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ABSTRACT In the controlled synthesis of noble metal

nanostructures using wet-chemical methods, normally, metal

salts/complexes are used as precursors, and surfactants/

ligands are used to tune/stabilize the morphology of nano-

structures. Here, we develop a facile electrochemical method

to directly convert Pt wires to Pt concave icosahedra and na-

nocubes on carbon paper through the linear sweep voltam-

metry in a classic three-electrode electrochemical cell. The Pt

wire, carbon paper and Ag/AgCl (3 mol L−1 KCl) are used as

the counter, working and reference electrodes, respectively.

Impressively, the formed Pt nanostructures exhibit better

electrocatalytic activity towards the hydrogen evolution com-

pared to the commercial Pt/C catalyst. This work provides a

simple and effective way for direct conversion of Pt wires into

well-defined Pt nanocrystals with clean surface. We believe it

can also be used for preparation of other metal nanocrystals,

such as Au and Pd, from their bulk materials, which could

exhibit various promising applications.
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INTRODUCTION
Noble metals including Pt have been widely used for
energy storage and conversion because of their excellent
electrocatalytic activity towards the hydrogen evolution,
and the oxygen reduction and evolution [1–7]. Due to the
scarcity and high cost of noble metals, improvement of
their utilization efficiency becomes extremely important.
The catalytic performance of noble metal nanocrystals is
highly dependent on their size, shape, composition,
crystal facet, crystal phase, etc. Besides the recently de-

veloped crystal-phase controlled synthesis of noble metal
nanocrystals [8–13], lots of efforts have been devoted into
the shape-controlled synthesis of noble metal nano-
structures with high-index facets [14–22]. However, most
of the reported noble metal nanostructures with unique
morphologies are prepared via the traditional wet-che-
mical methods in which metal salts or complexes are used
as precursors, and surfactants or ligands are used to tune/
stabilize their morphologies [23–27]. Until now, to the
best of our knowledge, there is no report on direct pre-
paration of noble metal nanocrystals with controlled
morphologies and clean surfaces in solution from their
bulk materials.

As known, electrochemical synthesis is one of the
simple and efficient methods for preparing noble metal
nanostructures [28]. In order to control the morphology
of noble metal nanostructures using the electrochemical
method, anodic aluminum oxide membranes or meso-
porous silicon templates are normally used [29–32].
However, further process is required to remove these
templates in order to purify noble metal nanomaterials
used for various applications including electrocatalysis.
Recently, Sun and co-workers [14,17,33–35] developed a
square-wave potential based method to directly synthe-
size Pt and Pd polyhedra with high-index facets on glassy
carbon electrode (GCE) using noble metal salts, i.e.,
K2PtCl6 and PdCl2, respectively, as precursors.

In this study, different from previously reported
methods, we develop a facile electrochemical method for
preparation of Pt concave icosahedra and nanocubes
from Pt wire. As shown in Scheme 1, the electrochemical
synthesis of Pt concave icosahedra and nanocubes can be
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achieved in a three-electrode electrochemical cell with
carbon paper, Ag/AgCl (3 mol L−1 KCl) and Pt wire as
working electrode (WE), reference electrode (RE) and
counter electrode (CE), respectively. Linear sweep vol-
tammetry (LSV) scanning was carried out to directly
convert the Pt wire into Pt concave icosahedra on carbon
paper in 0.5 mol L−1 H2SO4 aqueous solution. When
cobalt nitrate was added in the aforementioned electro-
chemical synthesis solution, Pt concave nanocubes were
obtained. Note that no surfactants or ligands were used in
the aforementioned reactions. Therefore, the surface of
obtained Pt nanostructures is clean. As a proof-of-con-
cept application, the Pt concave icosahedra and nano-
cubes on carbon paper were used as electrocatalysts for
the hydrogen evolution reaction (HER), which exhibited
higher electrocatalytic activity in 0.5 mol L−1 H2SO4 aqu-
eous solution compared to the commercial Pt/C catalyst.

EXPERIMENTAL SECTION

Materials

Pt wires were purchased from the CH Instruments Ins.
HClO4, H2SO4 and Co(NO3)2·6H2O were purchased from
Sigma-Aldrich (Saint Louis, Missouri, USA). Milli-Q
water (Millipore, 18.2 MΩ cm) was used in all experi-
ments.

Preparation of Pt concave icosahedra and nanocubes from

Pt wires

Pt concave icosahedra were prepared in 10.0 mL of
0.5 mol L−1 H2SO4 solution by repeated LSV scanning (25
times) from 0 to −1.2 V (vs. Ag/AgCl (3 mol L−1 KCl)) at
scan rate of 0.5 mV s−1 using a three-electrode electro-
chemical cell with carbon paper as the WE, Ag/AgCl
(3 mol L−1 KCl) as the RE, and Pt wire as the CE. Pt
concave nanocubes were prepared on carbon paper by

repeated LSV scanning (25 times) from 0 to –1.2 V (vs.
Ag/AgCl (3 mol L−1 KCl)) at scan rate of 1.0 mV s−1 after
adding 100 µL of cobalt nitrate (3 mmol L−1) into the
aforementioned 10 mL of 0.5 mol L−1 H2SO4 aqueous
solution.

Electrocatalytic hydrogen evolution of Pt concave

icosahedra and nanocubes

Pt concave icosahedra or Pt concave nanocubes on car-
bon paper were directly used as the WE to evaluate their
electrocatalytic activity for hydrogen evolution reaction
(HER). The amount of Pt of the prepared Pt concave
icosahedra and nanocubes was measured by the inductive
coupled plasma-optical emission spectroscopy (ICP-
OES). Electrochemical active surface areas (ECSAs) of Pt
concave icosahedra and nanocubes on carbon paper were
evaluated by cyclic voltammetry (CV) in N2-saturated
0.5 mol L−1 H2SO4 aqueous solution at scan rate of
50 mV s−1. ECSA = QH/(m×210), where QH (μC) is the
charge of hydrogen absorption on catalysts,
210 (μC cm−2) is the charge associated with monolayer
adsorption of hydrogen on the surface of Pt, and m (g) is
the loading amount of Pt per cm2 geometric area of
electrode. HER measurements were carried out in H2-
saturated 0.5 mol L−1 H2SO4 aqueous solution by LSV
method at scan rate of 5 mV s−1 using Ag/AgCl
(3 mol L−1 KCl) and graphite rod as RE and CE, respec-
tively. As a comparison, the commercial Pt/C suspension
with the same amount of Pt loading as Pt concave ico-
sahedra or Pt concave nanocubes was dropped onto
carbon paper for CV and LSV measurements. The Ag/
AgCl (3 mol L−1 KCl) electrode was calibrated with re-
spect to the reversible hydrogen electrode (RHE) in the
H2-saturated 0.5 mol L−1 H2SO4 aqueous solution. As
shown in Fig. S1, E (vs. RHE) = E (vs. Ag/AgCl
(3 mol L−1 KCl)) + 0.246 V.

Characterization

Pt concave icosahedra and nanocubes on carbon paper
were directly used for scanning electron microscopy
(SEM, JSM-7600F, JEOL). Samples for transmission
electron microscopy (TEM) and high-resolution TEM
(HRTEM) (JEOL JEM-2100F) characterizations were
prepared by sonicating carbon paper-supported Pt con-
cave icosahedra or nanocubes in ethanol and then
dropping the formed Pt concave icosahedron or nano-
cube ethanol suspension on copper grids, which were
dried at room temperature. X-ray photoelectron spec-
troscopy (XPS) measurements were performed on a XPS
spectrometer (QUANTUM 2000, Physical electronics,

Scheme 1 Schematic illustration of electrochemical setup for conver-
sion of Pt wire into Pt concave icosahedra and nanocubes on carbon
paper. CE: Pt wire; RE: Ag/AgCl (3 mol L−1 KCl); WE: carbon paper.
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USA) using a monochromatic Al Kα as the X-ray source.
The binding energies were calibrated by the C 1s peak at
284.6 eV. ICP-OES was performed on a Dual-view Op-
tima 5300 DV ICP-OES system to determine the amount
of Pt element of the prepared Pt concave icosahedra and
nanocubes on carbon paper.

RESULTS AND DISCUSSION
As shown in Scheme 1, Pt concave icosahedra were
formed on carbon paper through the repeated LSV
scanning (25 times) from 0 to −1.2 V (vs. Ag/AgCl
(3 mol L−1 KCl)) at scan rate of 0.5 mV s−1 in 10 mL of
0.5 mol L−1 H2SO4 aqueous solution. The obtained Pt
concave icosahedra were characterized by SEM, TEM,
HRTEM and XPS. As shown in Fig. 1a, b, most of Pt
concave icosahedra are highly dispersed on carbon paper
with the size of 21.5±7.9 nm (Fig. S2 in Supplementary
information). TEM image (Fig. 1c) shows the concave
icosahedral shape of Pt nanocrystals. HRTEM image (Fig.
1d) of a single Pt concave polyhedron displays the lattice
fringes with interplanar spacing of about 0.134 nm along
the [111] zone axis (Fig. 1d, inset), corresponding to the
(220) plane of face-centered-cubic (fcc) Pt [36]. The
characteristic five-fold symmetry axe of Pt concave ico-
sahedron with the exposed (111) plane is observed from a
high-angle annular dark-field scanning TEM (HAADF-
STEM) image (Fig. 1e), which matches well with the
three-dimensional (3D) model of icosahedron (inset in
Fig. 1e) [37–41]. The XPS survey spectrum of Pt concave
icosahedra (Fig. S3a) shows the characteristic peak of Pt
at 68–77 eV. High-resolution Pt 4f XPS spectrum of Pt

concave icosahedra (Fig. S3b) shows two peaks at 71.2
and 74.4 eV, corresponding to Pt 4f7/2 and Pt 4f5/2 of zero-
valent Pt, respectively [42].

Interestingly, after adding 100 µL of cobalt nitrate
(3 mmol L−1) into the aforementioned 10 mL of
0.5 mol L−1 H2SO4 aqueous solution, Pt concave nano-
cubes were formed on carbon paper by the repeated LSV
scanning (25 times) from 0 to −1.2 V (vs. Ag/AgCl
(3 mol L−1 KCl)) at scan rate of 1.0 mV s−1. As shown in
Fig. 2a, b, well-dispersed Pt concave nanocubes with the
size of 22.6±7.4 nm (Fig. S4) can be observed. TEM image
(Fig. 2c) displays the shape of Pt concave nanocubes.
HRTEM image (Fig. 2d) of a single Pt concave nanocube
presents the lattice fringes with interplanar spacing of
0.196 nm along the [100] zone axis (Fig. 2d, inset), cor-
responding to the (200) plane of fcc Pt [15]. A HAADF-
STEM image shows the shape of typical Pt concave na-
nocube with the exposed (200) plane (Fig. 2e), matching
very well with its 3D model (inset in Fig. 2e). Moreover,
the XPS survey spectrum of Pt concave nanocubes (Fig.
S5a) shows the characteristic peak of Pt, and no peak
ascribed to Co is observed, indicating the formation of
pure Pt nanostructures. In the high-resolution Pt 4f XPS
spectrum of Pt concave nanocubes (Fig. S5b), two peaks
at 71.2 and 74.5 eV, assignable to Pt 4f7/2 and Pt 4f5/2 of
zero-valent Pt, respectively, are observed [42].

Noble metal concave nanostructures have been proven
to be highly active catalysts for electrocatalysis, such as
oxygen reduction reaction [18], electrochemical oxidation
of ethanol [43] and formic acid [16], and HER [44]. In
this work, as a proof-of-concept application, Pt concave

Figure 1 (a, b) SEM images of the formed Pt concave icosahedra on carbon paper. (c) TEM and (d) HRTEM images of the formed Pt concave
icosahedra. Inset: The corresponding fast fourier transform (FFT) pattern of the Pt concave icosahedron in (d). (e) HAADF-STEM image taken from a
typical Pt concave icosahedron along a five-fold symmetry axis. Inset: 3D model of a Pt concave icosahedron.
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icosahedra and nanocubes on carbon paper are used as
highly efficient electrocatalysts for hydrogen evolution
due to their exposed active facets and clean surface. The
commercial Pt/C catalyst is used for comparison. ECSAs
of Pt/C, and Pt concave icosahedra and nanocubes were
evaluated by their CV curves in N2-saturated 0.5 mol L−1

H2SO4 aqueous solution (Fig. 3a), As shown in Fig. 3b, the
ECSAs of Pt concave icosahedra (107.5 m2 g−1) and Pt
concave nanocubes (134.9 m2 g−1) are much greater than
that of Pt/C (34.1 m2 g−1). Polarization curves of Pt/C, Pt
concave icosahedra and nanocubes are shown in Fig. 3c,
indicating that Pt concave icosahedra and nanocubes give
better electrocatalytic activity towards hydrogen evolution
compared to the commercial Pt/C catalyst. As shown in Fig.
3d, the mass activities of Pt concave icosahedra
(0.81 mA µg−1

Pt) and Pt concave nanocubes (1.05 mA µg−1
Pt)

for electrochemical hydrogen evolutionat working potential
of −0.05 V (vs. RHE) are about 2.3 and 2.9 times that of
commercial Pt/C catalyst (0.36 mA µg−1

Pt), respectively.
All the aforementioned results confirm that the Pt con-
cave icosahedra and nanocubes synthesized by our elec-
trochemical method have higher electrocatalytic activities
for HER compared to the commercial Pt/C catalyst.
Furthermore, the durability tests show that the com-
mercial Pt/C showed 9.2% decrease of current density for
HER at −0.1 V (vs. RHE) after 20,000 potential cycles
from 0.248 to −0.152 V in H2-saturated 0.5 mol L−1 H2SO4

aqueous solution (Fig. S6a), while the polarization curves
of Pt concave icosahedra and nanocubes for HER display
no obvious change after 20,000 potential cycles (Fig. S6b,
c), indicating the better electrocatalytic stabilities of Pt

concave icosahedra and nanocubes compared to the
commercial Pt/C.

The superior electrocatalytic activities of Pt concave
icosahedra and nanocubes for HER might arise from their
concave and stepped surface morphologies, exposed high-
active facets, no surfactants or ligands on the Pt surface,
and good contact between the prepared Pt nanostructures
and carbon paper. First, Pt concave icosahedra and
nanocubes present atomic steps and kinks with low co-
ordination numbers, which have been proved to be
beneficial for electrocatalysis such as hydrogen adsorp-
tion and evolution [45–47]. Second, small Pt nano-
particles on the commercial Pt/C catalyst are usually
enclosed by (200) and dominant (111) facets (Fig. S7)
[48], while the Pt concave icosahedra and nanocubes
possess high-index facets exposed on their surface
[45,47], which are more active for hydrogen evolution
than the (111) facet [49,50], resulting in the better elec-
trocatalytic HER activity of Pt concave icosahedra and
nanocubes compared to the commercial Pt/C. Third, the
directly electrodeposited Pt concave icosahedra and
nanocubes on carbon paper are free of surfactants and
ligands. Their clean surfaces and good contact with
carbon paper result in the easier hydrogen adsorption and
electron transfer in the process of HER [14,33].

CONCLUSIONS
In conclusion, a simple electrochemical method has been
developed for conversion of Pt wires to Pt concave ico-
sahedra and nanocubes on carbon paper in a classic
three-electrode electrochemical system, in which Pt wire,

Figure 2 (a, b) SEM images of the formed Pt concave nanocubes on carbon paper. (c) TEM and (d) HRTEM images of the formed Pt concave
nanocubes. Inset: The corresponding FFT pattern of Pt concave nanocube in (d). (e) HAADF-STEM image of a typical Pt concave nanocube. Inset: 3D
model of a Pt concave nanocube.
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carbon paper and Ag/AgCl (3 mol L−1 KCl) are used as
the counter, working and reference electrodes, respec-
tively. The surface of as-prepared high-active Pt concave
icosahedra and nanocubes is clean since no surfactants or
ligands were used in the synthesis process. The prepared
Pt concave icosahedra and nanocubes on carbon paper
used as electrocatalysts for HER show better electro-
catalytic activity in comparison with the commercial Pt/C
catalyst. Our simple method provides a new and effective
way to directly convert Pt wire into well-defined Pt
nanocrystals for highly efficient electrocatalysis, which
might be further used to prepare well-defined nanocrys-
tals (unpublished results), such as Au, Pd, Rh, Ru and Cu,
from their bulk metals for various applications.
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电化学方法把铂丝转化到碳布上形成铂二十面体和纳米立方体并用于电催化产氢
罗志敏1, 谭超良1, 赖壮钗1, 张晓1, 陈君泽1, 陈也1, 陈博1, 拱越2, 张志成1, 吴雪军1, 李冰3, 宗昀3, 谷林2, 张华1*

摘要 湿化学法可控合成贵金属纳米结构通常需要金属盐或金属配合物作为前体, 并利用表面活性剂和配体来调节和稳定纳米结构的形
貌. 本文通过一种简单的电化学方法(线性扫描伏安法), 在三电极体系中直接把铂线转化到碳布表面形成铂二十面体和纳米立方体. 在三
电极体系中, 铂线、碳布和Ag/AgCl(3 mol L−1 KCl)分别作为对电极、工作电极和参比电极. 与商业Pt/C催化剂相比, 制备的铂二十面体和
纳米立方体展现出优越的电催化活性. 该方法简单、有效, 可拓展到其他贵金属纳米结构的合成和应用研究. 如通过这种电化学方法直接
将Au、Pd等块体材料转化成具有各种潜在应用的Au、Pd等纳米结构.
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