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ABSTRACT
In this paper, we propose a fast optimisation algorithm for approximately minimising convex
quadratic functions over the intersection of affine and separable constraints (i.e. the Cartesian prod-
uct of possibly nonconvex real sets). This problem class contains many NP-hard problems such as
mixed-integer quadratic programming. Our heuristic is based on a variation of the alternating direc-
tion method of multipliers (ADMM), an algorithm for solving convex optimisation problems. We dis-
cuss the favourable computational aspects of our algorithm,whichallow it to runquickly evenonvery
modest computational platforms such as embedded processors. We give several examples for which
an approximate solution should be found very quickly, such asmanagement of a hybrid-electric vehi-
cle drivetrain and control of switched-mode power converters. Our numerical experiments suggest
that ourmethod is very effective in finding a feasible point with small objective value; indeed, we see
that in many cases, it finds the global solution.

1. Introduction

1.1 The problem

We consider the problem

minimise (1/2)xTPx + qTx + r
subject to Ax = b

x ∈ X
(1)

with decision variable x ∈ Rn. The problem parameters
are the symmetric positive semidefinite matrix P ∈ Rn×n,
the matrix A ∈ Rm×n, the vectors b ∈ Rm and q ∈ Rn,
and the real number r ∈ R. The constraint set X is the
Cartesian product of (possibly nonconvex) real, closed,
nonempty sets, i.e. X = X1 × · · · × Xn, where Xi ⊆ R
are closed, nonempty subsets of R for i = 1,… , n. If Xi
is a convex set, we refer to variable xi as a convex variable,
and if Xi is a nonconvex set, we call variable xi a noncon-
vex variable.

Many problems can be put into the form of problem
(1). For example, if some of the setsXi are subsets of inte-
gers, our formulation addresses mixed-integer quadratic
and mixed-integer linear programs. This includes appli-
cations such as admission control (Oulai, Chamberland,
& Pierre, 2007), economic dispatch (Papageorgiou &
Fraga, 2007), scheduling (Catalão, Pousinho, & Mendes,
2010), hybrid vehicle control (Murgovski, Johannesson,
Sjöberg, & Egardt, 2012), thermal unit commitment
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problems (Carrión & Arroyo, 2006), Boolean satisfiabil-
ity problems (Jeroslow &Wang, 1990), and hybrid model
predictive control (Bemporad & Morari, 1999). Another
application is embedded signal decoding in communi-
cation systems, when the nonconvex sets are signal con-
stellations (e.g. QAM constellations; see Glover & Grant,
2010, p. 416).

If X is a convex set, problem (1) is a convex opti-
misation problem and can be readily solved using stan-
dard convex optimisation techniques. Otherwise, prob-
lem (1) can be hard in general. It trivially generalises
mixed-integer quadratic programming, an NP-complete
problem, and can therefore be used to encode other NP-
complete problems such as the travelling salesman prob-
lem (Papadimitriou & Steiglitz, 1998), Boolean satisfi-
ability (Karp, 1972; Li, Zhou, & Du, 2004), set cover
(Hochbaum, 1982), and set packing (Padberg, 1973).
Hence, any algorithm that guarantees finding the global
solution to (1) suffers from non-polynomial worst-case
time complexity (unless P = NP).

1.2 Solve techniques

There are a variety of methods for solving (1) exactly.
When all of the nonconvex sets Xi in (1) are finite, the
simplest method is brute force; enumerating through all
possible combinations of discrete variables, solving a con-
vex optimisation problem for each possible combination,
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and finding the point with the smallest objective value.
Other methods such as branch-and-bound (Lawler &
Wood, 1966) and branch-and-cut (Stubbs & Mehrotra,
1999) are guaranteed to find the global solution. Cut-
ting plane methods (Chvátal, Cook, & Hartmann, 1989;
Gomory et al., 1958) rely on solving the relaxation and
adding a linear constraint to drive the solution towards
being integer. Special purpose methods have been intro-
duced for some specific subclasses of (1). Unfortunately,
these methods have non-polynomial worst-case runtime,
and are often burdensome to use in practice, especially for
embedded optimisation, where runtime, memory limits,
and code simplicity are prioritised. Also, these methods
suffer from a large variance in the algorithm runtime.

On the other hand, many heuristics have been intro-
duced that can deliver a good, but suboptimal (and pos-
sibly infeasible) point in a very short amount of time.
For example, the relax-and-round heuristic consists of
replacing each Xi by its convex hull, solving the result-
ing relaxation (a convex quadratic program), and pro-
jecting the solution onto the nonconvex constraint sets.
Another heuristic is to fix the nonconvex variables to sev-
eral reasonable guess values and solve the convex optimi-
sation problem for convex variables. (Each of thesemeth-
ods may not find a feasible point, even if one exists.) The
feasibility pump is a heuristic to find a feasible solution
to a generic mixed-integer program and is discussed in
Achterberg and Berthold (2007), Fischetti, Glover, and
Lodi (2005), Bertacco, Fischetti, and Lodi (2007). Such
heuristics are often quite effective, and can be imple-
mented on very modest computational hardware, mak-
ing them very attractive for embedded applications (even
without any theoretical guarantees).

1.3 Embedded applications

We focus on embedded applications where finding a fea-
sible point with relatively small objective value will often
result in performance that is practically indistinguish-
able from implementing the global solution. In embedded
applications, the computational resources are limited and
a solution must be found in a small time. Hence, meth-
ods to find the global solution are not favourable, because
their large variance in runtime cannot be tolerated.

In an embedded application, it is often required to
solve several instances of (1), with different values of the
parameters. Here we distinguish two separate use cases,
depending on whether one or both of P or A change.
This distinction will play an important role in solution
methods. In the first use case, we solve many instances of
(1) in which any of the parameters may change between
instances. In the second use case, we solve instances of
(1) in which q, b, and X change between instances, but P

andA are constant. Although this is more restrictive than
the first use case, many applications can be well mod-
elled using this approach, including linear, time-invariant
model predictive control andmoving horizon estimation.
Indeed, all of the three examples we present in Section 3
are of this type.

1.4 Contributions

Our proposed algorithm is a simple and computationally
efficient heuristic to find approximate solutions to prob-
lem (1) quickly. It is based on the alternating direction
method ofmultipliers (ADMM), an algorithm for solving
convex optimisation problems. Because the problem class
we address includes nonconvex optimisation problems,
our method is not guaranteed to find the global solution,
or even converge.

Numerical experiments suggest that this heuristic is
an effective tool to find the global solution in a vari-
ety of problem instances. Even if our method does not
find the global solution, it usually finds a feasible point
with reasonable objective value. Thismakes it effective for
many embedded optimisation applications, where find-
ing a feasible point with relatively small objective value
often results in performance that is practically indistin-
guishable from implementing the global solution. An
implementation of our algorithm along with numer-
ical examples is available at www.github.com/cvxgrp/
miqp_admm.

Comparison of the runtime with commercial solvers
such as MOSEK (ApS, 2015) and CPLEX (CPLEX, 2009)
shows that our method can be substantially faster than
solving a global optimisation method, while having a
competitive practical performance.

1.5 Relatedwork

In recent years, much research has been devoted to
solving moderately sized convex optimisation problems
quickly (i.e. in milliseconds or microseconds), possibly
on embedded platforms. Examples include the SOCP
solvers ECOS (Domahidi, Chu, & Boyd, 2013), and
FiordOs (Ullmann, 2011), and the QP solver CVXGEN
(Mattingley & Boyd, 2012). Other algorithms have been
developed exclusively for convex optimal control prob-
lems (seeDiehl, Bock, & Schlöder, 2005; Ferreau, Kirches,
Potschka, Bock, & Diehl, 2014; O’Donoghue, Stathopou-
los, & Boyd, 2013; Wang & Boyd, 2010). In addition,
recent advances in automatic code generation for con-
vex optimisation (Chu, Parikh, Domahidi, & Boyd, 2013;
Mattingley,Wang, & Boyd, 2011) can significantly reduce
the cost and complexity of using an embedded solver.
Some recent effort has been devoted to (globally) solving
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mixed-integer convex programs very quickly(see Bempo-
rad, 2015, Frick, Domahidi, & Morari, 2015, and refer-
ences therein).

Even though ADMM was originally introduced as a
tool for convex optimisation problems, it turns out to be a
powerful heuristic method even for NP-hard nonconvex
problems (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011,
Sections 5 and 9). ADMM has been studied extensively
in the 80s (Bertsekas & Eckstein, 1988; Gabay &Mercier,
1976; Glowinski & Marroco, 1975). More recently, it has
found applications in a variety of distributed settings in
machine learning such as model fitting, resource allo-
cation, and classification (see e.g. Aybat, Zarmehri, &
Kumara, 2015; Mota, Xavier, Aguiar, & Püschel, 2011;
Schizas, Ribeiro, & Giannakis, 2008; Sedghi, Anandku-
mar, & Jonckheere, 2014; Wahlberg, Boyd, Annergren, &
Wang, 2012; Wang, Lu, & Yang, 2013; Zhang & Kwok,
2014). Recently, this tool has been used as a heuris-
tic to find approximate solutions to nonconvex prob-
lems (Chartrand & Wohlberg, 2013; Chartrand, 2012;
Fält & Jimbergsson, 2015; Makela, Warrington, Morari,
& Andersson, 2014). Derbinsky, Bento, Elser, and Yedidia
(2013) study the Divide and Concur algorithm as a spe-
cial case of a message-passing version of the ADMM, and
introduce a three-weight version of this algorithm which
greatly improves the performance for some nonconvex
problems such as circle packing and the Sudoku puzzle.
Consensus ADMM has been used for general quadrati-
cally constrained quadratic programming in Huang and
Sidiropoulos (2016). In Xu, Yin, Wen, and Zhang (2012),
ADMM has been applied to nonnegative matrix factori-
sation with missing values. ADMM also has been used
for real and complex polynomial optimisation models in
Jiang, Ma, and Zhang (2014), for constrained tensor fac-
torisation in Liavas and Sidiropoulos (2015), and for opti-
mal power flow in Erseghe (2014). There is a long his-
tory of using the method of multipliers to (attempt to)
solve nonconvex problems (Chartrand, 2012; Chartrand
&Wohlberg, 2013;Hong, 2014;Hong, Luo,&Razaviyayn,
2015; Li & Pong, 2015; Peng, Chen, & Zhu, 2015; Wang,
Xu, & Xu, 2014).

2. Our heuristic

2.1 Algorithm

Ourproposed algorithm is an extension of theADMMfor
constrained optimisation to the nonconvex setting (Boyd
et al., 2011, Sections 5,9). ADMM was originally intro-
duced for solving convex problems, but practical evidence
suggests that it can be an effective method to approxi-
mately solve some nonconvex problems as well. In order

to use ADMM, we rewrite problem (1) as

minimise (1/2)xTPx + qTx + r + IX (z)

subject to
[
A
I

]
x −

[
0
I

]
z =

[
b
0

]
. (2)

Here, IX denotes the indicator function of X , so that
IX (x) = 0 for x ∈ X and IX (x) = ∞ for x /∈ X . Each
iteration in the algorithm consists of the following three
steps:

xk+1/2 := argmin
x

(
(1/2)xTPx + qTx + r+ (3)

(ρ/2)
∥∥∥∥

[
A
I

]
x −

[
0
I

]
xk −

[
b
0

]
+ uk

∥∥∥∥
2

2

)
(4)

xk+1 := "
(
xk+1/2 +

[
0 I

]
uk

)
(5)

uk+1 := uk +
[
A
I

]
xk+1/2 −

[
0
I

]
xk −

[
b
0

]
. (6)

Here, " denotes the projection onto X , vector u ∈ Rm+n

is the dual variable, and ρ ∈ R is a scalar parameter. (We
will discuss parameter selection later in this paper.) Note
that if X is not convex, the projection onto X may not
be unique; for our purposes, we only need that "(z) ∈
argminx∈X ∥x − z∥2 for all z ∈ Rn. Since X is the Carte-
sian product of subsets of the real line, i.e. X = X1 ×
· · · × Xn, we can take"(z)= ("1(z1),… ,"n(zn)), where
"i is a projection function onto Xi. Usually evaluating
"i(z) is inexpensive; for example, if Xi = [α, β] is an
interval, "i(z) = min {max {z, α}, β}. If Xi is the set of
integers, "i rounds its argument to the nearest integer.
For any finite set Xi with k elements, "i(z) is a clos-
est point to z that belongs to Xi, which can be found by
⌈log2k⌉ comparisons.

2.2 Convergence

If the setX is convex and problem (1) is feasible, the algo-
rithm is guaranteed to converge to an optimal point (Boyd
et al., 2011, §3). However, for X nonconvex, there is no
such guarantee. Indeed, because problem (1) can be NP-
hard, any algorithm that finds the global solution suffers
from nonpolynomial worst-case runtime. Our approach
is to give up the accuracy and use methods that find an
approximate solution in a small time. (Note that although
the points xk + 1 are not necessarily feasible, they are
always in the set X , which may be sufficient for some
applications.)

Our numerical results verify that even for simple
examples, the algorithm may fail to converge, converge
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to a suboptimal point, or fail to find a feasible point, even
if one exists. Since the objective value need not decrease
monotonically (or at all), it is critical to keep track of the
best point found. That is, for a selected primal feasibility
tolerance ϵtol, we shall reject all points x such that ∥Ax −
b∥ > ϵtol, and among those primal feasible points x that
∥Ax − b∥ ! ϵtol, we choose the point with the smallest
objective value. Here, ϵtol is a tolerance for accepted feasi-
bility. We should remind the reader again that this point
need not be the global minimum.

2.3 Initialisation

To initialise x0, one can randomly choose a point in
CoX , where CoX denotes the convex hull of X . More
specifically, this means that we need to have access to a
subroutine that generates random points in CoX . Our
numerical results show that running the algorithm mul-
tiple times with different random initialisations increases
the chance of finding a feasible point with smaller
objective value. Hence, we suggest running the algorithm
multiple times initialised with random starting points
and report the best point as the approximate solution.We
always initialise u0 = 0.

2.4 Computational cost

In this subsection, we make a few comments about
the computational cost of each iteration. The first step
involvesminimising a strongly convex quadratic function
and is actually a linear operator. The point xk + 1/2 can be
found by solving the following system of equations:

[
P + ρI AT

A −(1/ρ)I

] [
xk+1/2

v

]
=

[
q′

0

]
,

where q′ = −q + ρ
(
xk + ATb−

[
AT I

]
uk

)
. Since the

matrix on the left-hand side remains constant for all iter-
ations, we can precompute the LDLT factorisation of this
matrix once and cache the factorisation for use in subse-
quent iterations. When P and A are dense, the factorisa-
tion cost isO(n3), yet each subsequent iteration costs only
O(n2). (Both factorisation and solve costs can be signif-
icantly smaller if P or A is sparse.) Amortising the fac-
torisation step over all iterations means that the first step
is quite efficient. Also notice that the matrix on the left-
hand side is quasi-definite and hence suitable for LDLT
factorisation.

In many applications, P and A do not change across
problem instances. In this case, for different problem
instances, we solve (1) for the same P and A and vary-
ing b and q. This lets us use the same LDLT factorisation,
which results in a significant saving in computation.

The second step involves projection onto X = X1 ×
· · · × Xn and can typically be done much more quickly
than the first step. It can be done in parallel since the pro-
jection onto X can be found by projections onto Xi for
i = 1,… , n. The third step is simply a dual update and is
computationally inexpensive.

2.5 Preconditioning

Both theoretical analysis and practical evidence suggest
that the precision and convergence rate of first-order
methods can be significantly improved by precondition-
ing the problem. Here, we use diagonal scaling as pre-
conditioning as discussed in Beck (2014) andWright and
Nocedal (1999). Diagonal scaling can be viewed as apply-
ing an appropriate linear transformation before running
the algorithm. When the set X is convex, the precon-
ditioning can substantially affect the speed of conver-
gence, but does not affect the quality of the point returned
(which must be a solution to the convex problem). In
other words, for convex problems, preconditioning is
simply a tool to help the algorithm converge faster. Opti-
mal choice of preconditioners, even in the convex case,
is still an active research area (Boley, 2013; Deng & Yin,
2012; Giselsson, 2014; Giselsson & Boyd, 2014a, 2014b,
2014c; Ghadimi, Teixeira, Shames, & Johansson, 2015;
Hong & Luo, 2012; Shi, Ling, Yuan, Wu, & Yin, 2014). In
the nonconvex case, however, preconditioning can have a
critical role in the quality of approximate solution, as well
as the speed at which this solution is found.

Specifically, let F ∈ Rn×n,E ∈ Rm×m be diagonal
matrices with positive diagonal entries. The goal is to
choose F and E to improve the convergence of ADMM
on the preconditioned problem

minimise (1/2)xTPx + qTx + IX (z)

subject to
[
EA
F

]
x −

[
0
F

]
z =

[
Eb
0

]
. (7)

We use the choice of E and F recommended in Gisels-
son and Boyd (2014a) to minimise the effective condi-
tion number (the ratio of the largest singular value to
the smallest non-zero singular value) of the following
matrix:

[
E 0
0 F

] [
A
I

]
P† [

AT I
] [

E 0
0 F

]
,

where P† denotes the pseudo-inverse of P. Given matrix
M ∈ Rn×n, minimising the condition number of DMD
for diagonal D ∈ Rn×n can be cast as a semidefinite
program. However, a heuristic calledmatrix equilibration
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can be used to avoid the computational cost of solving
a semidefinite program (see Bradley, 2010; Sluis, 1969,
and references therein). Since for embedded applications
computational resources are limited, we avoid finding
P† or equilibrating completely. We instead find E to
normalise the rows of A (usually in ℓ1 or ℓ2 norm) and
set F to be the identity.

After finding E and F, preconditioned ADMM has the
following form:

xk+1/2 :=
[
I 0

] [
P + ρF2 ATE

EA −(1/ρ)I

]−1

[
−q + ρ

(
F2xk + ATE2b−

[
ATE F

]
uk

)

0

]

xk+1 := "
(
xk+1/2 +

[
0 F−1 ]

uk
)

uk+1 := uk +
[
EA
F

]
xk+1/2 −

[
0
F

]
xk −

[
Eb
0

]
. (8)

2.6 The overall algorithm

We use the update rules (8) for k = 1,… , N, where
N denotes the (fixed) maximum number of iterations.
Also, as described above, the algorithm is repeated for
M number of random initialisations. The computational
cost of the algorithm consists of a factorisation and MN
matrix products and projections. A description of the
overall algorithm is given in Algorithm 1, with f(x) =
(1/2)xTPx + qTx + r.

Algorithm 1 Approximately solving nonconvex con-
strained QP (1)

if A or P changed, then

find E and F by equilibrating
[
A
I

]
P† [

AT I
]

find LDLT factorizsation of
[
P + ρF2 ATE

EA −(1/ρ)I

]

end if
xbest := ∅, f (xbest) := ∞
for random initializsation 1, 2, . . . ,N do

for iteration 1, 2, . . . ,M do
update x from (8)
if ∥Ax − b∥2 ≤ ϵtol and f (x) < f (xbest),

then
xbest = x

end if
end for

end for
return xbest.

We mention a solution refinement technique here
that can be used to find a solution with possibly better
objective value after the algorithm stops. This technique,
sometimes known as polishing, consists of fixing the
nonconvex variable and solving the resulting convex
optimisation problem. Using this technique, one may use
larger ϵtol during the N iterations and only reduce ϵtol
at the refinement step. Depending on the application, it
might be computationally sensible to solve the resulting
convex optimisation problem. Another effective tech-
nique is to introduce a notion of no-good cut during
iterations for problems with binary variables. A no-good
cut forces the vector of binary variables to change over
iterations, by appending the linear equality constraint
"i # Txi − "i # Fxi ! B − 1, to the minimisation in the
first step of (6), where we have T = {i | xkbi = 1} (i.e. T is
the set of binary variables for which the last iterate was
1), F = {i | xkbi = 0} (i.e. F is the set of binary variables
for which the last iterate was 0), and B is the number of
elements of T. We do not use either of these techniques
in the following examples.

3. Numerical examples

In this section, we explore the performance of our pro-
posed algorithm on some example problems. For each
example, ρ was chosen between 0.1 and 10 to yield good
performance; all other algorithm parameters were kept
constant. As a benchmark, we compare our results to
the commercial solver MOSEK, which can globally solve
MIQPs. All experiments were carried out on a system
with two 3.06 GHz cores with 4 GB of RAM.

The results suggest that this heuristic is effective
in finding approximate solutions for mixed integer
quadratic programs.

3.1 Randomly generated QP

First, we demonstrate the performance of our algorithm
qualitatively for a randommixed-Boolean quadratic pro-
gram. The matrix P in (1) was chosen as P=QQT, where
the entries of Q ∈ Rn×n, as well as those of q and A, were
drawn from a standard normal distribution. The constant
r was chosen such that the optimal value of the uncon-
strained quadratic minimisation is 0. The vector b was
chosen as b = Ax0, where x0 ∈ X was chosen uniformly
randomly, thus ensuring that the problem is feasible. We
used n = 200 and m = 50 with Xi = {0, 1} for i = 1,… ,
100, Xi = R+ for i = 101,… , 150, and Xi = R for the
other indices i.

We used MOSEK to find the optimal value for the
problem. After more than 16 hours, MOSEK certifies that
the optimal value is equal to 2040. We ran algorithm 1
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for 10 different initialisations and 200 iterations for each
initialisation, with step size ρ = 0.5. For a naive imple-
mentation in MATLAB, it took 120 milliseconds to com-
plete all precomputations (preconditioning and factorisa-
tion), and 800 milliseconds to do all 2000 iterations. The
best objective value found for the problemwas 2067 (1.3%
suboptimal). Our implementation inC enables us to solve
sparse problems significantly faster.

One interesting observation is that the parameter ρ

tends to trade off feasibility and optimality: with small
values of ρ, the algorithm often fails to find a feasible
point, but feasible points found tend to have low objective
value. On the other hand, with large values of ρ, feasible
points are found more quickly, but tend to have higher
objective value.

3.2 Hybrid vehicle control

We consider a simple hybrid electric vehicle drive-
train (similar to that of Boyd & Vandenberghe, 2004,
Exercise 4.65), which consists of a battery, an electric
motor/generator, and a heat engine, in a parallel configu-
ration. Control of a hybrid vehicle appears as an embed-
ded practice in application (Chakraborty et al., 2012;
Muta, Yamazaki, & Tokieda, 2004; Wenzhong, Mi, &
Emadi, 2007). We assume that the demanded power Pdes

t
at the times t = 0,… , T − 1 is known in advance. Our
task is to plan out the battery and engine power outputs
Pbatt
t and Peng

t , for t = 0,… , T − 1, so that

Pbatt
t + Peng

t ≥ Pdes
t .

(Strict inequality above corresponds to braking.)
The battery has stored energy Et at time t, which

evolves according to

Et+1 = Et − τPbatt
t , t = 0, . . . ,T − 1,

where τ is the length of each discretised time interval. The
battery capacity is limited, so that 0 ! Et ! Emax for all t,
and the initial energy E0 is known.We penalise the termi-
nal energy state of the battery according to g(ET), where

g(E) = η(Emax − E)2,

for η $ 0.
At time t, the engine may be on or off, which is mod-

elled with binary variable zt. If the engine is on (zt = 1),
then we have 0 ≤ Peng

t ≤ Pmax, and α(Peng
t )2 + βPeng

t +
γ units of fuel are consumed, for nonnegative constants
α, β , and γ . If the engine is off (zt = 0), it consumes no
fuel, and Peng

t = 0. Because zt # {0, 1}, the power con-
straint can be written as 0 ! Peng ! Pmaxzt, and the fuel

cost as f (Peng
t , zt ), where

f (P, z) = αP2 + βP + γ z.

Additionally, we assume that turning the engine on after
it has been off incurs a cost δ $ 0, i.e. at each time t, we
pay δ(zt − zt − 1)+, where ( · )+ denotes the positive part.

The hybrid vehicle control problem can be formulated
as

minimise η(ET − Emax)2 +
∑T−1

t=0 f (Peng
t , zt )

+ δ(zt − zt−1)+
subject to Et+1 = Et − τPbatt

t
Pbatt
t + Peng

t ≥ Pdes
t

zt ∈ {0, 1},

(9)

where all constraints must hold for t = 0,… , T − 1. The
variables are Pbatt

t , Peng
t , and zt for t = 0,… , T − 1, and

Et, for t = 1,… , T. In addition to the parameters given
above, we take z−1 to be a parameter denoting the initial
engine state.

We used the parameter values α = 1, β = 10, γ =
1.5, δ = 10, η = 0.1, τ = 5, Pmax = 1, Emax = 200, E0 =
200, and z−1 = 0. The demanded power trajectory Pdes

t is
not shown, but can be obtained by summing the engine
power and battery power in Figure 1. We ran the algo-
rithm with ρ = 0.4 for 900 iterations, with primal opti-
mality threshold ϵtol = 10−4. The global solution found
byMOSEK generates an objective value of 139.52 and the
best objective value with our algorithm was 140.07. In
Figure 1, we see that qualitatively, the optimal trajectory
and the trajectory generated by ADMM are very similar.
Our implementation in C carries out precomputations in
27 milliseconds. The total time for all 900 iterations is 63
milliseconds, which gives each iteration an average time
of 70 microseconds. MOSEK finds the first feasible point
after 1 second, and it takes about 15 seconds to find a
point with the same quality as found with our heuristic.

3.3 Power converter control

We discuss the control of an embedded switched-
mode power converter control (Buso & Mattavelli, 2006;
Camara, Gualous, Gustin, Berthon, & Dakyo, 2010;
Smedley & Cuk, 1995). We consider control of the
switched-mode power converter shown in Figure 2. The
circuit dynamics are

ξt+1 = Gξt + Hut , t = 0, 1, . . . ,T − 1,
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Figure . Engine power, battery power, battery energy, and engine on/off signals versus time. Left: the global solution. Right: the solution
found using ADMM (Algorithm ).
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Figure . Converter circuit model.

where ξ t = (i1, t, v1, t, i2, t, v2, t) is the system state at epoch
t, consisting of all inductor currents and capacitor volt-
ages, and ut # {− 1, 0, 1} is the control input. The dynam-
ics matrices G ∈ R4×4 andH ∈ R4×1 are obtained by dis-
cretising the dynamics of the circuit in Figure 2.

We would like to control the switch configurations so
that v2 tracks a desired sinusoidal waveform. This can be
done by solving

minimise
∑T

t=0(v2,t − vdes)2 + λ|ut − ut−1|
subject to ξt+1 = Gξt + Hut

ξ0 = ξT
u0 = uT
ut ∈ {−1, 0, 1},

(10)

where λ $ 0 is a tradeoff parameter between output volt-
age regulation and switching frequency. The variables are
ξ t for t = 0,… , T and ut for t = 0,… , T − 1.

Note that if we take λ = 0, and take the input voltage
ut to be unconstrained (i.e. allow ut to take any values in

R), (10) can be solved as a convex quadratic minimisa-
tion problem, with solution ξ ls

t . Returning to our orig-
inal problem, we can penalise deviation from this ideal
waveform by including a regularisation termµ∥ξ − ξ ls

t ∥2
to (10), where µ > 0 is a positive weighting parame-
ter. We solved this regularised version of (10), with L1 =
10 µH, C1 = 1 µF, L2 = 10 µH, C2 = 10 µF, R = 1-,
Vdc = 10 V, T = 100 (with a discretisation interval of
0.5 µs), λ = 1.5V2, andµ = 0.1.We run algorithm 1with
ρ = 2.7 and 500 iterations for three different initialisa-
tions. It takes less than 20milliseconds for our implemen-
tation to carry out all precomputations, and it takes about
150milliseconds for all iterations (with an average time of
100 microseconds per iteration). An approximate solu-
tion is found via our heuristic in less than 170 millisec-
onds, whereas it takes for MOSEK more than 4 hours to
find the global solution. Figure 3 compares the approx-
imate solution derived by the heuristic with the global
solution.

3.4 Signal decoding

We consider maximum-likelihood decoding of a mes-
sage passed through a linearmultiple-input andmultiple-
output (MIMO) channel (Damen, Chkeif, & Belfiore,
2000; Sinnokrot, Barry, & Madisetti, 2008; Viterbo &
Boutros, 1999). In particular, we have

y = Hx + v,

where y ∈ Rp is the message received, H ∈ Rp×n is the
channel matrix, x ∈ Rn is the message sent, and the
elements of the noise vector v ∈ Rp are independent,
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Figure . The switch configuration and the output voltage. Left: the global solution. Right: the solution using ADMM (Algorithm ).

identically distributed Gaussian random variables. We
further assume that the elements of x belong to the sig-
nal constellation {−3,−1, 1, 3}. The maximum likelihood
estimate of x is given by the solution to the problem

minimise ∥Hx̂ − y∥2
subject to x̂i ∈ {−3, −1, 1, 3}, i = 1, . . . , n, (11)

where x̂ ∈ Rn is the variable.
We generate 1000 random problem instances with

H ∈ R2000×400 chosen from a standard normal distribu-
tion. The uncorrupted signal x is chosen uniformly ran-
domly and the additive noise is Gaussian such that the

signal-to-noise ratio (SNR) is 8 dB. For such a problem in
embedded application, branch-and-bound methods are
not desirable due to their worst-case time complexity. We
run the heuristic with only one initialisation, with 10 iter-
ations to find xadmm. The average runtime for each prob-
lem (including preprocessing) is 80milliseconds, which is
substantially faster than branch-and-bound based meth-
ods. We compare the performance of the points xadmm

with the points found by relax-and-round technique xrlx.
In Figure 4, we have plotted the histogram of the differ-
ence between the objective values evaluated at xadmm and
xrlx. Depicted in Figure 4, we see that in 95% of the cases,
the bit error rate (BER) using our heuristic was at least as
good as the BER using relax-and-round.
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Figure . Comparison of ADMM heuristic and relax-and-round. Left: The difference in objective values. Right: The difference in bit error
rates.
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4. Conclusions

In this paper, we introduced an effective heuristic for
finding approximate solutions to convex quadratic min-
imisation problems over the intersection of affine and
nonconvex sets. Our heuristic is significantly faster than
branch-and-bound algorithms and has shown effective in
a variety of embedded problems including hybrid vehicle
control, power converter control, and signal decoding.
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