analyzed and

sufficient conditions for confining background were identified. These criteria apply both to

bottom-up and top-down confining backgrounds. In this work we will be interested mainly

in the latter but our conclusions will apply also to the former scenarios. Several different

gravitational backgrounds that are confining backgrounds were written down (for a review

see [28] and references therein). It is well known that the gravitational duals of deconfined

systems take the form of black-hole backgrounds.

Thus, the idea is to determine a background that interpolates between these two types

of backgrounds. At temperature equal to the critical temperature a static domain wall

background is anticipated. This case was analyzed thoroughly in [20] for a background

that asymptotes to AdS5 × S5 at the boundary. At temperatures that are below or above

the critical temperature the system should take the form of a dynamical domain wall.

Originally, the gauge/gravity correspondence dealt with supersymmetric systems. Var-

ious mechanisms have been incorporated to break supersymmetry. A prototype mechanism

of supersymmetry breaking is based on compactifying one space-time coordinate on S1 and

imposing anti-periodic boundary conditions on fermionic fields [17]. When the compact-

ified coordinate is the Euclidean time it corresponds to introducing temperature on the

dual boundary field theory. Alternatively one can compactify one space-coordinate. In
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high temperature phaselow temperature phase

τ φτ φ

πR

uT

uΛ

u→

uΛ

uT

u→∞ ∞

β/2 πR β/2

Figure 1. The topology of the solutions which dominate in the low temperature (confined) and

high temperature (deconfined) phases of the compactified D3 brane model, as reflected in the (τ, u)

and (φ, u) submanifolds.

this case, in the limit of zero radius of compactification the dimension of the boundary

field theory is reduced by one.

The two dimensional sub-manifold of the full geometrical background that is spanned

by the compact coordinate denoted by either τ for the Euclidean time direction or φ for

the space direction and the holographic coordinate, denoted by u can have a topology of

either cylinder (cy.) or a cigar (ci.). It is well known that for a ci. topology that involves

the τ direction the background is that of a black-hole. Using the criteria for a confining

background mentioned above, it is easy to realize that a ci. background with τ direction is

not dual to a confining phase. On the other hand a ci. background along the φ direction

does admit confinement.

It turns out that for backgrounds that correspond to the near horizon limit of large

number of Dp branes with one time and one space directions compactified there are so-

lutions to the corresponding Einstein equations of motion that depend only on the holo-

graphic coordinate u with the following topologies

((τ, u), (φ, u)) = (cy, cy) or (cy, ci) or (ci, cy) or (ci, ci) . (2.1)

The first case (cy, cy) is flat and the last (ci, ci) is necessarily singular.1 Thus we are left

with only two setups which are non-trivial and non-singular: the (ci, cy) and (cy, ci) cases

that are depicted in figure 1 where we denote by β and 2πR the circumference of the

compact time τ and space φ directions respectively.

The analysis of a holographic backgrounds that admit this structure was performed

in [18]. To understand in detail the properties of the geometrical background and its dual

boundary field theory, we briefly review the case of D3 branes. We will refer to this model

as a d = 3 Witten model (with d being the number of spatial dimensions or equivalently

the noncompact space-time dimensions), when we want to emphasize its dimensionality or

contrast with the original one [17] with a nontrivial dilaton profile. The first setup is with

a cylinder in the (τ, u) sub-manifold and a cigar r in the (φ, u), namely the (cy, ci) set

1Note, however, that a metric that depends not only on u but also on other coordinates can be associated

with a non-singular (ci, ci) topology.
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up. We refer to it as the low temperature setup. The boundary field theory dual to this

background in the limit of R → 0 relates to 3d pure YM-like theory. In [18] the background

of large number of D4 branes was described [46]. This corresponds in the same limit to

4d YM-like theory. The reason we take the case of D3 branes is that it is conformal and

hence somewhat easier to handle. We then describe also the high temperature setup of the

(ci, cy) topology.

2.1 The (cylinder,cigar) low temperature phase

The (cy, ci) background, which is a solution of the type IIB string theory background is

characterized by the metric, the RR four-form and a dilaton given by

ds2 =

(
u

RD3

)2 [

dτ2 + δijdxidxj + f(u)dφ2
]

+

(
RD3

u

)2
[

du2

f(u)
+ u2dΩ2

5

]

,

F(5) =
2πNc

V5
ǫ5, eφ = gs, R4

D3 ≡ 4πgsNcl
4
s , f(u) ≡ 1 −

(
uΛ

u

)4

, (2.2)

where xi (i = 1, 2) are the uncompactified world volume coordinates of the D3 branes. The

volume of the five sphere Ω5 is denoted by V5 and the corresponding volume form by ǫ5, ls
is the string length and gs is the string coupling. As discussed above, the sub-manifold of

the background spanned by φ and u has the topology of a cigar (as on the left-hand side of

figure 1) where the minimum value of u at the tip of the cigar is uΛ. The tip of the cigar

is non-singular if and only if the periodicity of φ is

δφ =
4π

3

(

R4
D3

u2
Λ

)1/2

= 2πR (2.3)

and we identify this with the periodicity of the circle that the 3 + 1-dimensional gauge

theory lives on.

The parameters of this gauge theory, the four-dimensional gauge coupling g4, the low-

energy three-dimensional gauge coupling g3 , the glueball mass scale Mgb, and the string

tension Tst are determined from the gravity background in the following form:

g2
4 = (2π)gs, g2

3 =
g2

4

2πR
=

(√
gs

πNc

uΛ

l2s

)1/2

, Mgb =
1

R

Tst =
1

2πl2s

√
gttgxx|u=uΛ

=
1

2πl2s

(
uΛ

RD3

)2

=

√
4πNcgs

4R2
=

√
λ4

R2
, (2.4)

where λ4 ≡ 2g2
4Nc, Mgb is the typical scale of the glueball masses computed from the

spectrum of excitations around the background given2 in (2.2), and Tst is the confining

string tension in this model (given by the tension of a fundamental string stretched at

u = uΛ where its energy is minimized). The gravity approximation is valid whenever

λ4 ≫ R, otherwise the curvature at u ∼ uΛ becomes large. Note that as usual in gravity

2In fact, as was discussed in [47] part of the glueball spectra in holography is described by closed strings

in this background and not by the spectra of fluctuations of the bulk fields.
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approximations of confining gauge theories, the string tension is much larger than the

“glueball” mass scale in this limit determined for excitations of the bulk fields. As was

mentioned above, the Wilson line of this gauge theory admits an area law behavior [46], as

can be easily seen using the conditions for confinement of [19].

Naively, at energies lower than the Kaluza-Klein scale 1/R the dual gauge theory is

effectively three dimensional; however, it turns out that the theory confines and develops a

mass gap of order Mgb = 1/R, so (in the regime where the gravity approximation is valid)

there is no real separation between the confined three-dimensional fields and the higher

Kaluza-Klein modes on the circle. As discussed in [17], in the opposite limit of λ4 ≪ R/ls,

the theory approaches the pure 2 + 1 dimensional pure Yang-Mills theory at energies small

compared to 1/R, since in this limit the scale of the mass gap is exponentially small

compared to 1/R. It is believed that there is no phase transition when varying λ4ls/R

between the gravity regime and the pure Yang-Mills regime, but it is not clear how to

check this.

2.2 The (cigar,cylinder) high temperature phase

The high temperature phase which associates with the (ci, cy) setup of figure 1. is described

by the following gravity background

ds2 =

(
u

RD3

)2 [

f(u)dτ2 + δijdxidxj + dφ2
]

+

(
RD3

u

)2
[

u2dΩ2
5 +

du2

f(u)

]

,

F(5) =
2πNc

V5
ǫ5, eφ = gs, R4

D3 ≡ πgsNcl
4
s , f(u) ≡ 1 −

(
uT

u

)4

, (2.5)

in the same notations as in (2.2).

In a similar manner to the low temperature phase, now to avoid a singularity at the

tip of the cigar, if we require that the periodicity for the τ coordinate obeys the same

condition as in (2.3) but now with uT replacing uΛ. This replacement has to be made also

in the relations between g2
4 and g2

3 and the parameters of the background. An important

difference between the low and high temperature phases is that now following [19] the

string tension vanishes since

Tst =
1

2πl2s

√
gttgxx|u=uT

=
1

2πl2s

(
uΛ

RD3

)2
√

1 −
(

uT

u

)

u=uT

= 0 . (2.6)

2.3 Free energy and the phase diagram

The determination of the holographic phase diagram for the model of [46] was performed

in [18]. Here we summarise the results and convert them to Witten’s of three dimensional

YM theory [17]. In order to decide which background dominates at a given temperature

T one needs to compute the free energies of these backgrounds, given by the classical

supergravity action times the temperature, and see which one has a lower free energy. As

usual, the classical action actually diverges and needs to be regulated and renormalized.

This can be achieved by determining the difference between the actions of the two solutions,

which turns out to be finite. Using this method it is clear that the free energies of the two
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solutions coincide when the (asymptotic) circumferences of the two circles are equal, β =

2πR, since the two solutions are identical then except for a relabelling of the coordinates.

Thus, at this temperature Tc = 1/2πR there is a first order phase transition between the

two backgrounds. The transition is of first order since the solutions do not smoothly connect

there, but continue to exist as separate solutions both below and above the transition. It is

easy to see that the background (cy, ci) dominates at low temperatures T < 1/2πR, while

the background (ci, cy) dominates at high temperatures, T > 1/2πR.

The physical interpretation of this phase transition is straightforward. As was men-

tioned above, the stringy dual of the Wilson line stretched between an external quark

anti-quark pair located on the boundary admits an area low behaviour at low temperature

and a perimeter law at the high temperature phase.

Similarly, a computation of the value of the free energy in the two phases (which re-

quires adding appropriate counter-terms) yields a result of order N0
c in the low-temperature

phase, and a result of order N2
c in the high-temperature phase.

As one increases R
ls

compared to the scale set by the four dimensional gauge coupling

λ4, the supergravity background becomes highly curved, and the theory at low energies

approaches the three dimensional pure Yang-Mills theory. It is believed that the confining

deconfined transition described above is connected to the transition of the large Nc pure

Yang-Mills theory in this limit. However, this connection is somewhat subtle [20], since even

for large R
lsλ4

it is clear by the symmetry arguments described above that there is always

a phase transition line at T = 1/2πR while the confining deconfining phase transition in

the pure Yang-Mills theory occurs at a temperature of order ΛQCD ≪ 1/R. Due to the

T ↔ 1/2πR symmetry there must then be at least one more phase transition line at a

temperature much larger than 1/R. Thus, it was argued in [18] that new phases must

appear as one approaches the three dimensional Yang-Mills limit. The phase structure of

this theory in that limit includes several phase transition lines, which, presumably, all join

into the line T = 1/2πR in the gravity limit. A minimal conjecture for the phase structure

is depicted in figure 2.

3 The plasma-ball domain wall

In this section we discuss various aspects of the domain wall between confining and decon-

fining phases from the holographic perspective. This will serve to motivate the extended

hydrodynamic picture for the domain wall and coexisting phases which we introduce and

study in the remaining part of the paper.

3.1 Numerical study of the domain wall in gauge/gravity duality

The most important motivation for our work is the numerical study of the structure of

the domain wall in gauge/gravity duality. The main observation is that, in particular, the

energy density throughout the wall can be fitted to a good precision with a simple Ansatz

involving the hyperbolic tangent function. We will study this in detail in the case of the

(cy, ci) to (ci, cy) confinement-deconfinement transition, but the same has been shown to

– 9 –
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confined

deconfined
1/2π

λ4ls/R

TR

Figure 2. Possible phase diagram of the compactified D3 brane model as a function of the gauge

coupling λ4 and the temperature.

hold also for transitions between two (deconfined) black hole phases in five dimensional

Einstein-dilaton gravity [7].

In [20] the domain wall solution between a confining (cy, ci) geometry and the decon-

fining (ci, cy) geometry was constructed numerically by solving the Einstein equations for

higher dimensional gravity. More precisely, the authors of this article considered planar

domain wall solutions to the Einstein gravity with a cosmological constant in five and six

dimensions, which are closely related to AdS5 (d = 3) and AdS6 (d = 4) spaces, respec-

tively. Notice that the six dimensional geometry differs from the holographic model [17, 46]

of compact D4 background as there is no dilaton (or the dilaton is constant) and the back-

ground is conformal. We will discuss here the domain wall in this five dimensional geometry,

and the results for the six dimensional geometry are given in appendix A. The numerical

study is restricted to the critical temperature where the solution is static. Generalizations

to spherical domains [36] and real-time evolution producing such spherical plasma balls [11]

have been also considered in the literature.

The confining five-dimensional geometry (AdS5 with one spatial direction compactified)

is the reduction of (2.2) to five dimensions:

ds2
con. =

(
u

RD3

)2

(dτ2 + δijdwidwj + f(u)dφ2) +

(
RD3

u

)2 du2

f(u)
(3.1)

where

f(u) = 1 −
(

πRD3Tc

u

)4

, (3.2)

R2
D3 is the AdS radius, τ is the euclidean time, φ is the compactified spatial coordinate,

the indices i, j run from 1 to 2, and the critical temperature is related to the radius of

compactification through Tc = 1/2πR. This solution and the deconfining geometry at
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critical temperature,

ds2
decon. =

(
u

RD3

)2

(f(u)dτ2 + δijdwidwj + dφ2) +

(
RD3

u

)2 du2

f(u)u2
(3.3)

satisfy the five-dimensional Einstein equations with a cosmological constant,

Rµν = − 4

R2
D3

gµν . (3.4)

The interpolating geometry between these two geometries was solved numerically by

using a special set of coordinates (see [20] for details) but we find it useful to write it in

Fefferman-Graham coordinates:

ds2 =
1

z2

[

A(z, x)dτ2 + B(z, x)dφ2 + C(z, x)dy2 + D(z, x)dx2 + dz2
]

, (3.5)

where y denotes the spatial coordinate parallel to the domain wall: y = w1. The coordinates

z and x can be understood to be nontrivial combinations of w2 and u. In Fefferman-

Graham coordinates, the holographic coordinate z vanishes at the UV boundary (so that

it is z ∼ 1/u near the boundary). The spatial coordinate x is interpreted as the coordinate

perpendicular to the wall. The factors A, B, C, and D depend on the coordinates z and x

only. The units of the solution (also setting RD3 to one) are chosen such that

A , B , C , D → 1 as z → 0 . (3.6)

After this the overall energy scale ∼ Tc is the only free parameter. The solution enjoys a

Z2 symmetry which reflects the symmetry of the setup under the exchange τ ↔ φ at the

critical temperature:

A(z, x) = B(z, −x) , C(z, x) = C(z, −x) , D(z, x) = D(z, −x) , (3.7)

where we chose the center of the domain wall to lie at x = 0. In our conventions the

solution asymptotes to the deconfined geometry (3.3) (confined geometry (3.1)) as x → −∞
(x → +∞).

Before going to the structure of the domain wall in these solutions, we discuss the qual-

itative behavior and the topology of the interpolating geometry. In the bulk the geometry

ends at a horizon at some z = zh(x), where

A(zh(x), x) = 0 , (x ≤ 0) ; (3.8)

B(zh(x), x) = 0 , (x ≥ 0) . (3.9)

These conditions correspond to the end points of the cigars in the confining (cy, ci) and

deconfining (ci, cy) geometries, respectively. In Fefferman-Graham coordinates these end

points are actually second order zeroes. In the middle of the wall, x = 0, both the con-

ditions (3.8) and (3.9) are satisfied at some (finite) zh. Therefore the x = 0 slice of the

interpolating solution has the topology (ci, ci).

– 11 –
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0 1 2 3 4
2π zTc0.0

0.5

1.0

1.5

2.0

(z)

x = -∞

x = 0

x = ∞

Figure 3. Evolution of the metric component A(z) = z2gττ (z) in the Fefferman-Graham co-

ordinates with varying x. The dashed and dotted magenta curves show the metric in the cigar

(deconfined) and cylinder (confined) limits, respectively. The red curve is the metric in the middle

of the domain wall, x = 0. The dot-dashed thin blue curve is the cigar geometry with z-dependence

rescaled by the factor 1.41.

This observation may be verified by plotting the components of the metric: see figure 3

for the shape of A(z, x) in the middle as compared to the limiting functions3 at x → ±∞.

Due to the symmetry (3.7), B(z, x) shows the same behavior (with x = −∞ and x = +∞
exchanged). We notice that the factors A(z, 0) and B(z, 0) in the middle of the wall (the

red curve in the plot) are almost exactly given by a rescaled cigar geometry (the dot-dashed

blue curve). The cigars in the middle are therefore elongated by a moderate factor 1.41

with respect to the cigars in the confining and deconfining limits. This also means that

the dependence of zh(x) is on x is rather weak.

This result may appear surprising given the fact that the (x-independent) (ci, ci) so-

lution is singular. However if this topology only appears in a single slice of a higher

dimensional geometry, there is no singularity.

This observation means roughly the following. There are two simple “idealized” ways

to interpolate between the (cy, ci) and (ci, cy) geometries in (3.1) and in (3.3) (see the

sketch in figure 4). The first one is (ci, cy) → (cy, cy) → (cy, ci) shown in figure 4a: we

start from the geometry (3.3) and treat Tc in f(u) as a parameter. We smoothly reduce

its value taking Tc → 0 in the end which leads to the (cy, cy) geometry with f(u) → 1, i.e.,

the pure AdS5 solution. We then introduce the blackening factor in the dφ2 component,

turning back nonzero Tc and smoothly evolve it to the original value, finally obtaining the

(cy, ci) solution. The second one is (ci, cy) → (ci, ci) → (cy, ci) shown in figure 4b: now

we add instead a second blackening factor in the dφ2 term from the start, and smoothly

evolve the parameter Tc in this blackening factor to the value of the blackening factor of

the dτ2 term, therefore obtaining a (ci, ci) geometry. Then we reduce the value of the Tc

3Notice that the “cylinder” form at x → +∞ is A(z) = 1 + z4/z4
h in the Fefferman-Graham coordinates,

while for the flat (cy, cy) geometry one has A(z) = 1.
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(a)

(b)

τ τ τφ φ φ

τττ φφ φ

Figure 4. Possible “interpolations” between the deconfined and confined geometries in figure 1.

Top row (a): interpolation through the (cy, cy) geometry. Bottom row (b): interpolation through

the (ci, ci) geometry.

parameter of the blackening factor of the dτ2 term smoothly to zero, which gives the final

(cy, ci) geometry. We stress that neither of these simple interpolations give rise to a solution

of the five-dimensional Einstein equations, with the understanding that the interpolation

is understood as a dependence on the coordinate x perpendicular to the domain wall.

However our point is that the interpolation defined by the x-dependence in the geometry

of [20] which does solve the Einstein equations, is clearly closer to the second than the first

option. The main difference between the numerical geometry and the ideal picture appears

to be the fact that the cigars of the (ci, ci) slice are elongated, as shown in figure 3.

3.2 Analysis of the energy momentum tensor of the domain wall

We then go on discussing the field theory observables i.e., the components of the energy-

momentum tensor Tµν . They are found as the coefficients of the subleading O
(
z4
)

terms

of the geometry at the boundary. Notice that due to the form of the metric in (3.5), Tµν

is diagonal. We have extracted these coefficients from the domain wall solution of [20]

and show the results in figures 5 and 6. The tensor is diagonal and only depends on the

coordinate x. To plot the results, we use the normalized4 energy-momentum tensor

T̂µν(x) = − 4πG5

R3
D3(πTc)4

(Tµν(x) − Txx) (3.10)

where G5 is the Newton constant. That is, we divide out the trivial known proportionality

constant, and subtract the value of Txx (the pressure perpendicular to the domain wall)

which is constant for the domain wall solution due to the conservation law ∂µT µν = 0. The

value of the constant is

Txx =
R3

D3

16πG5
(πTc)

4 . (3.11)

With this normalization, T̂ττ = 1 for the deconfined geometry of (3.9), for example.
4Our sign conventions (in the Euclidean signature) are such that for the deconfined phase Tττ = −ǫ < 0

(where ǫ is the energy density) whereas the spatial component Tii of the energy momentum tensor are

positive.
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-6 -4 -2 2 4 6
2πxTc

0.2

0.4

0.6

0.8

1.0

T

μν

T

ττ T


ϕϕ

Figure 5. Phenomenological fitting of the (normalized) components of the energy-momentum

tensor T̂ττ and T̂φφ. Blue dots show the energy-momentum tensor extracted from the numerically

constructed geometry of [20], and the green curves are given by the fit in equation (3.12).

The results for the normalized energy density T̂ττ and the pressure in the compactified

direction T̂φφ are shown5 in figure 5. The blue dots show the data obtained from the

numerical solution, and the green curves are given by the following fit:

T̂ττ (−x) = T̂φφ(x) =
1

2
+

1

2
tanh

(

q∗

x − x0

2

)

. (3.12)

The system is therefore in the deconfined (confined) phase in the domain x < 0 (x > 0).

For the fit parameters we obtain

q∗

2πTc
≈ 1.148 , 2πTcx0 ≈ 0.181 . (3.13)

The quality of the fit is very good: it appears to be even better than a similar fit for an

interface between two deconfined phases in [7].

Since x0 is nonzero, there is a small but significant shift of the profile of the energy

density from the middle of the domain wall, which is at x = 0 as determined by the Z2

symmetry. The shift also gives rise to a nontrivial component of the pressure parallel to

the wall, T̂yy. This component is given by

T̂yy(x) = 1 − T̂ττ (x) − T̂φφ(x) , (3.14)

which is obtained by combining the tracelessness condition T µ
µ = 0 with (3.10). Inserting

here the fit from (3.12) gives the prediction

T̂yy =
1

2

[

tanh

(

q∗

x + x0

2

)

− tanh

(

q∗

x − x0

2

)]

. (3.15)

5Due to numerical inaccuracy the asymptotic values of T̂µν agree with the analytic formulas in (3.10)

and in (3.11) only within an accuracy of about one or two per cent. Since we are mainly interested in the

x-dependence at the domain wall, we “renormalized” the numerical data such that, for example, T̂ττ does

approach one (zero) for x → −∞ (x → +∞).
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-6 -4 -2 2 4 6
2πxTc

0.02

0.04

0.06

0.08

0.10

T

yy

Figure 6. Phenomenological fitting of the (normalized) T̂yy component of the energy-momentum

tensor. The blue dots show the energy-momentum tensor extracted from the numerically con-

structed geometry of [20]. The green curve is the prediction from the fit of figure 5, given in

equation (3.15). The dashed magenta and dot-dashed red fits were obtained by using the former

and latter formulas of equation (3.16), respectively.

We compare this prediction (green curves), with the parameter values from (3.13), to

numerical data (blue dots) in figure 6. The maximal deviation is about ten percent and is

due to two sources: the error in the tanh fits and inaccuracy of the numerical solution (so

that the trace T µ
µ is not precisely zero). The error from both sources has roughly the same

size. Notice that due to the relatively small size of the shift x0, the magnitude of T̂yy is

suppressed roughly by a factor of ten with respect to the step size in figure 5. This is why

the errors are better visible in figure 6.

We also fitted the data for T̂yy directly using the following functions:

T̂yy(x) =
c(2)

(

cosh q
(2)
∗ x
2

)2 , T̂yy(x) =
c(4)

(

cosh q
(4)
∗ x
2

)4 . (3.16)

The first of these functions has an obvious motivation: taking the small x0 approximation

of (3.15) leads to

T̂yy ≈ q∗x0

2

1
(
cosh q∗x

2

)2 (3.17)

and the motivation for the second function will become clear below. The results for the

two parameter fits to data are shown in figure 6 with dashed magenta curves for the cosh−2

fit and dot-dashed red curves for the cosh−4 fit. The fits are so good that it is difficult to

disentangle them for the data (blue dots) so we conclude that within the precision of our

numerics, both fits work extremely well. The fit parameters are in this case

q
(2)
∗

2πTc
≈ 1.023 , c(2) ≈ 0.0925 ;

q
(4)
∗

2πTc
≈ 0.681 , c(4) ≈ 0.0910 . (3.18)
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From these fit results and the results for the tanh fit in (3.13) we observe that q
(2)
∗ is

close to q∗: we find q
(2)
∗ < q∗, and the difference is around ten per cent. We also notice that

q
(2)
∗ /q

(4)
∗ ≃ 1.5. We will discuss these findings further by using an extended hydrodynamic

framework below in section 4.

3.3 Modelling the domain wall in gauge/gravity duality

The above findings, in particular the success of the simple tanh fit in figure 5, give rise

to two natural questions. The first is if there is a simple effective description (in terms of

the field theory degrees of freedom) of the domain wall which gives rise to the observed

structure. This is the main topic of the current article and will be addressed in detail in the

following sections. The second is whether this structure can be obtained from gauge/gravity

duality in some analytic approximation. This second question turns out to be difficult. We

have however obtained some limited understanding on how the domain wall arises from

the solutions of the Einstein equations, which we will now discuss.

We observe that the Einstein equations in Fefferman-Graham coordinates imply that

there are two conserved bulk currents: the first (J) satisfies

∂zJz + ∂xJx = 0 , Jz =
1

z3

√

BC
A D3/2 ∂

∂z

(A
D

)

, Jx =
1

z3

√

B
AC D3/2 ∂

∂x

(A
D

)

, (3.19)

and the second (J̃) is obtained by interchanging A ↔ B. The existence of such currents is

no surprise: they reflect the Smarr relation for black holes which states that the energy of

the black hole can be computed both from the asymptotics and from horizon data [48]. In

the case of homogeneous black hole geometries in our setup, the conservation of the bulk

current J implies the standard thermodynamic relation ε + p = sT . For the domain wall

setup, we find that the conserved “charge density” is at the boundary

Jz
∣
∣
z=0

∝ T̂ττ − T̂yy (3.20)

which shows a smooth step from one to zero over the domain wall as we see from figures 5

and 6. At the horizon z = zh we find that

Jz
∣
∣
z=zh

= sh

√

2A′′(zh) , (x < 0) ; Jz
∣
∣
z=zh

= 0 , (x > 0) ; (3.21)

where

sh =

√

B(zh)C(zh)D(zh)

z3
h

(3.22)

is the area element of the black hole.

These results suggest the following picture. As we have seen in figure 3 the geometry

in the deconfined phase varies relatively little as we move from x = ∞ to x = 0. Therefore

the bulk charge density Jz(z, x) becomes essentially a step function at the horizon. During

the evolution of the charge density from the horizon to the boundary, determined by

equation (3.19) and the other Einstein equations, the charge is diffused a bit which gives

rise to the smooth step. Notice that because the total charge
∫

dxJz is conserved under
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this evolution and because Jx vanishes far from the domain wall, only minor rearrangement

of the charge is possible.

We can make some quantitative estimates which support the above picture by resorting

to simple modeling. First, because we have seen that zh depends only mildly on x in the

domain wall solution, we take zh to be constant. Second, we take the boundary condition

for the current at the horizon to be exactly the step function. Third, we simply study the

propagation due to a scalar field in plain AdS5 geometry. Fourth, we look at the current

∆J = J − J̃ = J − J(A ↔ B), which links to the difference T̂ττ − T̂φφ, instead of (3.20).

This last simplification is useful because T̂ττ − T̂φφ is odd in x and has a simple tanh profile

for the domain wall solution without any shifts. The model setup may be formally obtained

from (3.19) (and its A ↔ B interchanged counterpart) through the Ansatz C = 1 = D and

A(z, x) = exp(+ξ(z, x)) , B(z, x) = exp(−ξ(z, x)) , (3.23)

with ξ(z, x) = −ξ(z, −x), so that the symmetry condition in (3.7) is satisfied. Since A and

B approach one at the boundary, ξ must vanish there.

We find that ξ satisfies the Laplacian in AdS5,

z3 ∂

∂z

(
1

z3

∂

∂z
ξ(z, x)

)

+
∂2

∂x2
ξ(z, x) = 0 , (3.24)

and the current is given by

∆Jµ =
2

z3

∂

∂xµ
ξ(z, x) . (3.25)

The solution which satisfies the boundary conditions ξ(0, x) = 0 and ∆Jz(zh, x) = −sgn(x)

is given by

∆Jz(z, x) = −
∫

∞

−∞

dk
zhI1(kz) sin(kx)

πkz I1(kzh)
(3.26)

where I1 is the modified Bessel function of the first kind.

Finally we compare the boundary value of ∆Jz to the numerical data for T̂ττ − T̂φφ

in figure 7. To do this, we fixed zh = 1/(πTc) as obtained from the AdS solution of (3.3)

with the understanding that u = 1/z. One might expect that we should use the Fefferman-

Graham value for zh which is smaller by a factor of
√

2 but we feel that the above choice

is better since the geometry of (3.3) is closer to empty AdS5 (which we are in practice

using here) than the black hole geometry in Fefferman-Graham coordinates. Actually, the

results for both values are roughly equally good, with the best fit value lying between the

two. From the plot we see that ∆Jz(0, x) is very well fitted by the tanh function (green

dotted curve), and the value of q∗/(2πTc) ≈ 0.897 from this fit is slightly below the value

1.148 obtained by fitting the data directly in (3.13).

We have therefore demonstrated that the simple model, with diffusion of the conserved

bulk charge obtained from propagators for empty AdS5, roughly agrees with the numerical

data for the full solution of Einstein equations for the domain wall. In particular, the

profile obtained for T̂ττ − T̂φφ is again extremely close to the tanh form, and the width of

the domain wall is close to the width of the exact solution. There are also some obvious

shortcomings: the simple model does not capture the shifts of the tanh profile for T̂ττ and
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Figure 7. T̂ττ − T̂φφ from a simple model compared to the numerical data for the domain wall.

The blue dots are numerical data from the exact solution, the red solid curve is given by (3.26) at

z = 0, and the dotted green curve is a tanh fit to the red curve.

T̂φφ (i.e., a nonzero value of x0 in (3.12)) which are linked to nonzero surface tension. More-

over, we did not find a way to derive systematically the approximation of equations (3.24)

and (3.25) from the Einstein equations. While the Ansatz of equation (3.23) solves the

current conservation equations assuming (3.24), some of the other Einstein equations are

not satisfied.

We will therefore shift our considerations to the boundary theory and proceed to model

directly the energy-momentum tensor of the coexisting phases and domain walls.

4 A covariant energy-momentum tensor for the domain wall and coex-

isting phases

As explained in the introduction, our goal is to find a simple covariant formulation which

would allow us to describe a system made up of coexisting domains of the confining and

deconfined phases and domain walls separating them. At the same time we would like to

retain the possibility of describing arbitrary plasma flows in the deconfined phase, hence

our formulation should necessarily extend hydrodynamics.

Ideally, following the approach of fluid/gravity duality, we would model the holographic

spacetime geometry locally as either a patch of the confining geometry or fluid/gravity

geometry or a plasma-ball domain wall. Unfortunately, the gravitational description of

such a composite system is extremely complicated, as we indicated in the previous section.

Therefore, we decided to perform the modelling at the level of the energy-momentum

tensor of the boundary field theory, and use the known numerical plasma-ball domain wall

solution as additional holographic input which would constrain both the overall structure

and the precise coefficients of the field theory energy-momentum tensor. Similarly as in

the case of conventional hydrodynamics, we treat the conservation laws of the postulated

energy-momentum tensor as the resulting dynamical equations of our model.
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4.1 Energy-momentum tensors — general structure

The energy-momentum tensors of the two phases are well known. For the confining phase

in the d = 3 Witten’s model [17] we have

T conf
µν = ηµν − 4nµnν (4.1)

where nµ is a unit vector pointing in the direction of the auxiliary φ circle. As the energy-

momentum tensor in the deconfined phase we take the leading order perfect fluid hydro-

dynamics:

T deconf
µν = phydro(T ) (ηµν + 4uµuν) . (4.2)

In this paper we neglect all dissipative terms. phydro(T ) is the hydrodynamic pressure

expressed as a function of the temperature. With the normalization of (4.1), we have

phydro(Tc) = 1 . (4.3)

Let us now move to the domain-wall solution reviewed in section 3 and recast its

energy-momentum tensor in a covariant manner. To this end, let us identify the tensors

that we have at our disposal. Apart from the metric ηµν , we have the flow velocity in the

deconfined phase uµ (which corresponds to a fluid at rest for the solution from section 3),

the vector nµ in the direction of the φ circle, and a new ingredient — a vector perpendicular

to the domain wall vµ (in the later parts of this paper we will take vµ to be proportional

to a gradient of a scalar field vµ ∝ ∂µγ).

For the numerical domain wall solution described in the previous section, the energy-

momentum tensor turns out to be formed just from diagonal6 combinations of the above

vectors i.e. it is a linear combination of

ηµν , uµuν , vµvν , nµnν (4.4)

subject to the condition of tracelessness. Hence we have three independent scalar coeffi-

cients.

Clearly the energy-momentum tensors of the confined and deconfined phase also fit the

above structure. Therefore we will parametrize the overall energy-momentum tensor as

Tµν(x) = T mix
µν (x) + T Σ

µν(x) (4.5)

where T mix
µν (x) is a linear combination of the energy-momentum tensors of the two coex-

isting phases

T mix
µν (x) = Γ(x)T conf

µν (x) + (1 − Γ(x))T deconf
µν (x) . (4.6)

The mixing coefficient Γ(x) will be an additional non-hydrodynamic degree of freedom,

which we add to the hydrodynamic degrees of freedom phydro and uµ. The goal of this paper

is essentially to provide consistent equations of motion and energy-momentum tensor for

6There could be a possible non-diagonal quartic term (u · v)
(
uµvν + vµuν − 1

2
(u · v)ηµν

)
. However for

the known domain wall solution this term is identically zero, hence we ignore this term in the present paper.
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this additional degree of freedom. The scalar Γ(x) = 1 in the confined phase and Γ(x) = 0

in the deconfined phase, at T = Tc.

The second part of the energy-momentum tensor (4.5), T Σ
µν(x) is assumed to vanish

when Γ(x) is a constant equal to either 0 or 1. Hence it has support essentially only on

the domain wall. We will see later that it is responsible for describing the surface tension

of the wall. We can write it in general as

T Σ
µν = Σ (−ηµν + Avµvν − Buµuν − Cnµnν) (4.7)

where Σ, A, B and C are coefficients which should be determined.

By specializing to the static planar domain wall solution, we can deduce a further

requirement for T Σ
µν . Conservation of energy-momentum implies that the Txx component

is constant. Since this is automatically satisfied by the first two terms

Γ(x) + (1 − Γ(x)) phydro(Tc)
︸ ︷︷ ︸

=1

= 1 , (4.8)

it follows that T Σ
xx is a constant. But since we assumed that T Σ

µν vanishes far away from

the domain wall, that constant must be equal to zero. Therefore we find that A = 1 when

evaluated on the domain wall solution, so

T Σ
µν = Σ (−ηµν + vµvν − Buµuν − Cnµnν) . (4.9)

In our setup T Σ
µν has to be traceless, so

B − C = 3 . (4.10)

Let us summarize the structure obtained so far. The energy-momentum tensor of a

system combining the confined and deconfined phases has the form

Tµν(x) = ΓT conf
µν (x)+(1−Γ)T deconf

µν (x)+Σ (−ηµν + vµvν − Buµuν + (3 − B)nµnν) . (4.11)

The dynamical variables are: the hydrodynamic pressure phydro and flow velocity uµ in the

deconfined phase, the vector vµ and Γ, Σ and B coefficients. We will express the latter

four quantities in terms of a single scalar field γ.

4.2 Energy-momentum tensor — comparison with holography

We will now go back to the holographic solution for the numerical domain wall geometry

described in the previous section, in order to determine Γ, Σ and B. It turns out that two

different fits motivated by the analysis of section 3.2 are possible. We will discuss them

now in turn. We start with the most natural one in view of the fit results of section 3.2.

Option A. The coefficient Γ is treated as an independent scalar field γ and Σ and B will

turn out to be simple functionals of γ. The solution of [20] is very well reproduced if

Γ(x) ≡ γ(x) =
1

2
+

1

2
tanh

(
q∗x

2

)

. (4.12)
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Then looking at the Txx − Tyy component of the energy momentum tensor of [20] we may

express Σ as

Σ = c · γ′2

γ(1 − γ)
= c · q2

∗

4 cosh2 q∗x
2

. (4.13)

Notice that unlike the fit of section 3.2, this description does not include a shift x0. The

shift parameter is, in effect, replaced by the coefficient c here. This combination has the

interpretation of the surface tension density, whose integral over x gives the surface tension

(see section 6.1). Now examining any other component like Ttt we find that

B = 1 + Γ = 1 + γ . (4.14)

We expect that the expression for B could be different for other theories.

Before we continue, let us comment on the holographic interpretation of the scalar

field γ. Consider the region where γ is very small. Then the energy-momentum tensor is

essentially

Tµν = T deconf
µν + γ(x)

(

T conf
µν − T deconf

µν

)

+ O
(

γ2
)

. (4.15)

Holographically, we can understand γ as the boundary limit of a linearized perturbation of

the planar black hole geometry, and thus a quasi-normal mode (QNM). This quasi-normal

mode is slightly nonstandard as its behaviour is like

q(x) ∼ eq∗x (4.16)

so it has purely imaginary momentum and vanishing frequency. Indeed such QNM’s were

identified in the context of nonequilibrium steady states in [49], with the imaginary mo-

mentum setting the scale for the characteristic width, and earlier in the context of an

absorption length in [50]. As this holographic degree of freedom is crucial for the de-

scription of a domain wall, and thus we should incorporate it directly into any low-energy

effective description. We give some additional comments on the possible interpretation of

γ in section 8.

Option B. The second option is slightly less natural. Its advantage is its relation to

a canonical scalar field action as we will see in the following section as well as a link to

Landau’s description of phase transitions which we touch on in section 8.

Since as we saw in section 3.2, the Txx − Tyy can also be fit by 1/ cosh4, which allows

for taking

Σ = c · γ′2 = c · q2
∗

16 cosh4 q∗x
2

(4.17)

without the γ(1−γ) denominator appearing in (4.13). The drawback is that the q∗ coming

from the above expression is not compatible with the mixing coefficient Γ = γ and (4.12).

One can nevertheless cure this discrepancy by taking the following more involved expression

for Γ:

Γ = γ2(3 − 2γ) . (4.18)

This explicit form is motivated by the considerations of section 7. The coefficient B is

again given by

B = 1 + Γ . (4.19)
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Figure 8. Final fits of the model to the numerical solution for the domain wall. The blue dots,

solid red curve, and dashed green curve show the numerical data, fit using the option A, and fit

using the option B, respectively.

Comparison with the numerical solution. We then compare our formulation to the

components of the energy momentum tensor extracted from the numerical solution for

the domain wall [20] which we discussed in section 3.1. By using the expression for the

complete energy momentum tensor in (4.11) (and transforming to Euclidean conventions),

we obtain for the normalized components T̂µν defined in (3.10)

T̂ττ = 1 − Γ − 1

4
ΣΓ , T̂φφ = Γ − 1

4
Σ(1 − Γ) , T̂yy =

1

4
Σ , (4.20)

where we already inserted B = 1 + Γ. We remind that for the two options discussed above

we have

Γ = γ , Σ = c
γ′2

γ(1 − γ)
, (Option A) ; (4.21)

Γ = γ2(3 − 2γ) , Σ = c γ′2 , (Option B) , (4.22)

and for both options

γ(x) =
1

2
+

1

2
tanh

(
q∗x

2

)

. (4.23)

We have carried out a least squared fit of q∗ and c to the data for T̂µν extracted from

the numerical domain wall solution to the Einstein equations. We used the components

T̂ττ and T̂yy for the fit (and excluded T̂φφ because it gives no additional information due

to reflection symmetry about the center of the wall). The fit results are shown in figure 8.

The fit for option B is slightly better than the fit for option A, with 30% smaller root

mean square error. It is however difficult to see this from the plot because both curves are

so close to the data. Actually, the deviation from the numerical data is smaller than its

accuracy for both fits.
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The fit results are given by

q∗

2πTc
≈ 1.055 , c (2πTc)

2 ≈ 0.342 , (Option A) ; (4.24)

q∗

2πTc
≈ 0.682 , c (2πTc)

2 ≈ 3.167 , (Option B) . (4.25)

We note that the value of q∗ for option A (option B) agrees well with the fit result to T̂yy

carried out in section 3.2 with the cosh−2 (cosh−4) Ansatz, i.e., q
(2)
∗ (q

(4)
∗ ) in equation (3.18).

This is as expected: using the tanh form for γ leads to T̂yy ∝ cosh−2(q∗x/2) for option A

and to T̂yy ∝ cosh−4(q∗x/2) for option B. Therefore the main difference between the final

fit and the fits of section 3.2 is that the final fit is able to describe all components of Tµν

in terms of a single value of q∗. For option A, the (relatively small) difference between

the values of q∗ for the separate fits of the components in section 3.2 is alleviated here

by a smart choice of the “subleading” ∝ Σ terms for T̂ττ and T̂φφ in (4.20), which arises

in turn from the choice of the function B(Γ). For option B, the (much larger) difference

between the values of q∗ was removed by an appropriate choice of Γ(γ) as we already

pointed out above.

Equation of motion for γ. The above fitted expressions relied on the assumption that

for the domain wall solution of [20], γ is given by a tanh function:

γ(x) =
1

2
+

1

2
tanh

(
q∗x

2

)

(4.26)

Of course, this should not be an assumption but should follow from some specific equations

of motion. It’s well known that (4.26) is a solution of the virial theorem

γ′ =
√

2V (γ) with V (γ) =
q2

∗

2
γ2(1 − γ)2 . (4.27)

Indeed (4.27) is a solution of the equations of motion for any scalar action of the form

Lpreliminary
γ = −a(γ)

(
1

2
(∂γ)2 + V (γ)

)

(4.28)

with arbitrary prefactor function a(γ). The Lagrangian (4.28) cannot be the whole story,

however, as the energy-momentum tensor derived from (4.28) does not include the uµuν

terms appearing in (4.11). We thus need to couple the scalar action to hydrodynamics

in the deconfined phase. We will perform this construction in the following section and

provide an action which will generate equations of motion for γ and reproduce the structure

of the energy-momentum tensor7 (4.11). Together with the standard energy-momentum

conservation equations for the hydrodynamic variables we will thus have a fully specified

system.

7Under the assumption of γ(x) satisfying the virial theorem.
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5 An action density and the final formulation

In this section we will propose a general from of an action for γ(x), whose corresponding

energy-momentum tensor will be capable of reproducing the structure (4.9).

Before we do that, we will review an action formulation for perfect fluid hydrodynamics

as it will provide the natural ingredients for introducing the dependence on hydrodynamics

into the action for γ(x).

5.1 An action for perfect fluid hydrodynamics

An action for perfect fluid hydrodynamics was first introduced in [51], we will, however,

use a later formulation by [52] as it matches with the on-shell action in holography.

Following this formulation, as the elementary hydrodynamic degree of freedom one

takes the vector βµ related to the temperature through

T =
1

√
−gµνβµβν

. (5.1)

We get then the following variation, expressed in terms of the conventional flow velocity

uµ = Tβµ:

δT = −1

2
Tuµuνδgµν . (5.2)

The hydrodynamic Lagrangian is then simply given by the pressure expressed as a function

of the temperature

Lhydro = p(T ) . (5.3)

Using the formula

Tµν =
−2√−g

δ(
√−gL)

δgµν
= −2

δL
δgµν

+ gµνL (5.4)

one recovers the hydrodynamic perfect fluid energy-momentum tensor

T hydro
µν = T∂T p

︸ ︷︷ ︸

ε+p

uµuν + pgµν . (5.5)

The conservation law of the above energy-momentum tensor, i.e. the hydrodynamic equa-

tions of motion, can be derived from the Lagrangian using constrained variations in βµ as

described in section 7 of ref. [52]. As this is rather complicated, we will always use directly

the energy-momentum conservation laws as equations of motion for the hydrodynamic

degrees of freedom.

The linear combination of the hydrodynamic and confining energy-momentum tensors

follows from the Lagrangian

L = (1 − Γ)p(T ) + Γ . (5.6)

5.2 The action for the scalar field γ

We will primarily consider a formulation just in terms of the physical 3D coordinates,

ignoring the auxiliary angular φ coordinate as we assume no dependence on φ. For this
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reason, we will not recover now the nµnν terms in the energy-momentum tensor. We will

show in appendix C, how to formally reproduce also those terms.

Consider a rather general scalar field action coupled to the hydrodynamic degrees of

freedom through a dependence on T

Lγ = −1

2
a(γ, T )gµν∂µγ∂νγ − b(γ, T ) . (5.7)

We ignore possible terms with βµ∂µγ as we do not have any information about them from

known gravity solutions. The resulting energy momentum tensor is

T Σ
µν = a∂µγ∂νγ −

(
1

2
a(∂γ)2 + b

)

gµν − T
(

(∂γ)2∂T a + ∂T b
)

uµuν . (5.8)

Let us now specialize to the domain wall solution from section 3.2 and impose the constraint

T Σ
xx = 0 . (5.9)

Recall from the discussion in section 4.2 that for the planar domain wall solution at T = Tc

we would like to have

γ′ =
√

2V (γ) . (5.10)

Plugging this into (5.9) gives

aγ′2 − 1

2
aγ′2 − b = 0 (5.11)

which yields (at T = Tc)

b = aV . (5.12)

So the scalar action becomes (again the argument holds strictly speaking just at T = Tc)

Lγ = −a(γ, T )

(
1

2
(∂γ)2 + V (γ, T )

)

. (5.13)

Recall that for any a(γ, T ) the virial theorem solution (5.10) solves the equations of motion

coming from this action.

Let us now, for simplicity, assume an overall power-law dependence on the tempera-

ture,8 and take Tc = 1, i.e.

a(γ, T ) = T αa(γ) , V (γ, T ) = T βV (γ) . (5.14)

Evaluating (5.8) using the virial theorem (5.10) at T = 1 we get

T Σ
µν = a

[

∂µγ∂νγ
︸ ︷︷ ︸

(∂γ)2vµvν

−(∂γ)2ηµν − (∂γ)2
(

3

2
α +

1

2
β

)

uµuν

]

. (5.15)

We see that we recover the structure of (4.9), when specializing to a solution satisfying the

virial theorem (5.10). Otherwise we have the general form (5.8) with (5.12) and (5.14). For

8Of course this should be treated just as an approximation close to Tc and not as a fundamental as-

sumption.
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a formal extension of the above treatment which includes the nµnν terms in the energy-

momentum tensor see appendix C. The coefficient B appearing in (4.9) is expressed as

B =
3

2
α +

1

2
β . (5.16)

From the planar domain wall solution that we have at our disposal, we cannot fix the

individual coefficients α and β apart from the above linear combination. We leave their

determination for future study. We will however present an argument in section 7 which

suggests that the possible γ dependence of B arises solely through the coefficient α. The

coefficient β essentially characterises how the width of the domain wall changes as we move

away from T = Tc. The surface tension density is given by

Σ = a(γ)

(
1

2
(∂γ)2 + V (γ)

)

−→ a(γ)(∂γ)2 (5.17)

where the latter form follows when using the virial theorem.

5.3 The final formulation

Let us summarize here our final form of the action

Lfinal = (1 − Γ(γ))p(T ) + Γ(γ) − a(γ, T )

(
1

2
(∂γ)2 + V (γ, T )

)

(5.18)

with a(γ, T ) = T αa(γ), and V (γ, T ) = T βV (γ) understood as approximate expressions for

temperatures close to Tc = 1. From the action (5.18), we derive equations of motion for

γ as well as the energy-momentum tensor, whose conservation laws yield the remaining

equations of motion for the hydrodynamic degrees of freedom.9

In order to fully specify the above action, we need to pick the prefactor a(γ) and the

potential V (γ). Furthermore, we need to express Γ(γ) in terms of the elementary scalar

field γ. The fits of the energy-momentum tensor presented in section 4.2 yield the two

natural options

Γ(γ) = γ , a(γ) = c
1

γ(1 − γ)
, (Option A) ; (5.19)

Γ(γ) = γ2(3 − 2γ) , a(γ) = c , (Option B) , (5.20)

with the potential

V (γ) =
q2

∗

2
γ2(1 − γ)2 . (5.21)

The α and β coefficients characterize how the parameters of the scalar action behave as

we move away from T = Tc. Since we have numerical data purely at T = Tc, we can

currently fix only their linear combination (5.16) which is given by the function B(Γ).

From a numerical fit for the d = 3 Witten model we have

B(Γ) = 1 + Γ . (5.22)

9As mentioned in section 5.1, we do not derive the equations of motion for the hydrodynamic degrees

of freedom directly from the action as it would involve a constrained variational principle as described in

section 7 from ref. [52].
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For other models we expect that the expression for B(Γ) will get modified (see appendix A

and B for explicit examples). On the other hand, even for those different models, the

expressions (5.19)–(5.21) can remain unchanged.

Finally let us note that even though the potential appearing directly in the scalar

action (5.21) remains symmetric under the interchange γ ↔ 1 − γ even as we move away

from T = Tc, the overall potential for γ automatically breaks this symmetry (as it should!)

due to the first two terms in (5.18) describing the individual phases of the theory. We will

return to this point later in section 7.2 and in section 8 from a more general perspective.

6 Some generic physical applications

We will now illustrate the general structure of the proposed energy-momentum tensor (4.11)

with a couple of applications. Here we focus on considerations which are very generic and

depend just on the form of the energy-momentum tensor and not on the details of the

formulation proposed in section 5.3.

Firstly, we link the parametrization of the energy-momentum tensor with the sur-

face tension of the domain wall. Then we compare equations for an equilibrium circular

droplet with standard thermodynamic considerations. Finally, we reproduce the formula

for thermodynamic nucleation probability from [21] using Euclidean solutions as suggested

by Linde [14, 15].

In this section it is convenient to use the notation

P (x) ≡ Γ(x) + (1 − Γ(x))phydro(T ) (6.1)

for the coefficient of ηµν in T mix
µν (x):

T mix
µν (x) = (Γ(x) + (1 − Γ(x))phydro(T )) ηµν + 4(1 − Γ(x))phydro(T )uµuν − 4Γ(x)nµnν

= P (x)ηµν + 4 (P (x) − Γ(x)) uµuν − 4Γ(x)nµnν . (6.2)

P (x) can be interpreted as an overall pressure valid in both phases.

Since in the d = 3 Witten model the physical d = 3 theory is dimensionally reduced

on the φ circle from the auxiliary boundary d = 4 theory, one has to take care for which

theory the particular energy-momentum tensor is defined. Up to this point, we always

considered the energy momentum tensor for the full auxiliary d = 4 theory, which would

be the expression read off directly from the holographic dual geometry. In this section we

will focus on applications dealing with the physical dimensionally reduced theory, hence

we should dimensionally reduce the energy-momentum tensor as well.

In order to avoid cumbersome notation, here we will use units such that the range

of the φ circle coordinate is equal to 1. Then the components of the physical energy

momentum tensor will be

T 3d
µν (x) =

∫

T 4d
µν (x) dφ =

(∫

dφ

)

· T 4d
µν (x) (6.3)

so T 3d
µν is just obtained from T 4d

µν by dropping the nµnν term. Hence we do not need to

explicitly add the 3d or 4d superscripts.
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6.1 The domain wall surface tension

The surface tension extracted from the planar domain wall solution is given by the following

integral

Σ =

∫
∞

−∞

(Txx − Tyy) dx (6.4)

where y is the direction along the domain wall, while x is the perpendicular direction. Let

us comment on the units. The elements of the energy momentum tensor for the auxiliary

boundary theory have dimension energy4. We integrate over φ as in (6.3) and then over x

so Σ has dimension energy2 which is the dimension of the surface tension in a 3-dimensional

theory. Plugging in (4.11) we get

Σ =

∫
∞

−∞

Σ(x) dx (6.5)

which motivates the notation for Σ(x). Of course, following our assumptions on the support

of T Σ
µν(x) this integral gets contributions essentially just from the region of the domain wall.

This indeed holds in the concrete models proposed in section 5.3.

Let us make a further comment here. We saw that the T Σ
µν could arise as the energy-

momentum tensor coming from an effective scalar field theory through

Tµν =
−2√−g

δ(
√−gL)

δgµν
= −2

δL
δgµν

+ gµνL . (6.6)

Hence the coefficient of ηµν in T Σ
µν (recall (4.9)) has the interpretation of the on-shell action

density evaluated on the domain wall solution. As for static solutions the Euclidean action

is minus the Minkowski one, the surface tension would be identified with the value of the

Euclidean scalar field action evaluated on the domain wall solution. This is indeed a very

natural behaviour.

6.2 A circular droplet

Let us first recall the standard thermodynamic analysis of a droplet of one phase in another

phase [21] adapted to the current dimensionality (d = 2 + 1). Suppose that we have a

droplet of radius R of the phase with pressure Pdroplet. The spatial volume (here area) of

the droplet is Vdroplet = πR2, and its circumference is A = 2πR. The surface tension of the

interface is Σ. The environment has volume V and pressure P . The total thermodynamic

potential of the system is given by

Ω = −PdropletVdroplet − PV + ΣA . (6.7)

We should extremize the above formula w.r.t. R, keeping in mind that dV/dR =

−dVdroplet/dR as V + Vdroplet = Vtotal = const. We get

∂Ω

∂R
= −(Pdroplet − P )2πR + 2πΣ = 0 . (6.8)

Hence we obtain the equation for the equilibrium size of the droplet

Pdroplet − P =
Σ

R
. (6.9)
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We will now proceed to show how the above equation arises from (4.11) in the thin wall

approximation.

We will use here the polar coordinate system as in the present case the spherical domain

wall is really circular since we have just two spatial coordinates for the physical theory.

ds2 = −dt2 + dr2 + r2dθ2 + dφ2 . (6.10)

Recall that φ is the auxiliary coordinate of the Witten’s circle and we assume that nothing

depends on it. The physical coordinates of the theory are t, r and θ. The nontrivial

conservation law takes the form

∂rT rr − rT θθ +
1

r
T rr = 0 . (6.11)

The vector fields are uµ = (1, 0, 0, 0) and vµ = (0, 1, 0, 0) and the relevant components of

the energy-momentum tensor (4.11) are

T θθ =
P − Σ

r2
, T rr = P − Σ + Σ = P . (6.12)

We thus get

∂rP = −1

r
Σ . (6.13)

In the thin-wall approximation we assume that the size of the droplet is much larger than

the width of the domain wall. Since Σ is nonzero only in the vicinity of the domain

wall, we may replace in this approximation 1/r by 1/R. Then integrating both sides of

equation (6.13) we obtain

P (r = +∞) − P (r = 0)
︸ ︷︷ ︸

P −Pdroplet

= −Σ

R
(6.14)

which reproduces (6.9).

Of course, in order to compute the value of Σ and obtain the full profile P (r) and not

only the asymptotic values, we need to specify the expression of Σ in terms of a scalar field

γ and solve the equations of motion for γ following from (5.18). However for reproducing

the thermodynamic equilibrium condition (6.9), these specific details are not necessary.

6.3 Thermodynamic nucleation probability and Euclidean solutions

The nucleation probability of a bubble of one phase in an environment of the other phase

can be computed in two ways. On the one hand, one can use standard thermodynamic

arguments of [21] which make use of the value of the surface tension. On the other hand,

one can use the field theoretical perspective of Linde [14, 15], which is a finite temperature

generalization of the considerations of Coleman [53, 54]. In this approach one constructs a

solution of the Euclidean equations of motion for a configuration of a static bubble of one

phase embedded in the other phase with standard Euclidean time periodicity.

Finding the relevant Euclidean solution within holography is a formidable task which

would require using nontrivial numerical relativity methods, especially in the context of
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confining and deconfined phases described within the Witten’s model [17] (or use metric

Ansätze like in [13]). However, since our boundary formulation in terms of the energy-

momentum tensor is in essence a shortcut to the dual holographic background,10 we can

just solve instead equations on the boundary. Moreover, it turns out that to get the

nucleation probability in the thin wall approximation, we do not need to find any explicit

solutions at all.

Let us first recall the thermodynamic approach from [21]. The probability of a thermal

fluctuation producing a nucleus of another phase is given by

probability ∝ e−Rmin/T (6.15)

where Rmin is the minimal work to form the nucleus (this follows from the probability of a

fluctuation of a closed system ∝ eS). This can be expressed in terms of the thermodynamic

potentials of the uniform phase

Ωbefore = −P (V + Vdroplet) (6.16)

and of the system with the droplet

Ωafter = −PV − PdropletVdroplet + ΣA . (6.17)

Then

Rmin = Ωafter − Ωbefore = −(Pdroplet − P )Vdroplet + ΣA (6.18)

so

probability ∝ e−
1
T (−(Pdroplet−P )Vdroplet+ΣA) . (6.19)

This formula should be applied to the equilibrium droplet with size R given by (6.9).

Let us now show how one can reproduce (6.19) from Linde’s approach employing our

framework. In principle we should find a gravitational solution for an equilibrium droplet

of size R, compute its Euclidean on-shell gravitational action and subtract the action of

the uniform phase without a droplet. All this quite nontrivial. As explained earlier, we can

sidestep these difficulties using the proposed general structure of the energy-momentum

tensor.

Clearly, the key ingredients to reproduce are the thermodynamic potentials (6.16)

and (6.17), which, when divided by T should coincide with the values of the Euclidean

on-shell action for the field configurations.

A-priori the knowledge of just the energy-momentum tensor does not allow to obtain

the on-shell action. However if we assume, as is the case in our construction, that the

energy-momentum tensor arises from some Lagrangian density through (6.6), we see that

we can read off the Minkowski Lagrangian density from the coefficient of ηµν , change sign

when passing to Euclidean signature and integrate it over Euclidean spacetime to obtain

the on-shell thermal action.

10In the same sense as from hydrodynamics one can get to the dual gravitational background through

fluid/gravity duality.
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Consequently, from (6.2) and (4.9) we get for the on-shell value of the Euclidean

Lagrangian density

LE(x) = −P (x) + Σ(x) . (6.20)

Hence the on-shell action for the uniform phase would be

Son−shell
before =

∫

LE(x)dτd2xdφ = − 1

T
P (V + Vdroplet) (6.21)

where V + Vdroplet is just the total volume and Σ = 0 since we are in the uniform phase.

The on-shell action for the circular droplet configuration in the thin wall approximation

(i.e. at large R) would then be

Son−shell
after =

∫

LE(x)dτd2xdφ = − 1

T
(PV + PdropletVdroplet − ΣA) (6.22)

where the integral of Σ(x) would get contribution only from the domain wall and in the

large R limit integrate to the surface tension times the bubble boundary area. We neglect

corrections from the variation of P (x) within the domain wall region as they would be

suppressed by 1/R. Taking the difference of (6.22) and (6.21), we reproduce the thermo-

dynamic nucleation probability (6.19).

Again we see that in the thin wall approximation of large bubble size, we do not need

to specify any microscopic details and just the overall knowledge of the surface tension

suffices. We can view the above computations as a physical consistency check of the

proposed general structure of the energy-momentum tensor (4.11) and the interpretation

of the coefficient of ηµν as the on-shell action density.

7 Accelerating planar domain wall solution

As we move away from T = Tc, the pressures of the two phases on both sides of the

domain wall will no longer balance, and the domain wall will start to move with a uniform

acceleration. It is instructive to consider this case, as it gives a nontrivial application (and

consistency check) of the proposed framework but also leads to some further constraints

on Γ(γ) when a(γ) = 1. As it turns out, such accelerating solutions may be obtained

simply by moving away from T = Tc in the hydrodynamic part of the action. Namely, the

asymmetry imposed by the coupling of the γ field to the hydrodynamic action provides

exactly the necessary asymmetry in the effective potential for γ.

7.1 Effective actions and accelerating solutions

However, before considering the coupling to hydrodynamics, let us first recall how accelerat-

ing domain wall solutions arise from simple effective actions. We consider small T −Tc ∝ ε.

Assuming a standard kinetic term (as in option B above), i.e., setting a(γ, T ) = 1 in the

scalar action (5.13), we search for a generalization of the potential (5.21). If we require

that the locations of the two minima remain at γ = 0 and γ = 1, the unique fourth order

polynomial (up to O(ε) corrections in the normalization and a trivial constant term) which

works is

Vε(γ) =
q2

∗

2
(γ − 1)2

[

γ2 − ε

3q∗

(1 + 2γ)

]

. (7.1)

This definition also determines the normalization of ε.
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We may then search for accelerating solutions by adding O(ε) correction terms to the

static domain wall solution. Interestingly, a very simple solution exists, and the perturbed

solution may be conveniently written as

γ(t, x) =
1

2

[

1 + tanh

(

q∗

(

x − x0

2
− ε t2

4

))]

. (7.2)

This solution is however only valid for small ε t2, otherwise the perturbation grows large.

Knowing the solution near t = 0 is however enough for the full time evolution because we

can always use Lorent covariance to boost to a frame where the domain wall is almost at

rest. That is, it is enough to write the result in an explicitly covariant form to capture the

full time evolution at O(ε). A covariant way to write the result is

γ(t, x) =
1

2

[

1 + tanh
(q∗

2

(√

(x − x0 − ε−1)2 − t2 − ε−1
))]

. (7.3)

For this expression the convergence as ε → 0 is uniform over all x and t.

Above we pointed out that the static tanh solution for the domain wall is obtained for

the scalar action of (5.13) for any choice of a(γ, T ) if the potential is the standard choice

of (5.21). Therefore one might expect that accelerating solution of (7.3) also generalizes to

nontrivial choices of a(γ, T ). This turns out indeed to be the case. The potential however

needs to be different from (7.1) if we want the solution to remain in simple form.

We consider here only the case a(γ, T ) = c/γ/(1 − γ), corresponding to option A

above. For this choice, one can indeed easily check that the potential of (7.1) does not

work. Instead, the potential in this case must have zeroes at γ = 0 and γ = 1 that cancel

the poles of a such that the product aV is regular. Therefore we write

Vε(γ) =
q2

∗

2
γ(1 − γ)2

(

γ − 2

q∗

ε

)

. (7.4)

Since the potential term appearing in the full equation of motion is

∝ 1

a(γ)

d

dγ
[a(γ)V (γ)] ∝ γ(1 − γ) (7.5)

we expect that the asymptotic values of the domain wall solution are exactly γ = 0 and

γ = 1 even after adding the perturbation. And indeed we may verify that (7.3) is a

solution for this potential up to terms O(ε). In particular, we chose the normalization of

the perturbation term in (7.4) such that it the acceleration matches with that given by

constant a and potential (7.1).

7.2 Coupling to hydrodynamics

We then consider the coupling between γ and the hydrodynamic degrees of freedom. As

mentioned above, these couplings will in effect lead to asymmetric terms for the potential

of γ, eliminating the need of introducing such terms explicitly.

We use the full hydrodynamic action, given in (5.18) above, with the definitions

in (5.19)–(5.21). The hydrodynamic terms in the action can be rearranged as

(1 − Γ)p(T ) + Γ = p(T ) − (p(T ) − 1)Γ = p(T ) − ∆p(T )Γ (7.6)

– 32 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
9

where ∆p(T ) = p(T ) − 1 is the pressure difference between the deconfined and confined

phases. The Γ term in the action may be interpreted as a change in the potential for γ:

a(γ)V (γ) → a(γ)V (γ) + ∆p(T )(Γ − 1) ≡ a(γ)Veff(γ) . (7.7)

From here on we need to consider the two options separately. For option A (i.e.,

a(γ) = c/γ/(1 − γ) and Γ(γ) = γ) we find that

Veff(γ) =
q2

∗

2
γ2(1 − γ)2 − ∆p(T )

c
γ(1 − γ)2 =

q2
∗

2
γ(1 − γ)2

(

γ − 2∆p(T )

cq2
∗

)

. (7.8)

This result, somewhat miraculously, has exactly the same form as (7.4). Notice that we

did not assume that T − Tc is small so far. In the limit of small temperature difference

T − Tc = O(ε), we find that

∆p(T ) = sc(T − Tc) + O(ε2) , (7.9)

where sc = s(Tc) = p′(Tc) is the entropy at the critical temperature. Comparing to (7.4),

we identify

ε =
sc(T − Tc)

cq∗

. (7.10)

For option B, i.e., with a(γ) = c we find that

Veff(γ) =
q2

∗

2
γ2(1 − γ)2 − ∆p(T )

c
(1 − Γ(γ)) . (7.11)

For this expression to agree with (7.1), we must have 1 − Γ(γ) ∝ (γ − 1)2(1 + 2γ). This

holds if we choose

Γ(γ) = γ2(3 − 2γ) , (7.12)

and this expression also satisfied the properties Γ(0) = 0, Γ(1) = 1, and Γ(γ)+Γ(1−γ) = 1

expected from symmetry. We have therefore derived the form introduced for option B

in (4.18) above. Inserting it in (7.11) we obtain

Veff(γ) =
q2

∗

2
(1 − γ)2

(

γ2 − 2∆p(T )

cq2
∗

(1 + 2γ)

)

. (7.13)

Comparing with (7.1) at small T − Tc, we identify

ε =
6sc(T − Tc)

cq∗

. (7.14)

The difference between this relation and (7.10) is not a surprise because the physical

interpretation of the parameters c and q∗ is also different between the two options.

Because we had to make a specific choice for Γ(γ) in equation (7.12) for the effective

potential to have the desired form for option B, this option may seem less preferable than

option A. We however remark that the same choice of Γ(γ) gave an extremely good fit of

the numerical data for the static domain wall solution. Therefore there is in practice very
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little freedom in choosing the function, and it is interesting that the same function works

both for the accelerating solution and the numerical data.

In summary, we have shown that the coupling between γ and hydrodynamics auto-

matically reproduces the accelerating solution (7.3) without the need of introducing an

asymmetry in the potential V (γ) explicitly. This observation strongly supports our model.

The accelerating solutions are however found with one potentially important limitation:

above we assumed implicitly that the temperature T is independent of the coordinates x

and t. While this is reasonable for the static solution, the backreaction of the accelerating

solution to the hydrodynamics is expected to lead to a nontrivial profile to the tempera-

ture. That is, the simple accelerating solutions are only found when the backreaction to

the hydrodynamics due to the wall motion is neglected.

The success of the model with the accelerating solution raises an important question

which we already touched upon above: to which extent can we use the accelerating solutions

to pin down the functions in the model, in particular the choices of Γ(γ)? It is clear that

the solution (7.3) is only (at least up to trivial modifications) obtained with the choices of

Γ(γ) we did above, for both options A and B. However, the physical solution does not need

to have exactly the form of (7.3). For example, the shape of the profile of the domain wall

could receive nontrivial corrections in the accelerating case. In any case we should require

that the solution for γ(x, t) continues to asymptote to zero and one in the deconfined and

confined phases, respectively. While this is in principle a matter of (re)definition of γ and

Γ(γ), possible variations would need to be compensated by modifying the coupling between

γ and the hydrodynamic degrees of freedom since the action for them far from the domain

wall should be unchanged. This would lead to a complicated action which we do not want.

Therefore the function Γ(γ) should match with the forms used above at least near γ = 0

and γ = 1. For other values of γ, there is in principle no constraint, but apparently our

choices are the only ones leading to potentials Veff that are low-order polynomials. In any

case the choice for Γ(γ) must be quite close to those used here, otherwise the agreement

with the numerical solutions found in figure 8 is spoiled.

Finally, let us comment on the implications for the temperature dependence of the

potentials a and V as well as the resulting energy-momentum tensor (which we already

discussed above in section 5.2). Notice that, as we have demonstrated, accelerating so-

lutions do not require any explicit temperature dependence in these functions. However

we wish to check if such a dependence can be added without damaging the nice picture

found above.

Since the coupling to hydrodynamics automatically introduces the needed asymmetry

in the effective potential of γ for ε 6= 0, it makes no sense to introduce an asymmetry in

V (γ, T ) explicitly (even though it would be possible to do this). Modifying the overall

coefficient of the potential, in the same way as in (5.14), but with constant β, is however

possible. To lowest order in ε this simply means renormalizing the value of the coupling

in the potential, i.e., q∗ → q∗(1 + cqε), everywhere. Similarly, one can introduce temper-

ature dependence of the overall coefficient of a(γ, T ). But actually this function is even

less constrained by the accelerating solutions. This happens because, as we noticed in

section 5.2, the static T = Tc tanh profile satisfies the equations of motion from the action
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for γ in (5.13) for any a(γ). It follows that the O(ε) domain wall solution only depends on

the leading O(ε0) term of a(γ, T ). Therefore we can have

a(γ, T ) = a(γ) + εâ(γ) + O
(

ε2
)

(7.15)

with any â(γ) without affecting the accelerating solution at O(ε). The coefficient α in (5.14)

is α ∝ â(γ)/a(γ) in the limit T → Tc. Putting these observations together, the γ depen-

dence required for the formula (5.16) to agree with our choice B = 1 + Γ can arise from

a(γ, T ) through the coefficient α.

8 Comments on generality

The description proposed in the present paper was developed based on a conformal11 version

of the holographic Witten’s model [17] for which there exists the numerical solution of the

domain wall [20] interporating between coexisting confining and deconfined phases. We

believe, however, that the resulting framework should have a much more general range of

applicability.

Indeed quite different (nonconformal) holographic models, which have a 1st order phase

transition between two deconfined phases exhibit a domain wall profile which is very well

fitted by a tanh function [7, 9]. Since an underlying tanh shape of the domain wall arises

analytically in our framework, this suggests that the framework could also be applied in

those settings. In appendix B we checked that indeed our description works quite well

also for domain walls in the nonconformal bottom-up holographic model of [5] with two

deconfined phases for which we had numerical data.

The reasoning leading to our proposal was in fact very general and the insight from

holography was essentially used technically only to constrain the form of Γ(γ), a(γ) and

B(γ) and eliminate possible nondiagonal terms12 uµvν . The key qualitative input from

holography was really the reassurance that such a simple model could indeed work so well

even for a strongly interacting field theory with the very nontrivial gravitational configu-

ration dual to the domain wall [20].

For a general system with a 1st order phase transition we thus expect that one could

model the energy-momentum tensor as

Tµν = (1 − Γ) T phase A
µν + Γ T phase B

µν + T Σ
µν (8.1)

with Γ being a function of γ and the surface tension energy momentum tensor T Σ
µν following

from an action of the form

Lγ = −a(γ, T )

(
1

2
(∂γ)2 + V (γ, T )

)

(8.2)

with

V (γ, T ) ∝ γ2(1 − γ)2 . (8.3)

11Note that conformality refers only to the bulk and the physical boundary theory dimensionally reduced

on the φ circle is of course nonconformal.
12Such terms could nevertheless still reappear if they would be multiplied by (u · v).

– 35 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
9

With the current available data we cannot differentiate between options A and B or rule

out an alternative, but the two choices a(γ, T ) = c(T )/γ(1 − γ) and a(γ, T ) = c̃(T ) seem

most natural.

Let us note finally an interesting interpretation of our framework (applicable only in

case of option B i.e. with the canonical scalar action with a(γ) = 1). Consider the overall

action density for option B

L = (1 − Γ(γ))p(T ) + Γ(γ) − 1

2
c(T )(∂γ)2 − d(T )γ2(1 − γ2) (8.4)

where we explicitly separated out temperature dependence and emphasised that Γ is a

known functional13 of γ, which is the elementary field here. The Euclidean Lagrangian

aims to model the holographic on-shell action14 which evaluates holographically the free

energy. So restricting (8.4) to constant configurations gives an expression for the free energy

as a quartic polynomial in γ:

F = −(1 − Γ(γ))p(T ) − Γ(γ) + d(T )γ2(1 − γ2) (8.5)

which essentially provides a Landau type description of a 1st order phase transition, with

the two minima changing places as one goes across the transition. Our formulation (8.4) can

be then understood as promoting the Landau order parameter γ to a dynamical effective

field and coupling it in a natural way with hydrodynamic degrees of freedom. The above

interpretation fails for option A due to the 1/γ(1 − γ) prefactor of the scalar field action

and thus also of the potential. So from this point of view option B might be preferable.

9 Summary and outlook

In the present paper we investigated theories with a 1st order phase transitions with spe-

cial emphasis on the description of domain walls separating regions of coexisting phases.

A striking feature of the dual holographic descriptions of domain walls in various theories

is that the domain wall profiles appear to be much simpler than one would expect from the

rather complicated gravitational backgrounds. This is especially apparent for the case of

Witten theory, where the plasma-ball domain wall gravitational solution [20] is particularly

nontrivial.

The observation that the boundary physics seems much simpler than the full gravita-

tional description, suggests that one could model it directly on the level of the boundary

field theory energy-momentum tensor. To this end, we introduced an additional degree of

freedom γ, akin to an order parameter distinguishing the two phases and proposed a unified

description incorporating both the energy-momentum tensors of the two coexisting phases

as well as a piece localized essentially in the vicinity of the domain wall and describing its

surface tension profile.

13For the system investigated here it is given by Γ(γ) = γ2(3 − 2γ).
14This was the reason that we used the hydrodynamic action formulation of [52] instead of [51].
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In the case of the Witten model [17] with a confining and deconfined phases, we arrived

at a description in terms of a simple action for γ with a quartic potential coupled with hy-

drodynamics of the plasma in the deconfined phase. For the static planar domain wall, one

can obtain simple analytical formulas for all components of the energy-momentum tensor.

We believe that the overall framework should be applicable in a very general context

of theories with a 1st order phase transition. We checked that indeed one can get a very

good description also for the Witten model in another dimensionality as well as for a

nonconformal bottom-up holographic model from [5] with two coexisting plasma phases,

but we expect that similar modelling should hold even beyond holography.

The obtained results lead to a wide variety of open questions which should spark

various directions of further research.

• The holographic data at our disposal does not allow us to distinguish between two

variants of the proposed action (option A and option B), as well as to control the

variations of the parameters as we move away from T = Tc. Even at T = Tc, we find

that the B(Γ) coefficient in the domain wall energy-momentum tensor depends on

the specific theory. Indeed, one can view these parameters as analogs of transport

coefficients in hydrodynamics, hence an understanding of their variability in different

holographic models would be very interesting.

• Going further along these lines, it would be interesting to investigate natural ways of

systematically improving the model by including e.g. higher derivative terms in an

analogous way to going to higher order hydrodynamics or refining the scalar potential.

• An obvious question that raises from the model proposed in this paper is how to

interpret the field γ as an order parameter. In particular, 1−γ as an order parameter

for deconfinement. One may try to relate it to the standard order parameters for

deconfinement, like the VEV of a Polyakov loop which in principle one can try to

compute holographically as a function of x in the domain wall background, and see

if its profile is similar to that found for γ.15

• It would be very important to have a wide range of holographic gravitational so-

lutions which would allow one to clarify these issues. Time dependent solutions of

the holographic Einstein equations would be especially instructive, as these could fix

possible (u · v)
(

uµvν + vµuν − 1
2(u · v)ηµν

)

terms in Tµν and corresponding coupling

terms in the scalar action for γ. As a first step, it should be instructive to construct

the gravity solutions for a spherical domain wall [36], and for a flat accelerating one.

• Going further along these lines, one could investigate the incorporation of dissipation

within the proposed framework. Indeed understanding the impact of dissipation in

the above context should be quite important for the relevant physics.

• The whole processes of transition from one phase to another in both directions are

quite complex and are believed to include bubble nucleation and bubble coalescing.

15We thank Ofer Aharony for raising this point.
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It will be interesting to analyze these sub-processes using the action and the energy

momentum tensor proposed in this paper.

• The model proposed in this paper has been inspired by holography. Thus it is related a

priori to gauge dynamical systems with large Nc and large λ′t Hooft. A very interesting

question is to what extend can one extrapolate from the results derived here also to

real world of Nc = 3 and λ′t Hooft ∼ 1. One obvious question is the nature of the

transition.

• Another obvious question that follows the model proposed in this paper is can one

determine using it physical properties that can be experimentally observed. Using the

hydrodynamical description of the quark gluon fluid such properties were computed

and compared to experimental data. The question is what additional information

can be extracted about them using our domain-wall model.

• The action of our model resemble the one in Coleman’s seminal papers on

bounce [53, 54]. It would be interesting to use the results of the latter papers to

determine the decay width of the “false vacuum” for systems at temperature differ-

ent from the critical one.

• While the covariant description presented in this article was strongly motivated by

numerical data obtained through holography, we did not derive any of the ingredients

of the model by using the gravity dual. Naturally, such a derivation would be de-

sirable. An attempt in this direction was presented in section 3.3, where we studied

a simple model for the domain wall geometry in the Witten’s model. This model

however failed to explain some features of the numerically obtained exact geometry,

and we found no way to improve it systematically towards an exact solution of the

Einstein equations. It would be extremely interesting if the connection between the

gravity solutions and the boundary description could be made more precise either by

improving this attempt or by some other means.

• Since finding domain wall solutions to Einstein equations is typically rather difficult,

it may be useful to explore ways to simplify the problem on the gravity side. Such a

simplifying approach might be to use the limit of large number of dimensions. This is

actually well motivated for domain walls or phase transitions in QCD: as was pointed

out in [55, 56], a class of geometries which produces IR features similar to QCD [29]

is well approximated by a dimensional reduction of a high dimensional AdS space.

• In this paper we have considered the holographic description of glue dynamics. An

obvious question is how would the incorporation of fundamental quarks affect the

system. It is well known that such a system is characterized in addition to the con-

fining/deconfining transition also the one associated with chiral symmetry breaking.

The holographic dual of both phase transitions, which incorporates flavor branes was

analyzed in [18]. It will be very interesting to construct a model analogous to the

one presented here that includes also quark degrees of freedom and correspondingly

mesons and baryons.
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• As was mentioned above the model proposed in this paper has been inspired by holo-

graphic duality with a gravitational background. However, the holographic duality is

in fact an even deeper type of duality than the form in which it is commonly used. It

relates the gauge dynamics of a boundary field theory and string theory that resides

in the bulk. In [57, 58] it was argued that this type of duality does a much better job

in describing the spectra and decay processes of hadrons. Thus, the confining phase

should be described by string degrees of freedom. It would be interesting to uplift

the model of this paper into a stringy model which may yield a better description of

the hadronization process.
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A The domain wall in a six-dimensional setup

In this appendix we discuss the results of section 3.2 for a generalization of the domain

wall geometry which has one additional spatial dimension, and was also discussed in [20].

One can consider even more general solutions of the Einstein equations with a cosmological

constant for d + 2-dimensional gravity, with d equalling the number of spatial dimensions

(including the compactified dimension), but we restrict here to d = 3 (the main text) and

d = 4 (this appendix). Notice that the six-dimensional geometry therefore differs from the

Witten’s model [17] of compact D4 background [46] as there is no dilaton (or the dilaton

is constant) and the background is conformal. That is, the geometry is closely related

to AdS6: in particular, in the deconfining and confining limits it is obtained from (3.3)

and (3.1), respectively, simply by adding one spatial dimension (i.e., now i, j = 1 . . . 3 in

these formulas) and modifying the blackening factor to

f(u) = 1 −
(

4πRTc

5u

)5

, (A.1)

where R is the radius of the AdS6 space.

We may extract the components of Tµν from the domain wall solution and fit them

by using the Ansätze in (3.12) and in (3.16) in the same way as for the five-dimensional
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Figure 9. Fitting of the (normalized) components of the energy-momentum tensor for the six-

dimensional geometry. Left: tanh fit to T̂ττ and to T̂φφ. Blue dots show the energy-momentum

tensor extracted from the numerically constructed geometry of [20], and the green curves are given

by the fit in equation (3.12). Right: fits to T̂yy. The green curve is the prediction from the fit of

figure 5, given in equation (3.15). The dashed magenta and dot-dashed red fits were obtained by

using the former and latter formulas of equation (3.16), respectively.

geometry in section 3.2. The results are shown in figure 9, where the left (right) plot is the

counterpart of figure 5 (figure 6). The notation is as in section 3.2. The fit parameters for

the tanh fit are given by
q∗

2πTc
≈ 1.054 , 2πTcx0 ≈ 0.311 , (d = 4) (A.2)

for the tanh fit and by

q
(2)
∗

2πTc
≈ 0.981 , c(2) ≈ 0.0758 ,

q
(4)
∗

2πTc
≈ 0.652 , c(4) ≈ 0.0747 , (d = 4) , (A.3)

for the cosh fits.

The main observation from these fits is that dependence on d appears to be mild. The

ratios between the various values of q∗ are essentially unchanged. The value of x0 is a bit

higher than for d = 3, but T̂yy is in turn smaller. This happens because (3.14) depends on

d and reads, in general,

T̂yy(x) =
1

d − 2

(

1 − T̂ττ (x) − T̂φφ(x)
)

. (A.4)

We have also carried out the fit to the data by using our final model for the energy

momentum tensor in (4.11).16 As it turns out, for d = 4 a good fit to data is obtained

by using

B(Γ) = 2 (A.5)

instead of B(Γ) = 1 + Γ, which was used for d = 3 in section 4.2. The fit results for d = 4

are shown in figure 10 and is almost identical to the result for d = 3 in figure 8. That is,

the fit is again excellent. The deviation of the data from the fit (which is poorly visible in

the plots) is of the same magnitude in all fits, but a bit larger for d = 4 than for d = 3.

16For d = 4 the coefficient of the nµnν term is Σ(4 − B).
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Figure 10. Final fits of the model to the numerical solution for the domain wall for d = 4. The

blue dots, solid red curve, and dashed green curve show the numerical data, fit using the option A,

and fit using the option B, respectively.

B The domain wall for a nonconformal model with two deconfined phases

In this appendix we check that our framework is applicable in the context of a quite different

holographic model studied in [5] — a bottom-up gravity+scalar system in a 4D bulk with

the scalar field potential

V (Φ) = −6 cosh

(
Φ√
3

)

− 0.2 Φ4 (B.1)

The scale breaking conformality is set by a nonzero source for the operator dual to the

scalar field Φ. This model exhibits a 1st order phase transition with the two coexisting

phases being deconfined, both described holographically by black holes. The numerical

simulations in [5] followed the evolution from the spinodal instability to the formation of

domains of the two coexisting phases separated by domain walls. Here we analyze one of

the domain walls appearing in the final state configuration.

We first fit the q∗ and c parameters for options A and B (recall (4.21)–(4.23)) from

the surface tension density Σ(x) = Txx − Tyy. The outcome is shown in figure 11 (left).

Consequently we have

γ(x) =
1

2
+

1

2
tanh

q∗(x − xcenter)

2
(B.2)

where xcenter is the position of the center of the domain wall, which was not a-priori fixed

in the numerical simulation of [5]. We then determine B(Γ) by reproducing the energy

density Ttt using the formula

Ttt = (1 − Γ) ǫphase A + Γ ǫphase B + (1 − B(Γ)) Σ (B.3)

where we use the generalized version (8.1) which takes into account appropriate energy

densities of the two distinct deconfined phases. The last term follows from

T Σ
µν = Σ (−ηµν + vµvν − Buµuν) (B.4)

– 41 –
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Figure 11. Reproducing the numerical domain wall between two deconfined phases for the noncon-

formal bottom-up holographic gravity+scalar theory from [5]. On the left: surface tension density

Txx − Tyy fitted using option A (red) and option B (dashed green). On the right: energy density

Ttt using the same B(Γ) for both options. The numerical data marked by blue dots are taken from

simulations performed in [5].

which differs from (4.9) just by the absence of the nµnν term as in the present case there is

no φ direction. Recall that for option A, Γ(γ) = γ, while for option B, Γ(γ) = γ2(3 − 2γ).

We use a common B(Γ) in both cases. We find that for this theory

B(Γ) = 6.25 − 3.5 Γ (B.5)

works very well, as shown in figure 11 (right).

C The n
µ
n

ν terms from an action

For completeness, let us discuss how one could formally implement the nµnν in the energy-

momentum tensor as coming from an action. Now of course the action would have to be

considered as a four-dimensional action including the φ circle. We should just look at

solutions which do not involve any dependence on φ.

A natural way to proceed is to introduce a vector Nµ and

N =
1

√
gµνNµNν

(C.1)

so that the unit vector nµ is given by

nµ = NNµ . (C.2)

All this is rather artificial as we have to keep N = 1 and Nµ = (0, 0, 0, 1) fixed and

nondynamical. Proceeding as before, we get the variation

δN =
1

2
Nnµnνδgµν (C.3)

and we see that the confining energy-momentum tensor

T conf
µν = gµν − 4nµnν (C.4)
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arises from the Lagrangian density

Lconf = q(N) = N4 . (C.5)

Let us now move to the scalar action. The only change will be that the coefficients

can now be functions of both T and N . Again for simplicity we take a power law Ansatz

a(T, N, γ) = T αNκa(γ) , V (T, N, γ) = T βNρV (γ) . (C.6)

In the formula for T Σ
µν we thus have the following terms (evaluated at T = N = 1)

− a(γ)
(

α(∂γ)2 + (α + β)V (γ)
)

uµuν + a(γ)
(

κ(∂γ)2 + (κ + ρ)V (γ)
)

nµnν (C.7)

as well as

a(γ)∂µγ∂νγ − a(γ)

(
1

2
(∂γ)2 + V (γ)

)

gµν . (C.8)

Now we should impose the tracelessness condition. We can do it now as currently we have

a model of the energy-momentum tensor of the four-dimensional boundary theory. We get

two equations arising from the coefficients of (∂γ)2 and V (γ) in the trace:

α + κ = 1 α + β + κ + ρ = 4 . (C.9)

The numerical fits lead to

B =
3

2
α +

1

2
β = 1 + Γ , −C =

3

2
κ +

1

2
ρ = 2 − Γ (C.10)

where B and C are the coefficients in (4.9). But again we would like to emphasize that

this is just a formal exercise as we always take N ≡ 1 in the Witten model [17].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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