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We present a phenomenological model of intermittency called the P-model and related 

to the Novikov-Stewart (1964) model. The key assumption is that in scales N &2-” 

only a fraction /3n of the total space has an appreciable excitation. The model, the 

idea of which owes much to Kraichnan (1972, 1974)’ is dynamical in the sense that we 

work entirely with inertial-range quantities such as velocity amplitudes, eddy turn- 

over times and energy transfer. This gives more physical insight than the traditional 

approach based on probabilistic models of the dissipation. 

The P-model leads in an elementary way to the concept of the self-similarity dimen- 

sion D,  a special case of Mandelbrot’s (1974, 1976) ‘fractal dimension’. For three- 

dimensional turbulence, the correction B to the Q exponent of the energy spectrum 

is equal to +( 3 - D )  and is related to the exponent p of the dissipation correlation func- 

tion by B = Qp (0.17 for the currently accepted value). This is a borderline case of the 

Mandelbrot inequality B < Qp. It is shown in the appendix that this inequality may 

be derived from the Navier-Stokes equation under the strong, but plausible, assump- 

tion that the inertial-range scaling laws for second- and fourth-order moments have 

the same viscous cut-off. 

The predictions of the P-model for the spectrum and for higher-order statistics are 

in agreement with recent conjectures based on analogies with critical phenomena 

(Nelkin 1975) but generally diasgree with the 1962 Kolmogorov lognormal model. 

However, the sixth-order structure function (8v6(Z)) and the dissipation correlation 

function (e(r) e(r + 1)) are related by 

(Svs(l))/Z2 N +(r) e( r  + 1)) 

in both models. We conjecture that this relation is model independent. 

intermittency are indicated. 

Finally, some possible directions for further numerics? and experimental work on 

1. Introduction 

In  t,rying to understand some of the recent work on intermittency, particularly t,hat 

of Mandelbrot, we have constructed a simple dynamical model which embodies many 

of the observed features. These include spottiness of the small-scale structure (Batche- 

lor & Townsend 1949; Kuo & Corrsin 1971)’ higher-order structure functions which 
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do not follow the Kolmogorov (1941) scaling (Van Atta & Park 1972) and a dissipation 

correlation function which follows a power law (Gibson, Stegen & McConnell 1970). 

A number of probabilistic models have already been developed by the Soviet School 

(see Monin & Yaglom 1975, vol. 2, chap. 25 for a review). Mandelbrot (1972, 1974, 

1976) has shown that such models give rise to the very interesting geometric concept 

of a fractal dimension D, which is a measure of the extent to which the regions in 

which dissipation is concentrated fill space. He has shown that the exponent in the 

dissipation correlation function, usually denoted by p, is equal to  3 - D and that the 

correction, which he denotes by B, t o  the exponent of the energy spectrum satisfies 

B < Qp. (1.1) 

He has also shown that the Kolmogorov (1962) lognormality assumption, which leads 

to B = +p, is only one of many possibilities. In  all the above models the key quantity 

is the dissipation, the effect of which is restricted to very small scales. It would be 

preferable to work with dynamical quantities directly related to inertial-range energy 

transfer (Kraichnan 1974; Nelkin 1974; Frisch, Lesieur & Sulem 1976; Nakano 1976). 

The /?-model introduced in this paper is essentially a dynamical version of the 

Novikov-Stewart (1964) model, and relates naturally to the concept of a fractal 

dimension. An important feature of the /?-model is that we do not have to assume the 

Kolmogorov (1941) law initially and then derive its modified version by somehow 

mysteriously taking fluctuations into account. Instead we introduce a simple dynami- 

cal argument, mostly borrowed from Kraichnan (1972), from which we derive both 

the Kolmogorov 1941 theory (0  2) and the scaling laws for intermittent turbulence 

($9 3 and 4), depending on whether or not the small scales are space filling. The /3- 
model leads immediately to the concept of a self-similarity dimension D, a special 

case of Mandelbrot’s fractal dimension. Furthermore, all the exponents defined by 

scaling laws can be simply expressed in terms of the single parameter D (or p).  In  

$ 5 we show that the /3-model can be extended to other space dimensions, including the 

inverse energy cascade in two dimensions and the one-dimensional Burgers equation. 

In  § 6 we discuss the relation of our model to previous work on intermittency, parti- 

cularly that of Oboukhov (1962), Kolmogorov (1962), Novikov & Stewart (1964), 

Yaglom (1966) and Mandelbrot (1974, 1976). In  9 7 we consider the relations among 

measurable exponents predicted by the /3-model. We discuss the possibility of experi- 

mental choice among models, and make a conjecture about the sixth-order structure 

function which is probably model independent. 

2. Kolrnogorov (1941) revisited 

By the Kolmogorov (1941, hereafter K 4 l )  theory, we mean the general class of 

arguments developed by Kolmogorov, Oboukhov, Onsager and others which has led, 

in particular, to the $ law (see Batchelor 1953; Monin & Yaglom 1975 for reviews). 

The Q law may be derived from dimensional analysis, but more insight is gained from 

a simple dynamical argument borrowed from Kraichnan (1972, p. 213).t  We define 

the energy spectrum E(k)  as the kinetic energy per unit mass and unit wavenumber k. 

t See also the closely reZated argument of Onsager (1949, p. 284). 
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OOOOOO 
Transfer 

Dissipation \ 
FIGURE 1. Tne energy cascade according to the 1941 Kolmogorov theory. 

Notice that a t  each step the eddies are space filling. 

It is a convenient simplification, with no significant loss of generality, to consider 

a discrete sequence of scales or ' eddies ' 

and a discrete sequence of wavenumbers En = 1;l. The kinetic energy per unit mass 

in scales N 1, is defined as 

En = f ; + * E ( k ) d k .  (2.2) 

Let us assume that we have statistically stationary turbulence where energy is intro- 

duced into the fluid at  scales - I, and is then transferred successively to scales - I,, - I , ,  . . . until some scale I ,  is reached where dissipation is able to compete with non- 

linear transfer (figure 1) .  If we now make the essential assumption that eddies of any 

generation are space jilling, as indicated in figure 1 ,  we may define a characteristic 

velocity V, of nth-generation eddies (n-eddies for short) by 

In  (2.3) and subsequently factors of t,he order of unity will be systematically dropped 

except when such factors would accumulate multiplicatively in successive cascade 

steps. 

Note that v, is not the velocity with which n-eddies move with respect to the re- 

ference frame of the mean flow, this being mostly due to advection by the largest 

eddies. In  a local cascade v, is rather a typical velocity difference v, = 6v(l,) across 

a distance - I,, the latter being the only dynamically significant quantity. We now 

define the eddy turnover time 

tn N JnIvn. (2.4) 
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The quantity t i '  may be considered as the typical shear in scales - I,, and therefore 

defines the characteristic rate at  which excitation at  scales - 1, is fed into scales 

l,Ltl. There are, however, at least two important exceptions to this statement. First, 

we may define a viscous dissipation time 

El., (2.5) 
,p 

t p s  < t,, (2.6) 

where v in the kinematic viscosity of the fluid. In  the dissipation range 

transfer is no longer able to compete with dissipation, and most of the excitation in 

scales - 1, is lost to viscosity. Second, if 

t, 9 t o  = & J / q l  (2-7) 

then the shear acting on scales - 1, comes mostly from scales N I , ,  and to should be 

used inetead oft, as a dynamical time, so that the cascade is not local. 

In the inertial range of three-dimensional turbulence, where inequalities (2.6) and 

(2.7) are reversed (as may be checked aposteriori), we make the fundamental assump- 

tion that in a time of the order oft, a sizable fraction of the energy in scales - 1, is 

transferred to scales - ln+l. The rate of transfer of energy per unit mass from n-eddies 

to (n + 1 )-eddies is then given by 

F ,  N EJt,  N V ~ / Z , .  (2.8) 

Since we assume a stationary process in which energy is introduced at  scales - I ,  
and removed at scales - I,, conservation of energy requires that 

En 3 E ,  l d  < I ,  < I, .  (2.9) 

Notice that E can be thought of as a rate of energy injection, a rate of energy transfer 

or a rate of energy dissipation. From the point of view of inertial-range dynamics, 

the second of these three definitions is the most relevant. Using (2.8) and (2.9) we 

solve for w, and 3,: 

This is Kolmogorov's result for the structure function, which after Fourier transforma- 

tion yields the K41 spectrum 

The eddy turnover time of (2.4) is given by 

V ,  - (El,)*, En - (El,)*. (2.10) 

E(k)  - 8 k - S .  (2.11) 

t, N E-41:. (2.12) 

Equating (2.12) to the viscous diffusion time (2.5) determines the Kolmogorov micro- 

scale 
I, (v31q4. (2.13) 

Equation (2.13) gives the length scale at  which the cascade is terminated by viscous 

dissipation. 
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3. Intermittency: the /3 model 

Since the first experiments of Batchelor & Townsend (1949) strong evidence has 

been obtained that the small-scale structures of turbulence become less and less spaee 

filling as the scale size decreases (Kuo & Corrsin 1971; see also Monin & Yaglom 1975 

for a review). Dynamically this spottiness of the small scales can be made plausible by 

a simple vortex-stretching argument somewhat similar to the argument of Corrsin 

& Kistler (1954) for the phenomenon of boundary sharpness. Consider the point 

M Within a large-scale structure which a t  the initial time has the largest vorticity 

amplitude I w I. This point is also likely to have a large velocity gradient I Vvl N I w 1 .  The 

straining action of the velocity gradient on the vorticity may then be described by a 

crude form of the vorticity equation: 

Dlwl/Dt N I+. (3.1) 

Hence it is expected that the vorticity downstream of M will rise to very large values 

(possibly infinite at  zero viscosity) in a time of the order of the large-eddy turnover 

time to N jwI-1. 

Even if the initial vorticity has a very flat spatial distribution, the nonlinearity of 

(3.1) will lead to a very narrowly peaked spatial distribution at  times z to. SO we see 

that small-scale structure may be generated in a very localized fashion. This argument 

can be made fully rigorous for the Burgers equation, but not for the Navier-Stokes 

equation (LBorat 1975). For the Navier-Stokes equation there is the important com- 

plication that the velocity gradient at a point x is not related in any simple way to the 

vorticity at  x; instead it is given by a Poisson integral with a fairly substantial local 

contribution but also some coupling to nearby points. This could smooth out the 

vorticity peak, but the smallest-scale structures will still have some tendency not to 

occur uniformly. Note that the intermittency will of necessity also be temporal 

because of the sweeping of small structures by large ones, but that there probably 

exists in addition an intrinsic temporal intermittency (Kraichnan 1974; Siggia 

1977, 1978). 

Assuming that the small eddies do indeed become less and less space filling, let US 

now define the /I-model. A t  each step of the cascade process any n-eddy of size 1, = 102-n 

produces on the average N (n + 1 )-eddies. If the largest eddies are space filling, after n 

generations only a fraction 
p, = /I" (p = hT/23 < 1 )  (3.2) 

of the space will be occupied by active fluid (see figure 2) .  Furthermore, we assume 

that (n + 1)-eddies are positionally correlated with n-eddies by embedding or attach- 

ment (for the sake of pictorial clarity this feature is not included in figure 2). 

It is straightforward to work out how the /?-model modifies K41. Let v, now denote 

a typical velocity difference over a distance - 1, in an active region. The kinetic 

energy per unit mass on scales - 1, is then given by 

E n  - Pnvg* (3.3) 

The characteristic dynamical time for transfer of energy from active n-eddies to 

smaller scales is still given by the turnover time t, = Zn/vn as in K41: the generation 
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0 0  0 0 

Dissipation 

FIGURE 2. The energy cascade for intermittent turbulence: the eddies become less and less space 

filling. The reader is warned that this picture is very schematic : the eddies are in fact embedded 

within each other and the eventual product of the cascade, where dissipation takes place, should 

be thought of as a highly convoluted sheet. 

of an (n+ 1)-eddy arises from the internal dynamics of the n-eddy in which it is em- 

bedded. We can express the rate of energy transfer from n-eddies to (n + 1)-eddies 

exactly as in K41, and as in K41 this quantity must be independent of n in the inertial 

range : 

Combining (3.2)-( 3.4), we obtain 

en - EJt,  - P,V: /I, - 2. 

V ,  - & ~ ( z n / z O ) - + ( 3 - ~ ) ,  (3.5) 

t, - a-+zf(z “ n  / i o ) f ( 3 4 ) ,  

(3.4) 

(3.6) 

and 

In (3.5)-(3.8) all the intermittency corrections have been expressed in terms of the 

self-similarity dimension D, which is a special case of Mandelbrot’s (1975) fractal 

dimension and is related to the number of offspring N by 

N = 20. (3.9) 

That D can suitably be called a dimension is made clear by figure 3, which shows three 

very familiar objects: a unit interval, a square and a cube, which have dimensions D 
equal to 1, 2 and 3, respectively. If we reduce the linear dimensions of these objects 

by a factor of 2, as in the cascade process, the number of offspring needed to recon- 

struct the original object is 2O. For more complicated self-similar objects, a natural 

interpolation is N = 2”, where D need no longer take only integer values: some 

rather exotic examples can be found in Mandelbrot (1975). Equation (3.8), which 

relates the correction to the Q exponent of the K41 theory and the fractal dimension, 

was first derived by Mandelbrot (1 976) using the Novikov-Stewart (1 964) model. In 
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I I 

FIGURE 3. When the linear dimensions of a D-dimensional object are reduced by a factor h 
(here 2), AD pieces are needed to reconstruct tho original. More exotic examples with non- 

integral D ,  such as probably occur in turbulence, may be found in Mandelbrot (1975). 

this context, D is also the Hausdorff dimension of the dissipative structures in the 

limit of zero viscosity. D = 2 would correspond to sheet-like structures, but in view 

of the experimental value of the exponent for the dissipation correlation function 

(see 3 4) a more likely value is D z 2.5, which corresponds to highly convoluted sheets. 

Remark: (3.1). The mean energy transfer (or dissipation) rate can be evaluated in 

terms of the scale I, of energy-carrying eddies and the r.m.s. turbulent velocity w, by 

putting n = 0 in the inertial-range expression (3.5).  This gives the classical Kolmogorov 

result 
E - v;/z0, (3.10) 

which is not affected by the value of the intermittency parameter D.  In contrast, the 

dissipation scale I, is affected. Indeed, by equating the turnover time (3.6) to the 

viscous diffusion time l t / v ,  we obtain the dissipation scale 

1, 10R-31(1+D), (3.1 1 )  

where we have introduced the Reynolds number 

R = l,vo/v N &l$~-’. (3.12) 

Notice that 1, differs from the Kolmogorov microscale (Z/v3)-4 whenever D $. 3. 

More generally, we expect that the kind of intermittency considered in this paper 

will not influence processes depending essentially on the large-scale dynamics (e.g. 

transport processes). But there are questions, including some of practical interest, 
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where the small-scale dynamics are relevant, such as chemical reactions in turbulent 

flows; it is then not safe to ignore intermittency (Herring 1973, private communication). 

Remark (3.2). There is no need, apriori, to identify D with a (non-negative) dimen- 

sion. Indeed, from (3.2) and (3.9) we have D = log N/log 2; since N is an average 

number of offspring, which can be less than unity, D can assume arbitrary negative 

values. There is however a dynamical reason to impose D > - 1 : otherwise it may be 

checked from (3.11) that the cascade will never be terminated by viscosity when the 

viscosity is too small. Furthermore, Sulem & Frisch (1975) have shown that an Q 
upper bound for the inertial-range spectral exponent can be rigorously derived from 

the Navier-Stokes equation (at least for turbulence of finite total energy). From (3.8) 

this imposes D >, 0, Finally, Mandelbrot (1974) and Sulem & Frisch (1975) give 

heuristic arguments to show that D > 2. Notice also that, for D < 2, (3.5) implies 

that vn increases with n (i.e. with decreasing scale); this appears most unlikely for 

ordinary fluid turbulence. 

4. Higher-order statistics 

The scaling laws and exponents of the K41 theory have strong experimental support 

at the level of the energy spectrum (see Monin & Yaglom 1975, chap. 23 for a review). 

There may be small corrections to the exponents, but much larger effects due to inter- 

mittency can be seen in higher-order statistics (see Monin & Yaglom 1975, chap. 25). 

We denote by 6v(Z) any fluctuating component of the difference between the velocities 

a t  two points r and r’ separated by a distance 1. For homogeneous isotropic turbulence 

the statistics of 6v(l)  can depend only on 1 (Van Atta & Park 1972). According to K41 

the dimensionless structure functions 

= (IW)l”>/(lW4 I2P (4.1) 

should not depend on I in the inertial range. Experimentally they are found to vary 

as negative powers of 1. Using the ,!I-model these results can be readily understood, at  

least in their qualitative features. We assume the following scale-similarity principle : 

The complete statistics of velocity differences within active regions of different sizes 

Since such scaling factors are already fixed by the energy cascade (3.5), we can imme- 

diately determine the I dependence of the structure functions. Let us denote by 

( I&v(l,) IP)cond the structure functions evaluated under the condition that the velocity 

difference is measured across an active n-eddy. Since such eddies fill only a fraction 

pn of the space, we have 

become identical under an appropriate scaling of velocities. 

( lsv(zn)lp) Isv(zn) IP)eond 

,!In%, (4.2) 

where the second line follows from the scale-similarity principle. From (3.2), (3.5) 

and (3.9) we obtain 

where 

(pNn)p) ~ ~ Z k ( Z n / l 0 ) ~ P ,  (4.3) 

c p  = Q(3 - D) (3  -PI* (4.4) 
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[A similar linear relationship between cp and p was obtained by Novikov & Stewart 

(1964); see 9 6.1 The dimensionless structure functions are given by 

with 

In contrast to the linear dependence on p in (4.4), the Kolmogorov (1962) lognormal 

theory predicts a quadratic dependence, namely 

C p = L  I S r W  3 -PI, (4.7) 

where ,u is the exponent in the dissipation correlation function (see below). 

can be quantitatively expressed in terms of the skewness and flatness 

The deviation of the small scales of the velocity field from global Gaussian behaviour 

s - ~ ~ ) I ( P P ,  - (w(m (4.8) 

where 1+4 is some component of the velocity gradient. The contribution to the velocity 

gradient in scales N 1, is N 8v(ln)/la,  so t,hat the largest velocity gradients are found 

in the smallest scales. Assuming that the viscosity imposes a sufficiently sharp cut-off, 

we can then, within a numerical factor, evaluate any moment of the velocity gradient 

using its inertial-range expression at  the dissipation scale 1,. The skewness and flatness 

are given by the dimensionless structure functions u3(ld) and ( x 4 ( l d ) .  From (3.1 I), (3.12), 

(4.5) and (4.6) we obtain 

&' R3(3-D)IZ(li-D), F 8 2 .  (4.9), (4.10) 

The relation to experimental results and to t'he scaling laws of critical phenomena will 

be discussed in § 7. 

The fluctuating 'dissipation' at  point r is defined as 

44 = W(r),  (4.11) 

where @ is again any component of the velocity gradient. For homogeneous isotropic 

turbulence the mean of c(r) is, within a numerical factor, equal to the mean dissipation 

B per unit mass. Clearly c(r) is a dissipation-range variable, in the sense that its primary 

contribution comes from the smallest scales - I,. Experimentally, however, it is 

found that the dissipation has spatial correlations extending over inertial-range dis- 

tances (see the end of this section). This strongly suggests that the dissipation takes 

place in structures which have one characteristic size - 1, but are otherwise quite 

extended, such as rods, sheets or more complicated self-similar objects with non- 

integral dimensions. Let us evaluate the dissipation correlation function 

(44 4r + 1)) 

for the P-model, following essentially the original Novikov-Stewart ( 1964) argument 

(see also Monin & Yaglom 1975, 5 25). Let 1 N 1, > 1,. The only way that e(r) and 

c(r + 1) can be correlated is if r and r + 1 simultaneously belong to an active m-eddy 

of size 1, 2 1,. We may therefore write 

(c(r) e(r + 1)) = (8)&,dPr {r and r + 1 belong to an m-eddy}, (4.12) 

where (e),,,d is the conditional mean of the dissipation e(r) given that r is in an 
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active m-eddy. Because of the energy cascade (E),o,d is also equal to the energy 

transfer per unit mass from active m-eddies to active (m + 1)-eddies: 

(E)cond - v%/lm- (4.13) 

Owing to the conditional averaging ( E ) , ~ , ~  differs from (E) by a factor ,I?,. The prob- 

ability of having both r and r + I  in an m-eddy of size greater than I is of the same 

order as the probability of having r in an m-eddy, namely Pm. We thus obtain 

(4.14) 

Using ( 3 . 4 )  we see that the largest value comes from m = n, so that our final result is 

(E(r) E(r + 1)) - ?(Z/lo)-(3-D). (4.15) 

The exponent of the dissipation correlation function is usually denoted by p. For the 

(4.16) 
@-model 

= 3 - D .  

Experimentally a power-law dependence seems to work quite well and defines an 

exponent p z 0.5, giving D z 2.5 (see Gibson et al. 1970; Monin & Yaglom 1975, 

chap. 25) .  

5. Extension to other spatial dimensions 

So far we have considered only the three-dimensional case. For a space of dimension 

d > 3 all our arguments remain essentially unchanged, and the results are the same 

when expressed in terms of P. The self-similarity dimension D ,  still defined by (3.9), 

is now related to @ by 

so that wherever p = 3 - D appears it should be replaced by p = d - D.  In order for 

the cascade to be terminated by viscosity, D > d - 4 is required (cf. remarks 3.1 and 

3.2) .  This can be violated for positive D if d > 4 .  The significance of this cross-over 

dimension of 4, introduced by Mandelbrot (1976), is not very clear. 

The two-dimensional case deserves special attention. Because of vorticity conser- 

vation there is both an enstrophy (mean-square vorticity) cascade to small scales and 

an inverse energy cascade to large scales (Kraichnan 1967; Batchelor 1969; Pouquet 

et al. 1975). For the enstrophy cascade we refer the reader to Kraichnan (1967, 1971), 

where it is shown that the energy spectrum follows a k-3 law with logarithmic correc- 

tions. Intermittency is probably present in the enstrophy cascade but is not expected 

to change the power law from k-3 (Kraichnan 1975).t The presence of highly non-local 

interactions makes the ideas of the @-model of doubtful interest in this case. The 

inverse cascade, however, is local and intermittency corrections to the Q law can not 

be ruled out. The closest thing to the P-model would be a cascade of the kind shown in 

figure 4 which becomes less and less space filling with increasing scale size. Let us  

assume that after n octave-steps the fraction of space filled with active n-eddies is 

p = 2 D 4 ,  (5.1) 

t One can actually prove rigorously that a two-dimensional enstrophy inertial range cannot 
have a spectrum steeper than k+ (Sulem & Frisch 1976, corrected in Pouquet 1978). 
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Repeating the calculation in 0 3, we obtain 

E( k) - 8k-9 ( klo)@-? (5.3) 

SO intermittency corrections to the two-dimensional inverse cascade will, if they exist, 

decrease the Q exponent. This has already been noticed by Kraichnan (1975). 

Non-integer values of the space dimension d (not to be confused with the self- 

similarity dimension) have been considered by Nelkin (1975) and by Frisch et al. 

(1976). Within a second-order closure theory, Frisch et al. find a cross-over dimension 

d ,  z 2.03 where the direction of the energy cascade reverses. Intermittency correc- 

tions to the inertial-range exponent for the energy spectrum may thus change sign 

on crossing d,. Whether there is any dimension or range of dimensions for which 

intermittency corrections vanish remains an open question. 

Finally, we consider the one-dimensional case. For this case the incompressible 

Navier-Stokes equation is meaningless (the velocity would be uniform) so instead we 

av av a2v 
- at +"ax = v- 

ax2. 

take the Burgers equation 

(5.4) 

There are no great mysteries left in connexion with the Burgers equation: in the limit 

of zero viscosity the solution has, for long times, a sawtooth structure. The interesting 

aspect is that in a sense the Burgers case is the most intermittent. The dissipative 

structures are just isolated shocks which form a set of Hausdorff dimension D = 0. 

If we calculate the energy spectrum from the P-model with 

we obtain 

which is indeed the correct spectrum for the random sawtooth solution of the Burgers 

equation. 
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6. Relation to previous hierarchical intermittency models 

Doubts about the universal validity of the K41 theory started with a remark by 

Landau that there could be strong fluctuations in the dissipation on scales N I ,  (see 

Landau & Lifshitz 1959; Kraichnan 1974, p. 309). As pointed out by Kraichnan 

(1  974), this remark did not deal with the essential feature that fluctuations amplify 

as the scale size decreases. This was first included by Oboukhov (1 962), who introduced 

the random variable el, which is the dissipation &v(v, + vj, i ) z  averaged over a region 

of size 1. Oboukhov proposed that the K41 theory still holds in the modified form 

6v(l)  - €i@. (6.1) 

The left-hand side of (6.1) is a kind of conditional average of the velocity difference 

across a region of size 1 conditional upon el having a given value. Kolmogorov (1962), 

assuming a lognormal distribution of el, was able to calculate the structure functions 

( I W ~ ) l P ) .  (6.2) 

He obtained the result given in (4.3) and (4.7). 

The basic idea expressed by (6.1) seems likely to be correct. It states that in a 

volume of size - 1 velocity differences N Sv(I) will produce a transfer of energy to 

smaller scales of the order of 
sV3(1)/1. 

In  a time of the order of the eddy turnover time Z/Sv(Z) this energy will be dissipated 

somewhere in the same region. When we say ‘the same region’ we imply ‘relative to 

a given (moving) eddy’. As for Kolmogorov’s lognormality assumption, this has been 

seriously questioned by Kraichnan (1974) and Mandelbrot (1974) and shown to be 

only one of many possibilities. 

Novikov & Stewart (1 964) have put. forward a probabilistic model of intermittency 

which is closely related to our /3-model. In fact it  gives the same results; in particular 

it replaces (4.7) with (4.4). Instead of working with dynamical variables, however, 

Novikov & Stewart constructed a model of the dissipation involving nested cubes. 

In  cubes - 1, the dissipation is taken as uniform. In  each succeeding generation only 

a certain fraction of the available cubes are taken to contain dissipation, the remainder 

being taken to be empty. A generalization of the Novikov-Stewart model was intro- 

duced by Yaglom (1966) and later studied in detail by Mandelbrot (1974, 1976), who 

called it ‘weighted curdling’ as opposed to ‘absolute curdling’ in the Novikov- 

Stewart model. In  absolute curdling the dissipation in an n-eddy is concentrated in 

only a fraction of the (n + 1)-eddies whereas in weighted curdling the (n + 1)-eddies 

completely fill the available space but each (n + 1)-eddy has its dissipation weighted 

by a random factor W of unit mean value. Absolute curdling is recovered when W has 

a Bernoulli distribution. A kind of weighted curdling in a more dynamical context 

has also been considered by Kraichnan (1974). We could easily modify the P-model 

to allow for weighted curdling, but this would essentially reproduce Mandelbrot’s 

(1 976) results. Let us mention only that weighted curdling leads to a correction B to 

the + law which is less than Qp. In  particular, lognormal curdling, which, we stress 

again, has no special merits, leads to B = &. 
The advantage of the P-model over the Novikov-Stewart model is that it  deals with 
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dynamically relevant variables such as nonlinear energy transfer instead of the 

dynamically irrelevant local dissipation. This allows us to consider more subtle 

questions such as the possible intermittency of the inverse energy cascade in two 

dimensions. It also allows us to make quantitative Kraichan’s (1 972) suggestion 

that the energy spectrum will be modified by intermittency owing to changes in the 

eddy turnover time t ,  N l,/v,. Most important, it allows experimental tests of the 

model by giving definite predictions for higher-order statistical quantities such as 

the skewness, flatness and velocity structure functions. 

An interesting open. question is whether on dynamical grounds one should favour 

weighted rather than absolute curdling. Mandelbrot (1976) notes that for the Burgers 

equation only absolute curdling gives precisely the correction needed to change the 

k-9 spectrum to a spectrum (see 0 5 ) .  This, however, is hardly conclusive since the 

Navier-Stokes equation, contrary to  the Burgers equation, is not stable against small 

perturbations, and is therefore likely to generate much more randomness. For the 

Burgers equation absolute curdling is just a succession of nested intervals converging 

to positionally well-defined shocks. For the Navier-Stokes equation in the limit of 

zero viscosity, the probable singularities are likely to appear downstream of regions 

of high initial vorticity , but their precise location or structure seems to be impossible 

to predict. 

Finally, it must be mentioned that several authors have proposed non-hierarchical 

models of intermittency consisting of shear layers whose thickness is the Kolmogorov 

microscale but which are coherent over much larger distances (Corrsin 1962; Tennekes 

1968; Saffman 1968). Kraichnan (1974, 5 3) explains why such models are unlikely 

candidates. 

7. Relations among measurable exponents 

A characteristic feature of fully developed turbulence is the existence of scaling 

laws. Second- and higher-order statistical quantities are found experimentally to 

exhibit power-law behaviour with presumably universal exponents. A deductive 

theory of turbulence based on the Navier-Stokes equation should be able to derive 

all the exponents. In the absence of an appropriate theoretical framework such a 

programme is very far from completion. A less ambitious and perhaps quite useful 

programme can be considered at a more phenomenological level. Perhaps there are 

simple relations among the exponents as, for example, in the @-model, where every- 

thing is expressible in terms of the self-similarity dimension D, or equivalently 

p = 3 - D. Such relations among exponents can be studied experimentally and can 

give considerable insight into the necessary structure of an eventually successful 

theory. 

It is interesting to recall that such relations are found in the now reasonably deduc- 

tive theory of equilibrium critical phenomena (Wilson & Kogut 1974; Ma 1976), a 

subject which has some formal relation to fully developed turbulence (Nelkin 1973, 

1 974,1975).  In fact a phenomenological scaling theory of critical phenomena preceded 

a dynamical theory, and was a very important guide to the eventual structure of the 

dynamical theory. The analogy with critical phenomena in its strongest form (Nelkin 

1975) gives the same relations among exponents as does the P-model, in particular see 

(3.8), (3.11), (4.101, (4.11) and (4.16). The critical-phenomena anaIogy does not, in its 
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present stage of development, allow the calculation of the higher-order structure 

functions, but it would be of interest to extend it in this direction. 

In  the P-model there is only one independent exponent, but in critical phenomena 

there are at  least two. However, the presence of an energy cascade imposes a supple- 

mentary constraint without a parallel in critical phenomena, namely that for v+O 

the mean dissipation has a finite limit. This means that the ‘critical’ exponent y 

governing the divergence of the enstrophy as v+O is constrained to have the value 

y = 1. If it were not for intermittency corrections this constraint would trivially 

determine all the scaling laws, namely by the K41 theory. 

This point is seen clearly in dynamical models where this constraint is relaxed. 

Recently Bell & Nelkin (1977) have considered a cascade model in which a free para- 

meter allows the energy cascade to be in either direction. When the cascade is towards 

large k, the K41 theory is recovered. When the cascade is towards small k, the large 

k behaviour still obeys scaling laws analogous to those for critical phenomena, but 

no energy cascades to large k in the limit of zero viscosity. Related results have been 

obtained by Frisch et al. (1976). They considered a second-order closure model analy- 

tically continued between two and three dimensions. For 2 < d < d, z 2-03 the energy 

cascade is towards small wavenumbers, but the large wavenumber behaviour is still 

a power-law behaviour even though nothing is cascading. This type of behaviour, 

which seems intuitively surprising in turbulence theory, seems natural in the context 

of critical phenomena. 

Neither the P-model of intermittency nor the lognormal model should be taken too 

seriously. It is, however, worth mentioning that experiments can probably deter- 

mine which to choose. With the currently accepted value o fp ,  the correction to the 

Q law is +p z 0.17 in the P-model and three times smaller in the lognormal model. A 

correction as large as 0.17 should be experimentally measurable. Another respect in 

which the two models differ considerably is for the higher-order structure functions 

of (4.3).  The P-model exponents are given by (4.4) and the lognormal-model exponents 

by (4.7).  These exponents agree only for p = 3 and for p = 6. For p = 3 this is a 

simple consequence of the von K&rman-Howarth equation, as already noted. The 

case of the sixth-order structure function is more interesting and leads us to the 

following. 

Conjecture. The sixth-order structure function (&v6(1)) is related to the dissipation 

correlation function by 
(Sv6(Z))/Z2 - (e(r) s(r + 1)). 

This relation is easily checked for both the P-model and the lognormal model. To see 

that it is probably model independent, notice that in view of homogeneity we can 

write (Novikov 1971) 

where el is the (random) dissipation averaged over a volume of size 1. Therefore (7.1) 

(e(r)e(r + 1)) = &P(Z2(ef))/dZ2 N (e;), (7.2) 

can be rewritten as 

(7.3) 

Now &v3(Z)/Z is the (random) energy transfer (per unit mass) from scales N 1 to smaller 

scales, so that (7.3) just states that the volume-averaged transfer and dissipation 

have identical variances. Energy transfer in a volume of size 1 need not equal the 
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energy dissipation E,  in the same volume (except in the mean). As noticed by Kraichnan 

(1974, p. 309), it  is even in principle possible that transfer fluctuates and dissipation 

does not. But this situation seems to be ruled out if the inertial range is intermittent: 

in that case t>here are active regions with enhanced transfer which will give rise to 

enhanced dissipation downstream after at most the local eddy turnover time. It is 
therefore reasonable to assume that transfer and dissipation have the same statistics 

(within numerical factors). Careful measurement of the sixth-order structure function 

would give a useful check on these ideas relating energy transfer and energy dissi- 

pation. 

8. Concluding remarks 

We have presented a simple dynamical cascade model which allows a variety of 

measurable scaling exponents to be expressed in terms of a single parameter, the self- 

similarity dimension D of Mandelbrot. The P-model gives the results obtained earlier 

in more abstract, non-dynamical contexts in explicit, easily understandable terms. 

The conclusions of the model are stated in terms that can be tested by experiment and 

discriminated from the lognormal model. Although the P-model is much too simple 

to be literally true, the possibility that the relations (4.3)-(4.5) among measurable 

exponents suggested by this geometrical model are in fact more generally valid 

(Nelkin & Bell 1978) can not be excluded. 

To go further, a genuine dynamical theory starting from the Navier-Stokes equa- 

tions is needed. It is unlikely that the inertial-range scaling laws can be obtained 

correctly using only the obvious symmetries and conservation laws of the Navier- 

Stokes equation, such as energy conservation (Kraichnan 1974). So far no analytical 

tool has been found which allows these scaling laws to be determined theoretically 

although there have been many speculations that the renormalization-group theory 

developed for critical phenomena (Wilson & Kogut 1974; Ma 1976) could be appro- 

priate (Martin 1972, private communication; Nelkin 1973; see also Rose & Sulem 

1978). It is possible that renormalization-group ideas, which have allowed the cal- 

culation of scaling exponents for critical phenomena, will eventually also succeed for 

intermittent-scale similar turbulence. The presently existing applications of the re- 

normalization group to turbulence are not concerned with inertial ranges (Forster, 

Stephen & Nelson 1976,1977; Rose 1977). In the meantime, phenomenological models 

cangive important hints as to the necessary structure of an eventual dynamical theory. 

Finally, we should like to point out that, besides phenomenological and theoretical 

work, much more understanding of intermittency can be gained from further numerical 

and experimental work, particularly on questions of geometry. Numerical simulations 

(Orszag & Patterson 1972) cannot achieve sufficiently high Reynolds numbers to 

display an inertial range. But spottiness of the high vorticity regions should be notice- 

able even at  moderate Reynolds numbers. This requires, however, a method of 

handling the data quite different from the usual procedure: instead of taking averages 

to get information on spectra, transfer, skewness, etc., one should try to plot directly 

the components, or a t  least the amplitude, of the vorticity . The number of data points 

to be graphically represented can be greatly reduced if conditional sampling of the 

high vorticity regions is made. On the experimental side one should also try to get 

more data on the small scales. Practically all existing methods involve sampling 
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along a line, so that we have only very indirect information about the geometry of 

the dissipative structures. What is really needed is a method by which these small 

scales can be directly visualized, say by a light-scattering experiment. The difficulty 

is that these regions have very small velocities, so that standard velocimetric pro- 

cedures have a poor signal-to-noise ratio. But since these regions have high vorticities, 

we suggest the development of ‘ strophometric’ methods, i.e. measurements of the 

vorticity or more generally of the velocity gradient. The technique introduced by W. W. 
Webb and D. H. Johnson, which involves light scattering from highly anisotropic 

Tobacco Mosaic viruses sensitive to velocity gradients, may be an interesting step 

in this direction (Johnson 1975). 

We should like to thank some of those who have helped us to clarify our ideas 

through many discussions and suggestions. These include: S. Corrsin, A. Craya 

(deceased), R. Kraichnan, J .  LBorat, D. Leslie, B. Mandelbrot, A. Pouquet and H. 
Rose. 

Appendix. Derivation of the Mandelbrot inequality 

We show that the Mandelbrot inequality (1. I ) ,  which becomes an equality for the 

/3-model, can be derived from the Navier-Stokes equation under one strong but 

physically plausible assumption. We assume that the viscous cut-offs k, governing 

the spectra of velocity and dissipation fluctuations are the same within a numerical 

factor which does not depend on the Reynolds number. This is sufficient to derive (1 .1  ). 

Let us introduce some notation. For convenience the large scale I ,  and the mean 

rate of energy dissipation E are taken equal to one. The energy spectrum is 

The dissipation spectrum, which is the Fourier transform of the dissipation correlation 

function. is 

Since the mean dissipation has a fhite limit for v-+ 0, we can determine k, from 

vIOm k2E(k)dk N vk($-B) N E = 1. 

By evaluating the dissipation correlation a t  zero separation we obtain (where $ is 

any component of the veIocity gradient) 

The next step requires a dynamic argument concerning the enstrophy balance from 

the Navier-Stokes equation. Consider the vorticity equation 

awpt + (v. V) €0 = (w . V) v + V V 2 0 ,  (A 51 
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take the scalar product of this with o and average using stationarity, homogeneity 

and isotropy. In a stationary state the rate of enstrophy production by the nonlinear 

terms will balance the rate of enstrophy dissipation. There will be an additional term 

due to the random forcing necessary to maintain the stationary state, but this term 

is negligible a t  very high Reynolds number (see Orszag 1977). The enstrophy balance 

can be expressed in the form 

($4 N kPE(k)dk N vkL*B). (A 6) 
0 

Equation (A 6) can be used directly to express the rate of divergence of the skewness 

with increasing Reynolds number in terms of the correction E3 to the Q law (Nelkin 

1975). Since this relates two quantities which are difficult to measure with any accu- 

racy, we take a slightly different point of view here. We use the Schwarz inequality 

($3)2 ($">$I"> 

and rewrite (A 3) in the form 

Combining (A 4), (A 5), (A 7) and (A 8), we finally obtain 

kiB 5 k i p .  (A 9) 

Since (A 9) must hold for all large values of k,, the Mandelbrot inequality (1 .1)  follows. 

In  order for this inequality to become an equality the Schwarz inequality (A 7) must 

become an equality to within a numerical factor. This is equivalent to the assumption 

that the skewness is proportional to the square root of the flatness for large Reynolds 

number. The reader should be warned that the existence of a single cut-off, however 

reasonable it may appear, need not be correct. Indeed, in certain probabilistic models 

of intermittency the viscous cut-off fluctuates greatly from realization to realization 

(Mandelbrot 1976). 
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