
A Simple Dimensionality Reduction Technique for Fast
Similarity Search in Large Time Series Databases

Eamonn J. Keogh and Michael J. Pazzani

Department of Information and Computer Science
University of California, Irvine, California 92697 USA

{ eamonn, pazzani } @i cs. uci . edu

Abstract. We address the problem of similarity search in large time series data-
bases. We introduce a novel-dimensionality reduction technique that supports
an indexing algorithm that is more than an order of magnitude faster than the
previous best known method. In addition to being much faster our approach has
numerous other advantages. It is simple to understand and implement, allows
more flexible distance measures including weighted Euclidean queries and the
index can be built in linear time. We call our approach PCA-indexing (Piece-
wise Constant Approximation) and experimentally validate it on space teleme-
try, financial, astronomical, medical and synthetic data.

1 Introduction

Recently there has been much interest in the problem of similarity search in time se-
ries databases. This is hardly surprising given that time series account for much of the
data stored in business, medical and scientific databases. Similarity search is useful in
its own right as a tool for exploring time series databases, and it is also an important
subroutine in many KDD applications such as clustering [6], classification [14] and
mining of association rules [5].

Time series databases are often extremely large. Given the magnitude of many time
series databases, much research has been devoted to speeding up the search process
[23,1,15,19,4,11]. The most promising methods are techniques that perform dimen-
sionality reduction on the data, then use spatial access methods to index the data in the
transformed space. The technique introduced in [1] and extended in [8, 21,23]. The
original work by Agrawal et al. utilizes the Discrete Fourier Transform (DFT) to per-
form the dimensionality reduction, but other techniques have been suggested, most
notably the wavelet transform [4].

In this paper we introduce a novel transform to achieve dimensionality reduction. The
method is motivated by the simple observation that for most time series datasets we
can approximate the data by segmenting the sequences into equi-length sections and
recording the mean value of these sections. These mean values can be indexed effi-
ciently in a lower dimensionality space. We compare our method to DFT, the only

obvious competitor, and demonstrate a one to two order of magnitude speedup on four
natural and two synthetic datasets.

In addition to being much faster. We demonstrate that our approach has numerous
other advantages over DFT. It is simple to understand and implement, allows more
flexible queries including the weighted Euclidean distance measure, and the index can
be built in linear time. In addition our method also allows queries which are shorter
than length for which the index was built. This very desirable feature is impossible in
DFT and wavelet transforms due to translation invariance [20].

The rest of the paper is organized as follows. In Section 2, we state the similarity
search problem more formally and survey related work. In Section 3, we introduce our
method. Section 4 contains extensive empirical evaluation of our technique. In Section
5, we demonstrate how our technique allows more flexible distance measures. Section
6 offers concluding remarks and directions for future work.

2 Background and Related Work

Given two sequences X = x1…xn and Y = y1…ym with n = m, their Euclidean distance is
defined as:

() ()∑ −≡
=

n

i
ii yxYXD

1

2, (1)

There are essentially two ways the data might be organized [8]:
• Whole Matching. Here it assumed that all sequences to be compared are the same

length.

• Subsequence Matching. Here we have a query sequence X, and a longer sequence Y.
The task is to find the subsequence in Y, beginning at Yi, which best matches X,
and report its offset within Y.

Whole matching requires com-
paring the query sequence to
each candidate sequence by
evaluating the distance function
and keeping track of the se-
quence with the lowest distance.
Subsequence matching requires
that the query X be placed at
every possible offset within the
longer sequence Y. Note it is
possible to convert subsequence
matching to whole matching by sliding a "window" of length n across Y, and making
copies of the m-n windows. Figure 1 illustrates the idea. Although this causes storage
redundancy it simplifies the notation and algorithms so we will adopt this policy for
the rest of this paper.

Figure 1: The subsequence matching problem can be
converted into the whole matching problem by sliding a
"window" of length n across the long sequence and
making copies of the data falling within the windows

Figure 1: The subsequence matching problem can be
converted into the whole matching problem by sliding a
"window" of length n across the long sequence and making
copies of the data falling within the windows

n datapoints

There are several kinds of queries that could be made of a database, such as range
queries, all-pairs and nearest neighbor. For simplicity, we will concentrate just on
nearest neighbor. The other kinds of queries can always be built using nearest neigh-
bor, and the extensions are trivial.
Given a query X and a database consisting of K time series Yi (1 ≤ i ≤ K), we want to
find the time series Yi such that D(Yi,X) is minimized. The brute force approach, se-
quential scanning, requires comparing every time series Y to X. Clearly this approach
is unrealistic for large datasets.
Any indexing scheme that does not examine the entire dataset could potentially suffer
from two problems, false alarms and false dismissals. False alarms occur when objects
that appear to be close in the index are actually distant. Because false alarms can be
removed in a post-processing stage (by confirming distance estimates on the original
data), they can be tolerated so long as they are relatively infrequent. In contrast, false
dismissals, when qualifying objects are missed because they appear distant in index
space, are usually unacceptable. In this work we will focus on admissible searching,
indexing techniques that guarantee no false dismissals.

2.1 Related Work

A time series X can be considered as a point in n-dimensional space. This immediately
suggests that time series could be indexed by Spatial Access Methods (SAMs) such as
the R-tree and its many variants [9,3]. However SAMs begin to degrade rapidly at
dimensionalities greater than 8-10 [12], and realistic queries typically contain 20 to
1,000 datapoints. In order to utilize SAMs it is necessary to first perform dimension-
ality reduction. Several dimensionality reduction schemes have been proposed. The
first of these F-index, was introduced in [1] and extended in [8,23,21]. Because this is
the current state-of-the-art for time series indexing we will consider it in some detail.
An important result in [8] is that the authors proved that in order to guarantee no false
dismissals, the distance in the index space must satisfy the following condition

 Dtrue(A,B) ≥ Dindex space(A,B) (2)

Given this fact, and the ready availability of off-the-shelf SAMs, a generic technique
for building an admissible index suggests itself. Given the true distance metric (in this
case Euclidean) defined on n datapoints, it is sufficient to do the following:

• Produce a dimensionality reduction technique that reduces the dimensionality
of the data from n to N, where N can be efficiently handled by your favorite
SAM.

• Produce a distance measure defined on the N dimensional representation of the
data, and prove that it obeys Dtrue(A,B) ≥ Dindex space(A,B).

In [8] the dimensionality reduction technique chosen was the Discrete Fourier Trans-
form (DFT). Each of the time series are transformed by the DFT. The Fourier repre-
sentation is truncated, that is, only the first k coefficients are retained (1 ≤ k < n), and
the rest discarded. The k coefficients can then be mapped into 2k space (2k because
each coefficient has a real and imaginary component) and indexed by an R* tree.

An important property of the Fourier Transform is Parseval’s Theorem, which states
that the energy in Euclidean space is conserved in Fourier space [18]. Because of the
truncation of positive terms the distance in the transformed space is guaranteed to
underestimate the true distance. This property is exploited by mapping the query into
the same 2k space and examining the nearest neighbors. The theorem guarantees un-
derestimation of distance, so it is possible that some apparently close neighbors are
actually poor matches. These false alarms can be detected by examining the corre-
sponding original time series in a post processing stage.
Many other schemes have been proposed for similarity search in time series databases.
As they focus on speeding up search by sacrificing the guarantee of no false dismissals
[11, 15, 19], and/or allowing more flexible distances measures [2,11, 15, 14, 13, 23,
16, 21] we will not discuss them further.

3 Our Approach

As noted by Faloutsos et al. [8], there are several highly desirable properties for any
indexing scheme:

• It should be much faster than sequential scanning.
• The method should require little space overhead.
• The method should be able to handle queries of various lengths.
• The method should be allow insertions and deletions without requiring the index

to be rebuilt.
• It should be correct, i.e. there should be no false dismissals.

We will now introduce the PCA indexing scheme and demonstrate that it has all the
above properties.

3.1 Dimensionality Reduction

We denote a time series query as X = x1,…,xn, and the set of time series which consti-
tute the database as Y = { Y1,…YK} . Without loss of generality, we assume each se-
quence in Y is n units long. Let N be the dimensionality of the transformed space we
wish to index (1 ≤ N ≤ n). For convenience, we assume that N is a factor of n. This is
not a requirement of our approach, however it does simplify notation.
A time series X of length n is represented in N space by a vector NxxX ,,1

�= . The i th

element of X is calculated by the following equation:

∑
+−=

=
i

ij
jn

N
i

N
n

N
n

xx
1)1(

(3)

Simply stated, to reduce the data from n dimensions to N dimensions, the data is di-
vided into N equi-sized "frames". The mean value of the data falling within a frame is
calculated and a vector of these values becomes the data reduced representation. Fig-
ure 2 illustrates this notation. The complicated subscripting in Eq. 3 is just to insure
that the original sequence is divided into the correct number and size of frames.

Figure 2: An illustration of the data reduction technique utilized in this paper. A time series
consisting of eight (n) points is projected into two (N) dimensions. The time series is divided
into two (N) frames and the mean of each frame is calculated. A vector of these means be-
comes the data reduced representation

Two special cases worth noting are when N = n the transformed representation is
identical to the original representation. When N = 1 the transformed representation is
simply the mean of the original sequence. More generally the transformation produces
a piecewise constant approximation of the original sequence.

3.2 Building the index

Table 1 contains an outline of the indexing algorithm. We are deliberately non-
committal about the particular indexing structure used. This is to reinforce the fact the
dimensionality reduction technique proposed is independent of the indexing structure.
All sequences in Y are transformed by Eq. 3 and indexed by the spatial access method
of choice. The indexing tree represents the transformed sequences as points in N di-
mensional space. Each point contains a pointer to the corresponding original sequence
on disk.

for i = 1 to K / / For each sequence t o be i ndexed

Yi ← Yi – mean(Yi) ; / / Opt i onal : r emove t he mean of Yi

iY ← t r ansf or med(Yi) ; / / As i n eq. 3

I nser t
iY i nt o t he i ndexi ng st r uct ur e wi t h a poi nt er t o Yi

on di sk;
end;

Table 1: An outline of the indexing building algorithm.

Note that each sequence has its mean subtracted before indexing. This has the effect
of shifting the sequence in the y-axis such that its mean is zero, removing information
about its offset. This step is optional. We include it because we want to compare our
results directly to F-index, and F-index discards information about offset. For some
applications this step is undesirable and can be omitted [13]. Note that the transfor-
mation for a single sequence takes O(n) time, thus the entire index can be built in
O(Kn). This contrasts well to F-index which requires O(KnLogn) time.

X = (-1, -2, -1, 0, 2, 1, 1, 0)
n = |X| = 8

X = (mean(-1,-2,-1,0), mean(2,1,1,0))

X = (-1 , 1) N = | X | = 2

X = (-1, -2, -1, 0, 2, 1, 1, 0)
n = |X| = 8

X = (mean(-1,-2,-1,0), mean(2,1,1,0))

X = (-1 , 1) N = | X | = 2

3.3 Searching the Index

As mentioned in Section 2, in order to guarantee no false dismissals we must produce
a distance measure DR, defined in index space, which has the following property:
D(X,Y) ≥ DR(YX ,). The following distance measure has this property:

()∑ =
−≡

N

i iiN
n yxYXDR

1

2),((4)

The proof that D(X,Y) ≥ DR(YX ,) is straightforward but long. We omit it for brevity.
Table 2 below contains an outline of the nearest neighbor search algorithm. Once a
query X is obtained a transformed copy of it X is produced. The indexing structure is
searched for the nearest neighbor of X . The original sequence pointed to by this
nearest neighbor is retrieved from disk and the true Euclidean distance is calculated. If
the second closest neighbor in the index is further than this true Euclidean distance, we
can abandon the search, because we are guaranteed its distance in the index is an un-
derestimate of its true distance to the query. Failing that, the algorithm repeatedly
retrieves the sequence pointed to by the next most promising item in the index and
tests if its true distance is greater than the current best so far. As soon as that happens
the search is abandoned.

best - so- f ar ← i nf i ni t y;
done ← FALSE;
i ← 1;

X ← t r ansf or med(X) ; / / Usi ng eq. 2

while i ≤ G AND NOT(done)

Fi nd X ’ s i t h near est nei ghbor i n t he i ndex; / / Usi ng DR (eq. 3)
Ret r i eve sequence r epr esent ed by t he i t h near est nei ghbor ;

 if D(or i gi nal - sequence
i
, X) < best - so- f ar / / D i s def i ned i n eq. 1

 best - so- f ar ← D(or i gi nal - sequence
i
, X) ;

 end;

 if best - so- f ar ≤ i t h+1 near est nei ghbor i n t he i ndex
 done ← TRUE;

Di spl ay(’ Sequence ’ , i , ’ is the nearest neighbor to Query’) ;
Di spl ay(’ At a distance of ’ , best - so- f ar) ;

 end;

 i ← i + 1;
 end;

Table 2: An outline of the indexing searching algorithm.

3.4 Handling queries of various lengths

In the previous section we showed how to handle queries of length n, the length for
which the index structure was built. However, it is possible that a user might wish to
query the index with a query which is longer or shorter that n. For example a user
might normally be interested in monthly patterns in the stock market, but occasionally
wish to search for weekly patterns. Naturally we wish to avoid building an index for

every possible length of query. In this section we will demonstrate how we can exe-
cute queries of different lengths on a single fixed-length index. For convenience we
will denote queries longer than n as XL and queries shorter than n as XS, with |XL| =
nXL and |XS| = nXS.
3.4.1 Handling short queries
Queries shorter than n can be dealt with in two ways. If the SAM used supports di-
mension weighting (for example the hybrid tree [3]) one can simply weigh all the
dimensions from ceiling(

n

nN XS) to N as zero. Alternatively, the distance calculation in

Eq. 4 can have the upper bound of its summation modified to:

   ()∑ =
−=

Nshort

i iiN
n

n

Nn yxNshort XS

1

2, (5)

The modification does not affect the admissibility of the no false dismissal condition
in eq. 2. Because the distance measure is the same as Eq. 4 which we proved, except
we are summing over an extra 0 to 1−

N
n nonnegative terms on the larger side of the

inequality. Apart from making either one of these changes, the nearest neighbor search
algorithm given in table 2 is used unmodified. This ability of PCA-index to handle
short queries is an attractive feature not shared by F-index, which must resort to se-
quential scanning in this case [8], as must indexing schemes based on wavelets [20].
3.4.2 Handling longer queries
Handling long queries is a little more difficult than the short query case. Our index
only contains information about sequences of length n (projected into N dimensions)
yet the query XL is of length nXL with nXL > n. However we can regard the index as
containing information about the prefixes of potential matches to the longer sequence.
In particular we note that the distance in index space between the prefix of the query
and the prefix of any potential match is always less than or equal to the true Euclidean
distance between the query and the corresponding original sequence. Given this fact
we can use the nearest neighbor algorithm outlined in table 2 with just two minor
modifications. In line four, the query is transformed into the representation used in the
index, here we need to replace X with XL[1:n]. The remainder of the sequence,
XL[n+1:nXL], is ignored during this operation.
In line seven, the original data sequence pointed most promising object in the index is
retrieved. For long queries, the original data sequence retrieved and subsequently
compared to XL must be of length nXL,not n.

4 Experimental Results

To demonstrate the generality of our method we tested it on five datasets with widely
varying properties.
• Random Walk: The sequence is a random walk xt = xt-1 + zt Where zt (t = 1,2,…) are

independent identically distributed (uniformly) random variables in the range (-
500,500) [1]. (100,000 datapoints).

• Astronomical: A dataset that describes the rate of photon arrivals [17]. (28,904
datapoints).

• Financial: The US Daily 5-Year Treasury Constant Maturity Rate, 1972 - 1996
[15]. (8,749 datapoints).

• Space Shuttle: This dataset consists of ten time series that describe the orientation
of the Space Shuttle during the first eight hours of mission STS-57 [14,15].
(100,000 datapoints).

• Control Chart: This dataset consists of the Cyclic pattern subset of the control
chart data from the UCI KDD archive (kdd.ics.uci.edu). The data is essentially a
sine wave with noise. (6,000 datapoints).

4.1 Building queries

Choosing queries that actually appear in the indexed database will always produce
optimistic results. On the other hand, some indexing schemes can do well if the query
is greatly different from any sequence in the dataset. To perform realistic testing we
need queries that do not have exact matches in the database but have similar properties
of shape, structure, spectral signature, variance etc. To achieve this we do the follow-
ing. We extract a sequence from the database then flip it either backwards or upside-
down depending on the outcome of a fair coin toss. The flipped sequence then be-
comes our query.
For every combination of dataset, number of dimensions, and query length we per-
formed 1,000 random queries and report the average result.

4.2 Evaluation

In previous work on indexing of time series, indexing schemes have been evaluated by
comparing the time taken to execute a query. However this method has the disadvan-
tage of being sensitive to the implementation of the various indexing schemes being
compared. For example in [1], the authors carefully state that they use the branch and
bound optimization for the Sequential-Scan (a standard indexing strawman). However,
in [11] and [23] the authors do not tell us whether they are comparing their indexing
schemes to optimized or unoptimized Sequential-Scan. This is a problem because the
effect of the optimization can be as much as two orders of magnitude, which is far
greater than the speedup reported.
As an example of the potential for implementation bias in this work consider the fol-
lowing. At query time F-index must do a Fourier transform of the query. We could use
the naïve algorithm which is O(n2) or the faster radix-2 algorithm (padding the query
with zeros for n ≠ 2integer [18]) which is O(nlogn). If we implemented the simple algo-
rithm it would make our indexing method perform better relative to F-index.
To prevent implementation bias we will compare our indexing scheme to F-index by
reporting the P, the fraction of the database that must be examined before we can
guarantee that we have found the nearest match to our query.

databaseinobjectsofNumber
retreivedobjectsofNumberP = (6)

 Note the value of P depends only on the data and the queries and is completely inde-
pendent of any implementation choices, including spatial access method, page size,
computer language or hardware. It is a fair evaluation metric because it corresponds to
the minimum number of disk accesses the indexing scheme must make, and disk time
dominates CPU time. A similar idea for evaluating indexing appears in [10].

4.3 Experimental results

Figure 3 shows the results of comparing PCA-index to F-index on a variety of da-
tasets. Experiments in [1,8] suggest a dimensionality of 6 for F-index. For complete-
ness we tested of a range of dimensionalities, however only even numbers of dimen-
sions are used because F-index (unlike PCA-index) is only defined for even numbers.
We also tested over a variety of query lengths. Naturally, one would expect both ap-
proaches to do better with more dimensions and shorter queries, and the results gener-
ally confirm this.

For low dimensionalities, say 2-4, PCA-index generally outperforms F-index by about
a factor of two. However as the dimensionality increases the difference between the
approaches grows dramatically. At a dimensionality of ten, PCA-index outperforms F-
index by a factor of 81.4 (averaged over the 5 datasets in Fig 3). Competitive index

PCA-index F-index

Random Walk

Financial

Shuttle

Astronomical

10 8 6 4 2

2030405060
0

0.2

0.4

0.6

0.8

1

10 8 6 4 2
20

30405060
0

0.2

0.4

0.6

0.8

1

10 8 6 4 2

2030405060

0

0.2

0.4

0.6

0.8

1

10 8 6 4 2

2030405060

0

0.2

0.4

0.6

0.8

1

10 8 6 4 2

0

0.2

0.4

0.6

0.8

1

10 8 6 4 2

128
256

512
1024

0

0.2

0.4

0.6

0.8

1

128
256

512
1024

10 8 6 4 2

2060
100

140
180

0

0.2

0.4

0.6

0.8

1

10 8 6 4 2

0

0.2

0.4

0.6

0.8

1

2060
100

140
180

Figure 3: The fraction of the database which must be retrieved from disk using the two indexing
schemes compared in this paper, together with sample queries and a section containing the corre-
sponding best match. Each pair of 3d histograms represents a different dataset. Each bar in the 3d
histogram represents P, the fraction of the database that must be retrieved from disk for a par-
ticular combination of index dimensionality and query length (averaged over 1,000 trials)

Financial

Astronomical

Random Walk

Shuttle

trees can easily handle dimensionalities of ten or greater [3,12].
The Control dataset shown in Fig. 4 contains the only instances where F-index outper-
formed PCA-index, so we will consider it in more detail. This dataset is a sine wave
with noise. With just two dimensions (corresponding to the real and imaginary parts of
a single Fourier coefficient) F-index can model a sine wave very well. In contrast, at
the same dimensionality PCA-index has several entire periods contained within a sin-
gle frame, thus all frames have approximately the same value and PCA-index has little
discriminating power. However the situation changes dramatically as the dimension-
ality increases. Because most of the energy is concentrated in the first coefficient,
adding more dimensions does not improve F-index’s performance. In contrast PCA-
index extracts great benefit from the extra dimensions. Once the frame size is less than
a single period of the sine wave its performance increases dramatically.
This special case clearly illustrates a fact that can also be observed in all the other
experiments, PCA-index is able to take advantage of extra dimensions much more that
F-index.

5 Generalizing the Distance Measure

Although the Euclidean distance measure is optimal under several restrictive assump-
tions [1], there are many situations where a more flexible distance measure is desired
[13]. The ability to use these different distance measures can be particularly useful for
incorporating domain knowledge into the search process. One of the advantages of
the indexing scheme proposed in this paper is that it can handle many different dis-
tance measures, with a variety of useful properties. In this section we will consider
one very important example, weighted Euclidean distance. To the author’s knowledge,
this is the first time an indexing scheme for weighted Euclidean distance has been
proposed.

5.1 Weighted Euclidean distance

It is well known in the machine learning community that weighting of features can
greatly increase classification accuracy [22]. In [14] we demonstrated for the first time
that weighing features in time series queries can increase accuracy in time series clas-
sification problems. In addition in [13], we demonstrated that weighting features (to-

Control Chart

Figure 4: The result of experiments on the Control Dataset, with a sample query and a section
containing the corresponding best match. The black topped 3d histogram bars indicate where F-
index outperforms PCA-index.

PCA-index F-index

10 8 6 4 2

20253035
40

0

0.2

0.4

0.6

0.8

1

10 8 6 4 2
20

25303540
0

0.2

0.4

0.6

0.8

1

Control Chart

Figure 4: The result of experiments on the Control Dataset, with a sample query and a section
containing the corresponding best match. The black topped 3d histogram bars indicate where F-
index outperforms PCA-index

gether with a method for combining queries) allows relevance feedback in time series
databases. Both [14,13] illustrate the utility of weighted Euclidean metrics, however
no indexing scheme was suggested. We will now show that PCA-index can be easily
modified to support of weighted Euclidean distance.
In Section 3.2, we denoted a time series query as a vector X = x1,…,xn. More generally
we can denote a time series query as a tuple of equi-length vectors { X = x1,…,xn , W =
w1,…,wn} where X contains information about the shape of the query and W contains
the relative importance of the different parts of the shape to the query. Using this defi-
nition the Euclidean distance metric in Eq. 1 can be extended to the weighted Euclid-
ean distance metric DW:

()∑ =
−=

n

i iii yxwYWXDW
1

2)],,([(7)

We can perform weighted Euclidean queries on our index by making two simple
modifications to the algorithm outlined in Table 2. We replace the two distance meas-
ures D and DR with DW and DRW respectively. DW is defined in Eq. 7 and DRW is
defined as:

 ()),,min(11 iii
N
n

N
n www �+−= , ()∑ =

−=
N

i iiiN
n yxwYWXDRW

1

2)],,([

(8)
Note that it is not possible to modify F-index in a similar manner, because each coef-
ficient represents amplitude and phase of a signal that is added along the entire length
of the query

6 Conclusions

We have introduced a dimensionality reduction technique that allows fast indexing of
time series. We performed extensive empirical evaluation and found our method out-
performs the current best known approach by one to two orders of magnitude. We
have also demonstrated that our technique can support weighted Euclidean queries.
In future work we intend to further increase the speed up of our method by exploiting
the similarity of adjacent sequences (in a similar spirit to the "trail indexing" technique
introduced in [8]). Additionally, we hope to show the speedup obtained by PCA-index
will support a variety of time series datamining algorithms that scale poorly to large
datasets, for example the rule induction algorithm proposed in [5].

References

1. Agrawal, R., Faloutsos, C., & Swami, A. (1993). Efficient similarity search in sequence
databases. Proc. of the 4th Conference on Foundations of Data Organization and Algorithms.

2. Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K. (1995). Fast similarity search in the
presence of noise, scaling, and translation in times-series databases. In VLDB.

3. Chakrabarti, K & Mehrotra, S. (1999). The Hybrid Tree: An Index Structure for High Di-
mensional Feature Spaces. Proc of the IEEE International Conference on Data Engineering.

4. Chan, K. & Fu, W. (1999). Efficient Time Series Matching by Wavelets. Proceedings of the
15th International Conference on Data Engineering.

5. Das, G., Lin, K. Mannila, H., Renganathan, G., & Smyth, P. (1998). Rule Discovery from
Time Series. In Proc of the 3rd Inter Conference of Knowledge Discovery and Data Mining.

6. Debregeas, A. & Hebrail, G. (1998). Interactive interpretation of Kohonen maps applied to
curves. Proc of the 4th International Conference of Knowledge Discovery and Data Mining.

7. Faloutsos, C. & Lin, K. (1995). Fastmap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In Proc. ACM SIGMOD Conf., pp 163-174.

8. Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence matching in
time-series databases. In Proc. ACM SIGMOD Conf., Minneapolis.

9. Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proc. ACM
SIGMOD Conf., pp 47-57.

10. Hellerstein, J. M., Papadimitriou, C. H., & Koutsoupias, E. (1997). Towards an Analysis of
Indexing Schemes. 16th ACM SIGACT- Symposium on Principles of Database Systems.

11. Huang, Y. W., Yu, P. (1999). Adaptive Query processing for time-series data. Proceedings
of the 5th International Conference of Knowledge Discovery and Data Mining. pp 282-286.

12. Kanth, K.V., Agrawal, D., & Singh, A. (1998). Dimensionality Reduction for Similarity
Searching in Dynamic Databases. In Proc. ACM SIGMOD Conf., pp. 166-176.

13. Keogh, E. & Pazzani, M. (1999). Relevance Feedback Retrieval of Time Series Data. Proc.
of the 22th Annual International ACM-SIGIR Conference on Research and Development in
Information Retrieval.

14. Keogh, E., & Pazzani, M. (1998). An enhanced representation of time series which allows
fast and accurate classification, clustering and relevance feedback. Proceedings of the 4th Inter-
national Conference of Knowledge Discovery and Data Mining. pp 239-241, AAAI Press.

15. Keogh, E., & Smyth, P. (1997). A probabilistic approach to fast pattern matching in time
series databases. Proc. of the 3rd Inter Conference of Knowledge Discovery and Data Mining

16. Park, S., Lee, D., & Chu, W. (1999). Fast retrieval of similar subsequences in long sequence
databases. In 3rd IEEE Knowledge and Data Engineering Exchange Workshop.

17. Scargle, J. (1998). Studies in astronomical time series analysis: v. Bayesian blocks, a new
method to analyze structure in photon counting data. Astrophysical Journal, Vol. 504.

18. Shatkay, H. (1995). The Fourier Transform - a Primer, Technical Report CS-95-37, De-
partment of Computer Science, Brown University.

19. Shatkay, H., & Zdonik, S. (1996). Approximate queries and representations for large data
sequences. Proc. 12th IEEE International Conference on Data Engineering. pp 546-553.

20. Struzik, Z. & Siebes, A. (1999). The Haar Wavelet Transform in the time series similarity
paradigm. 3rd European Conference on Principles and Practice of KDD.

21. Refiei, D., & Mendelzon, A. (1997). Similarity-Based queries for time series data. In Proc.
ACM SIGMOD Conf., pp. 13-25.

22. Wettschereck, D., Aha, D. & Mohri, T. (1997). A review and empirical evaluation of feature
weighting methods for a class of lazy learning algorithms. AI Review, Vol 11, Issues 1-5.

23. Yi, B,K., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval of similar time sequences
under time warping. IEEEE International Conference on Data Engineering. pp 201-208.

