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‘We propose a new method to estimate the bid-ask spread when quote data are not available.
Compared to other low-frequency estimates, this method utilizes a wider information set,
namely, readily available close, high, and low prices. In the absence of end-of-day quote
data, this method generally provides the highest cross-sectional and average time-series
correlations with the TAQ effective spread benchmark. Moreover, it delivers the most
accurate estimates for less liquid stocks. Our estimator has many potential applications,
including an accurate measurement of transaction cost, systematic liquidity risk, and
commonality in liquidity for U.S. stocks dating back almost one century. (JEL G15,
G12, G20)
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This paper provides a new method to accurately estimate the bid-ask spread
based on readily available daily close, high, and low prices. Akin to the seminal
model proposed bym ), the rationale of our estimator is the departure of
the security price from its efficient value because of transaction costs. However,
our estimator improves the Roll measure in two important respects: First,
our method exploits a wider information set, namely, close, high, and low
prices, which are readily available, rather than only close prices like in the Roll
measure. Second, our estimator is completely independent of trade direction
dynamics, unlike in the Roll measure, which relies on the occurrence of bid-ask
bounces, and, consequently, relies on the assumption of serially independent
trade directions that are equally likely.
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By virtue of its closed-form solution and straightforward computation, our
method delivers very accurate estimates of effective spreads, both numerically
and empirically. When quote data are unavailable, our estimator generally
provides the highest cross-sectional and average time-series correlation with
the effective spread based on Trade and Quotes (TAQ) data, which serve as the
benchmark measure. Our estimator can be applied for a number of research
purposes and to a variety of markets and assets because it is derived under very
general conditions and is easy to compute.

Our estimation of the effective spread shares the theoretical framework
with the m m) model, in which the efficient price of an asset follows a
geometric Brownian motion. Within this framework, we follow three innovative
steps to derive our simple estimator. First, we build a simple proxy for the
efficient price using the mid-range, which we define as the mean of the daily high
and low log-prices. The mid-range of every day represents (at least) one point
in the continuous path of the efficient log-price process as half-spreads included
in the high and low prices cancel out in the mid-range calculation. Moreover,
the mean of two consecutive daily mid-ranges represents a natural proxy for the
midpoint or efficient price at the time of the market close. In fact, the continuous
efficient price path of day ¢ (#+1) hits the mid-range before (after) the closing
time on day ¢. Second, we calculate the squared distance between the close
log-price and the midpoint proxy at the time of market close. We show that this
squared distance is composed of the efficient-price variance and the squared
effective spread at the closing time. As the third step, we derive an efficient-price
variance estimator as a function of mid-ranges. The efficient-price variance is
then removed from the squared distance between the close price and midpoint
proxy (obtained in the previous step). The outcome is a simple measure for
the proportional spread, Spread:2\/ E[(c; —ns)(c; —ns41)], in which c is the
daily close log-price and 7 is the daily mid-range, that is, the average of
daily high and low log-prices. This simple closed-form solution resembles
the Roll’s autocovariance measure. However, instead of the autocovariance of
consecutive close-to-close price returns like in the Roll measure, our estimator
relies on the covariance of close-to-mid-range returns around the same close
price.

One might use low-frequency bid-ask spread measures, instead of the
more sophisticated high-frequency measures, to achieve the following goals:
(a) measuring bid-ask spreads in the absence of quote data and (b) benefit
from the computational savings. Measuring bid-ask spreads when quote data
are unavailable is essential, because the access to quote data, even at daily
frequency, is limited to certain securities, markets, and (recent) periodsEl The
computational benefits from using low-frequency measures are also substantial
because of the overwhelming size of intraday quote data, and time-consuming

For example, end-of-day bid and ask quotes are missing in the CRSP data set from 1942 to 1992.
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data handling and filtering techniquesH An approximation of intraday bid-ask
spreads with end-of-day quotesﬁ provides accurate measures and computational
savings (Chung and Zhang2014;[Fong, Holden. and Trzcinkd[2017). However,
the availability of end-of-day quote data for the last 75 years of U.S. stocks
is limited to a recent period, that is, from 1993 onwards. As TAQ data are
also available for this time period, end-of-day quotes are mostly helpful for the
purpose of saving computational time. Thus, needs for an accurate measurement
of bid-ask spreads when (intraday) quote data are unavailable remain unmet.
The previous literature overcomes this issue by employing price data to
estimate the effective spreadﬂ Starting with the ) measure (hereafter

Roll), a number of models have been proposed. [HasbroucH m, )

proposes a Gibbs sampler Bayesian estimation of the Roll model (hereafter
Gibbs). [Lesmond, Ogden, and Trzcinkd (1999) introduce an estimator based
on zero returns (LOT). Compared with Roll, estimating the LOT measure is
computationally intensive since it relies on optimizing the maximum likelihood
function for every single month to get the monthly estimates. Following the

same line of reasoning, [Fong, Holden, and Trzcinkd (2017) develop a new

estimator (FHT) that simplifies existing LOT measures.m (@), jointly
with [Goyenko, Holden, and Trzcinkd (2009), introduces the Effective Tick
measure based on the concept of price clustering (EffTick). By taking their
difference, the high and low prices have been traditionally used to proxy
volatility (e.g.,IGarman and Klasd[1980; [Parkinsodl1980; [Beckerd[1983). More
recently, M) use them to put forward an original
estimation method for transaction costs (HL). Assuming the high (low) price
being buyer- (seller-) initiated, they decompose the observed price range into
two parts: efficient price volatility and bid-ask spread. To cover a wide range of
applications, we perform our analysis across various sample periods, including
the 1993-2015 period, in which end-of-day quoted spreads are also available,
to compare spread estimates to the accurate TAQ effective spread benchmark,
and from 1926 onwards to embrace the entire price data history of U.S. stock
markets.

This paper contributes to the literature by providing a new estimation method
of transaction costs jointly based on close, high, and low prices. The rationale
of our model is to bridge the two above-mentioned estimation methodologies,
that is, the long-established approach based on close prices originated from
@ @) and the more recent one relying on high and low prices (Corwin
and Schultz@). In doing so, our model has four main advantages over the
previous estimation methods. First, the joint utilization of the daily high, low,

The key advantages of using daily data, including large computational time savings, are comprehensively

discussed by [Holden Tacobsen. and Subrahmanyan] @019).
The use of end-of-period quotes, at frequencies lower than daily, goes back to[Stoll and Whaley (1983).

Rather than approximating and estimating transaction costs, an alternative approach to measuring illiquidity is
to use proxies for the price impact, in particular the Bmihud €003) illiquidity measure.
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and close prices allows our model to benefit from the richest readily available
information set of price dataﬁ Second, unlike @i (@), our measure does
not rely on bid-ask bounces and, therefore, is independent of trade direction
time-series dynamics of close prices. Third, unlikelCorwin and Schultz’d (2012)
HL estimator, our model neither needs to violate Jensen’s inequality in order
to construct the closed-form estimator nor does it need ad hoc adjustments
for nontrading periods, such as weekends, holidays, and overnight closings.
Finally, our estimates using the mid-range and close price are only marginally
sensitive to the number of trades per day, whereas the high-low estimator
proposed by [Corwin and Schult4 (2012) further underestimates effective costs
when the daily number of trades are lower, that is, when stocks (and markets)
are less liquid.

We empirically test our method by using daily CRSP data to estimate bid-
ask spreads and compare the monthly estimates to TAQ data, which serves
as the benchmark to compute the effective spread. As recommended by
[Holden and Jacobsed (2014), we use Daily (Millisecond) TAQ data to enhance
the precision of our analysis. Thus, the availability of the Daily TAQ data
naturally defines our main sample period, which spans from October 2003
to December 2015, that is, 147 months. Then, we assess the performance of
our method by comparing bid-ask spread estimates with the Monthly TAQ
data between January 1993 and September 2003 thus extending our analysis
to 23 years of TAQ data, that is, from the beginning of 1993 to the end of
2015. As emphasized in the literature, for example, by Goyenko, Holden,
and Trzcinka ), the decision criteria for selecting the best estimator
depends on the particular application of the estimates. To cover the widest
range of possible applications, we use three different criteria to gauge the
quality of the estimators: cross-sectional correlation, time-series correlation,
and prediction errors. To ensure a comprehensive assessment, we consider
the average correlations for all the available stocks, as well as for subsamples,
based on a variety of criteria, including shorter time periods, primary exchanges
(NYSE, AMEX, and NASDAQ), market capitalization, and the magnitude of
bid-ask spreads.

Several clear results emerge from our study. First, the closing percentage
quoted spread is generally the most accurate monthly spread proxy according to
the above-mentioned criteria. This is generally true when end-of-day quote data
are available, i.e. from 1993 onwards, except for the predecimalization era in
U.S. stock markets that dates before 2001 During the 1993-2000 period, end-
of-day spreads provide the highest average time-series correlations compared

Unlike the availability of close, high, and low prices, the availability of open prices is subject to additional
limitations. For example, open prices are missing in the CRSP data between July 1962 and June 1992.

NYSE (NASDAQ) decimalization started for few of the listed stocks in August 2000 (March 2001), followed
by wider implementation in the next months and completion in January 2001 (April 2001).
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to the TAQ effective spreads, whereas our estimates show highest average
cross-sectional correlations and lowest estimation errors.

Second, our estimator provides the most accurate estimates in the absence
of quote data, making it the best choice for applications that rely on longer
time horizons, going back beyond 1993. Compared with other bid-ask spread
estimators that do not rely on quote data (the HL, Roll, Gibbs, EffTick, and FHT
measures), it provides the highest cross-sectional correlation with the intraday
effective spread. On a monthly basis, the average cross-sectional correlation of
our estimates with the Daily TAQ effective spreads is 0.74, whereas the other
estimators range from 0.37 to 0.65. The analysis of Monthly TAQ data from
1993 to 2003 delivers consistent results, that is, our estimates have the highest
average cross-sectional correlation of 0.86, whereas those of other estimators
range from 0.61 to 0.83. These results are consistent whether correlations
are taken for estimates in levels or in changes, and across subperiods. When
breaking down the cross-section of stocks into quintiles based on companies’
size and effective spread size, our estimator provides the highest cross-sectional
correlations for small to medium market capitalizations and for a medium to
large effective spread size. This can be seen as a suitable characteristic because
accurate estimates of transaction costs are particularly needed for less liquid
securities.

Third, in the absence of end-of-day quotes, our estimator also delivers the
highest average time-series correlations with the effective spread benchmark.
Compared with other estimators, it provides the highest average time-series
correlations over the entire sample period, across two out of three market venues
(AMEX and NASDAQ), for small to medium market capitalizations, and for
a medium to large effective spread size.

Finally, in the absence of end-of-day quotes, our estimates generally exhibit
the lowest prediction errors in terms of root-mean-square errors (RMSEs) when
compared with the TAQ benchmark. The overall evidence suggests that our
estimates are the best available option (a) in the absence of quote data, according
to all three criteria or (b) according to two out of the three criteria, when
end-of-day quote data are less accurate, that is, during the predecimalization era.

A natural question is whether our estimator provides additional information
beyond that contained in the other estimators. To answer this question, we
measure partial correlations between our estimates and the TAQ benchmark,
while controlling for HL, Roll, Gibbs, EffTick, and FHT estimates. We find
that the average partial cross-sectional and partial time-series correlations
for our estimates are significantly positive for the entire sample, for every
primary exchange, and for every effective-spread quintile. Average partial
correlations are especially higher for quintiles with a medium to large effective
spread size; that is, our estimator provides even more additional explanatory
power for less liquid stocks. These results are in line with our numerical
analysis that document the marginal sensitivity of our estimates to the number

of trades per day, whereas [Corwin and Schultz’d (IZD_]_Z) method produces
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substantially smaller estimates of transaction costs for less-frequently traded
stocks.

An accurate measurement of transaction costs is important for at least two
applications: First, to analyze how and to what extent transaction costs erode
asset returns (e.g., |Amihud and Mendelson [1986). To illustrate the potential
application in this respect, we compute estimates of bid-ask spreads for NYSE
(AMEX) stocks for the period from 1926 (1962) through 2015. Then we discuss
the reliability of our estimator in describing the developments of transaction
costs over long time spans and for large cap and small cap stocks. Second,
investors demand a premium for liquidity risk, that is, the chance that liquidity
disappears when it is needed to trade. To comprehend this issue, it is necessary
to obtain accurate estimates of transaction costs for individual stocks, stock
portfolios, and the whole market. Through the lens of the liquidity-adjusted
capital asset pricing model (LCAPM), proposed by

), we analyze which model provides accurate estimates of systematic
liquidity risk, that is, estimates close to those based on the TAQ effective
spreads. We show that our model precisely captures all the different components
of systematic liquidity risk in the cross-section of the market, in particular the
component originated by comovements of liquidity of individual stocks and
that of the whole market, that is, commonality in liquidity, as well as negative
covariations between stock returns and illiquidity. Overall, our model provides
more accurate estimates for (liquidity) systematic risk than do the Roll and HL
estimators, and it can be used to analyze commonality in liquidity and return-
liquidity covariations. Our estimator has many potential applications in areas
other than asset pricing, including corporate finance, risk management, and
other important research areas that need an accurate measure of trading costs
over long periods.

The Estimator

We first explain our model in theory, and then, provide details for its best use
in practice.

1.1 Model

Our model relies on assumptions similar to those made in them (@) model.
We assume that the efficient price follows a geometric Brownian motion (GBM)
and the observed price at each time point can be either buyer initiated or seller
initiated. To keep the notation concise, we directly implement the model on log-
price, and the superscript e refers to efficient prices. Equation (1) shows how
the observed market price and efficient price at the closing time are related. The
random variable ¢, represents the observable close log-price, and the random
variable ¢} represents the efficient log-price at the closing time. The random
variable ¢, is the trade direction indicator, and s is the relative spread, which
we aim to estimate. In line withm m), we assume that trade directions
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are independent of the efficient price.
s
c,=cf+q,§,qt=:l:l (1)

For the sake of convenience, we temporarily make two assumptions. However,
our estimator is robust to the relaxation of these assumptions as shown in the
appendix. Like in [Corwin and Schultd (2012), the first assumption is that the
high price (k) to be buyer initiated (qth =1), and the daily low price (/;) to be
seller initiated (qt’ =—1). Equations (@) and (@) represent these points.

N
hi=hi+, )

e S
L=lf 3. 3)

This assumption likely holds for frequent trades on a continuous efficient price
path, which allows both buyer-initiated and seller-initiated trades to occur when
the efficient price process is near its high (low) values. In such circumstances,
a non-zero spread size make buyer- (seller-) initiated trades higher (lower)
than the ones of opposite direction, increasing the chance to select the buyer-
(seller-) initiated trades as the high (low) trade prices. It is worth stressing that
this assumption seems to be supported by real data[l Moreover, our results are
robust to relaxation of this assumption analytically and numerically. Our results
analytically hold when we relax this assumption by allowing trade directions
of high and low prices being stochastic and independent of the efficient price
process (see Appendix C). Furthermore, when we relax this assumption in our
numerical simulations, our estimator still outperforms its competitors when the
trades are less frequently observed (increasing the chance to violate Equations
@) and @)).

The second simplifying assumption that we make is that the efficient-price
movement during nontrading periods is zero. As we show analytically in
Appendix B and later in numerical simulations, our results are also robust
to the relaxation of this assumption. We start with defining mid-range and then
derive our estimator using the mid-range.

Definition 1. We define the mid-range as the average of daily high and low
log-prices:

_ (i +hy)
2

One can replace the efficient high and low log-prices with the observed values
since the spreads cancel out.

“4)

Un

Using Daily TAQ data between October 2003 and December 2015 and an algorithm similar to
({I991). we observe that around 90% (91%) of stocks-days include high (low) prices that are above (below) the
quote midpoints. The Internet Appendix provides more details.
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Proposition 1. Assuming that the efficient price follows a continuous path
(in our case a GBM):

(1) The mid-range of observed prices coincides with mid-range of efficient
price:
(e+hne)
n= % 4)
(i1) n, represents at least one point in the efficient-price process. In other
words, the efficient price hits 75, at least once during the day.

(iii) A straightforward and unbiased proxy for the end-of-day midquote of
day ¢ is the average of mid-ranges of the same day and the next day, since
the end of the day midquote of day ¢ occurs between the time at which
n: and 7,4 are hit. As shown in Equation (@), this proxy is unbiased:

E[cf— (n,+2nz+1)} o, ©)

Proposition 2. The squared distance between close log-price of day 7 and the
proposed mid-point proxy includes two components: bid-ask spread component
and efficient price variance component Equation (Z) shows this relation:

E (M +0141) g 2 2 _
c,—T =s7/4+(1/2—k/8)o,, ki=4In(2). @)

Garman and Klass 11980), [Parkinsor (198d), and [Beckerd (1983) use the

value of k; for the purpose of estimating volatility using the daily price range.
Here, rather than using the range, we take the average of high and low prices and
use it as an efficient price proxy. Proofs for Propositions 2 and 3 are available
in Appendix A. The effective half-spread, by definition, is the distance between
the price and the contemporaneous midquote. We interpret Equation () to be
a characterization of the standard definition of the effective half-spread, that
is, when the unobservable midpoint is proxied by the average mid-ranges. We
argue that the average of the consecutive mid-ranges of days ¢ and #+1 is a
natural proxy for the midquote or the efficient price at the closing time of day
t since the mid-range of day ¢ occurs before the closing time and the mid-
range of the next day occurs after it. As expressed in Equation (@), the squared
distance between the close price and the proxy for the midquote contains
two components: the squared effective half-spread and the transitory variance.
The squared effective spread term represents the squared distance between
the observed close price and the midquote at the time of market close. The
transitory variance term represents the squared distance between the midquote
at the close time and its approximation, that is, the average of two consecutive
mid-ranges. Figure [l provides a graphical illustration of the two components
of the dispersion measure introduced in Equation (@) in the framework of the
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Figure 1

The schematic decomposition of the distance between closing price and average mid-ranges

The log-price process is simulated with one-minute increments for the duration of two days of working hours.
Each working day consists of 390 minutes, with one trade at the end of every minute. The input of our model,
which consists of daily price data, is represented by the five thicker triangulars. Four triangulars represent the
two high and low prices for days 7 and 7+ 1, and one represents the close price at day . The figure provides a
simple illustration that the distance between ¢; and (17 +1;41)/2, shown as (c) in the picture, can be decomposed
into two components: (a) the distance between close price and the unubserved efficient close price, that is, the
effective half-spread and (b) the distance between efficient close price and the midquote proxy.

@ (@) model. The figure illustrates that the distance between the close
price and the average of the two consecutive mid-ranges reflects two quantities,
namely, the effective spread and the intraday efficient-price variation (o72).
As the next step, we propose a way to compute a measure of intraday volatility,
which we will remove from the dispersion between the close price and the
midquote proxy.

Proposition 3. The variance of changes in mid-ranges is a linear function of
efficient price variance. Equation () provides the accurate relation:

E[(w1—n)*]=Q—ki /207, ki=41n(2). 8)

Since the mid-ranges are both independent of the spread, their difference
only reflects the volatility of the efficient-price path. We also perform several
numerical simulations to assess the quality of the estimate of the efficient
price volatility in Proposition Bl We find two main results: First, the estimated
efficient price volatility implied by our model closely follows the “true” efficient
price volatility. Second, our volatility estimate is less sensitive to the trading
frequency. In other words, it is still accurate and less biased than the high-
low volatility estimates, even for a very low frequency of trades. This is a
favorable property of our volatility estimates compared to the use of price

range, which, as shown in [Garman and Klasd (198d) and Beckerd (1983), is
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1.4 T T T T T T T
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Expected Number of Trades Per Day

Figure 2

Sensitivity of variance estimates to the number of daily trades

The figure shows the relative bias of variance estimates, using ranges and mid-ranges of a simulated discrete
random walk to estimate the variance, and the sensitivity of the bias to the expected number of trades per day. We
simulate a random walk for 210,000 days, with 390 one-per-minute trades, and a daily volatility of 3%. Each trade
has certain chance of being observed, allowing the expected number of trades specified in the horizontal axis,
ranging from 2 to 390. The variance based on the mid-range is calculated as 03 =1/(2—-2log(2)) E[(nr —ny—1 Y1,
and the range-based variance is calculated as 01?71 =1/(4log(2)E[(ht —1t )2] Expected values are estimated by
using the means of a sample of 210,000 day simulations. The estimation outputs are divided by the preassigned
variance of 0.032 in order to be comparable with 1.

considerably biased if the trades are observed less frequently. FigurePlillustrates
the explained simulation results. By its accurate estimation of efficient price
variance, Proposition [l provides us with a way to remove the efficient price
variance part introduced in Proposition

Theorem 1. The squared effective spread can be estimated as shown in
Equation @):

s*=4E [(Ct —(ny +nt+1)/2)2] — E[(s1—0)*]=4E[(c —n)(c — )] (9)

Proof of Theorem 1: Multiplying both sides of Equation (@) by four, subtracting
Equation (8), and simplifying the outcome expression leads to Equation (@).

Interestingly, the estimator derived in Theorem [] resembles the Roll
autocovariance measure, in which ¢, (¢, 1) is replaced with n,,; (1,). However,
this simple and intuitive formulation leads to some important improvements.
Hereafter, we compare our estimator to the Roll and HL measures.
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Unlikem (@), the derivation of Equation (@) does not need to rely on
additional restrictive assumptions on the serial independence of trades and equal
likelihood of buyer-initiated and seller-initiated close price, which do not find
empirical supportﬁ Compared to the AL estimator (Corwin and Schult[2012),
our model should perform better for at least three reasons: First, it benefits
from the richer readily available information set of price data, i.e. the daily
high, low, and close prices. Second, unlike [Corwin and Schultz’q (IZQ]_Z) HL
estimator, our model is robust to the price movements in nontrading periods,
such as weekends, holidays, and overnight price changes. Therefore, it does not
rely on ad-hoc overnight price adjustments] Finally, by relying on the average
of high and low prices instead of the price range, our model is less sensitive
to the number of observed trades per day. This is a key advantage that we will
analyze numerically and empirically in the next Sections.

1.2 Dealing with negative estimates

We aim to use the model to estimate effective spreads for every month-stock.
One can estimate the expectation term in Equation (@) by using the sample
“moment,” that is, a simple average of the two-day values, and, then, by taking
the squared root of the outcome to get the spread estimate. However, because
of the estimation errors, the estimation of the right-hand side expression in
Equation (@) might become negative. Three ways to deal with this issue have
been suggested in the previous literature (e.g., [Corwin and Schult4R012): (1)
set negative monthly estimates to zero, and then calculate the spread (2), set
negative two-day estimates to zero and then take the average of the two-day
calculated spreads, or (3) remove negative estimates and just calculate the
spread for positive estimates and take their average. Numerical simulations and
empirical comparisons with the TAQ data indicate that the first two approaches
provide better outcomes, both in terms of bias and estimation errors. We call
the first approach the monthly corrected estimate and the second one the two-
day corrected version. Equations (IQ) and (T, respectively, show the way we
calculate the two versions.

N
. 1
Smonthly corrected = | THaX 4‘N ;(Ct —0:)(Cr —Nix1)s O¢, (10)
1 N
§two-day corrected = N th , §t = \/max{4(c, —N)(Cr —Nre1)s 0}. (11)

=1
where N shows the number of days in the month and §; refers to the two-
day estimates. As shown in Equation (), to calculate the two-day corrected

8 [Hasbrouck and Ad {[987) and [Choi. Salandro. and Shastd (I088), among others, find a serial dependence in the
trade directions, and [Hariy (I989) and [McInish and Wood {1990) show that close prices are more likely to be

buyer initiated than seller initiated.

9 Appendix B provides the proof.
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version, we follow three steps. First, we calculate estimates of squared spreads
over two-day periods. If the two-day estimates are negative, then we set them
to zero. Second, we take their square roots. Finally, we average them over
a month. This way of taking average of two-day estimates after removing
negative values is similar to the correction method applied by Corwin and
Schultz (2012). Although the two-day correction approach increases the bias
because of setting more negative values to zero compared with the monthly
corrected version, it provides better results in terms of higher correlation with
the high-frequency benchmark (Corwin and Schultd{2012).

The better association of the two-day corrected version with real data can be
explained by some restrictive assumptions in theRoll (@) model, which our
estimator also relies on, in particular the constant spread and volatility. First,
the monthly corrected estimate hinges on E(s?), which consists of the squared
mean, plus the variance of bid-ask spreads. This is larger than the squared
mean when the spread is not constant. With the use of a two-day period for
the spread estimation, we isolate a single incident of a close-price transaction,
and therefore, no assumption on the distribution of the spread over consecutive
days is needed. Second, the two-day time window is more inclined to capturing
transient price patterns, such as heteroscedasticity and volatility clustering.

1.3 Other spread estimators that use daily data

Here, we shortly review the most common methods for bid-ask spread
estimation, which we empirically analyze in the next sections, and summarize
in Table[I] For the sake of completeness, we include the average of the end of the
day CRSP quoted spreads, which generally provide accurate approximation of
bid-ask spreads (Chung and Zhand[2014; [Fong, Holden, and Trzcinkd [2017).

However, the main interest of this paper is to compare estimation methods

based on price data when quote data are not available.

Roll ) initiated the use of price data for bid-ask spread estimation.
To return a nonnegative spread, the first-order autocovariance of the price
changes must be negative. However, Rod (@) finds positive estimated
autocovariances for several stocks, even over a one-year sample period. Harris
(1990) finds out that the positive estimated autocovariances are occurring when
the spreads tend to be smaller. This motivates the common practice of replacing
the positive autocovariances with zero to get a zero spread estimate.

Hasbrouck (2004, 2009) develops a Gibbs sampler Bayesian estimator to
overcome the negative spread estimates. Using annual estimates,
(@) shows that the spreads originated from the Gibbs method have
higher correlations with the high-frequency benchmark. Following Corwin and
SchultzM), among others, we perform our empirical analysis on a monthly
basis

Joel Hasbrouck has kindly provided the SAS codes for the Gibbs sampler estimator on his personal Web page.
‘We modify the codes by altering the estimation windows from stock-years into stock-months. We only consider
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Table 1
Other bid-ask estimation methods using daily data
Label Inputs Description
Roll Close price Roll=2,/max{—cov(Ac;y1, Acy),0}, where c is close log-price
Gibbs Close price Gibbs sampler Bayesian estimation of spreads by setting a nonnegative
prior density for the spreads
TI_1758;
EffTick Close price EffTick= %
§;=$1/8,81/4,81/2,91,
Min[Max{Uj,O},l]. j=1
Y7 Min[Max{u 0 1- X5 we ] =2
2F/ s "1: 1
Uj=42F = Fjm1e J=2ed =L
Fj — Fj*l , j=J
N
Fi=s7
X1V

where N is the number of prices divisible by §;

FHT Close price FHT=20N"! (@) Zeros:%,
where ZRD,TD, and NTD are respectively number of days with zero
returns, total number of trading days, and number of nontrading days.
N~1() refers to the inverse normal cumulative distribution function

a1
HL High price and HL= % Zﬁl Ste St :max[ z(fﬂia, ) ,0},
. _V2Bi—Bs vt
low price o= 3243 3273

2
ﬂz=1/2[(h;*+171;+1) +(h;uz,*)2],

2
yo=(max{h, g i) —min{l?, 1))
where h* and [* are respectively high, and low log-prices, adjusted for
overnight price movements N shows the number of two-day estimates
in the month and §; refers to the two-day spread estimate

CRSP_S Bid and ask quotes CRSP_S= M;

t
where Ask and Bid are CRSP bid and ask quotes. Zero bid-ask spreads,
and the ones higher than 50% are discarded before taking
the monthly average

Asks —Bidy _ Askg+Bid;
M, ’ B 2 ’

This table summarizes the bid-ask estimators used in this paper, which are Roll (Roll[[984), Hasbrouck (Gibbs;
2004, 2009), Holden, jointly with Goyenko, Holden, and Trzcinka (EffTick; 2009, 2009), Fong, Holden, and
Trzcinka (FHT; 2017), and Corwin and Schultz (HL; 2012). We include the CRSP end-of-day bid-ask spreads
(CRSP_S), a measure based on quote data, like in ).

Fong, Holden, and Trzcinka (]21)_1_2|) develop an estimator, named FHT, which
relies on the assumption that price movements that are smaller than the bid-ask
spread will be unobservable and are reflected in the days with zero returns. They

argue that the measure simplifies the LOT measure developed by Lesmond,
Ogden, and Trzcinka 1]l§§§) and it performs very well in estimating liquidity

stock-months in which there are at least 12 days with trades. As he already noted on his Web page, the monthly
estimator is less accurate than is the annual version because of the weight of the prior density in the outputs.
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of the global equity market to the extent that it becomes one of the most accurate
measures.

Holden (2009), jointly with[Goyenko, Holden, and Trzcinkd (200d), develops
a proxy for the effective spread based on observable price clustering. Larger
spreads are associated with larger effective tick sizes. The steps to calculate
their EffTick measure are shown in Table [l

More recently, [Corwin and Schult4 M) develop an estimator based on
daily high and low prices. They argue that high (low) prices are almost always
buyer (seller) initiated. Therefore, the daily price range reflects both the efficient
price volatility and its bid-ask spread. They build their model on the comparison
of one- and two-day price ranges. The latter should twice reflect the variance of
the former, but they should have the same bid-ask spread. This reasoning gives
a nonlinear system of two equations with two unknowns that does not have a
general closed-form solution. The authors provide an approximate closed-form
solution at the cost of neglecting Jensen’s inequality.

Numerical Simulations

In this section, we perform several numerical simulations under different
settings. For ease of comparison, we define the setting of simulations similar to
that in|Corwin and Schult4 (IZD_LZ). We compare two versions of our measure,
labeled CHL, with the HL and Roll estimates, that is, the monthly corrected
and the two-day corrected versions[T]

Panel A of Table 2] shows the results for the near-ideal settings. For each
relative spread under analysis, we perform 10,000 time simulations for 21-day
months of the price process. Each day consists of 390 minutes in which trades
are observable. We simply draw from Mt=M,_leZ"/*/m, Pr=M,e?s/2 7~
N(0,1), where M, and P, represent the efficient price and observed transaction
price at time ¢, respectively. We set the daily standard deviation of efficient-
price return, o to be 3%. g, can be equally likely —1 or +1 for every individual
observed trade, relaxing the assumption of buyer- (seller-) initiated high (low)
prices. We report both the bias and the estimation errors, in terms of RMSEs,
in the table. The results showed in panel A are twofold: First, both CHL and
HL show considerably lower estimation errors compared to the Roll. Second,
although the CHL monthly corrected estimates tend to be less-biased than the
two-day corrected version, they do not show very different estimation errors.

Shane Corwin has kindly provided the SAS codes for the HL estimator on his personal Web site. The code
produces several versions of spread estimates. We consider two of them in our simulations. The first version,
named MSPREAD_0, is calculated by setting two-day negative estimates to zero and then taking the monthly
average. The second version, named XSPREAD_0, is calculated by directly setting the negative monthly averaged
estimates to zero. Although the second version produces less-biased results in some simulation cases, Corwin
and Schultz 2013) advocate the former method, which is better associated with the TAQ benchmark.
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Table 2
Estimated bid-ask spreads from simulations
Bias RMSEs
CHL HL Roll CHL HL Roll
2-day Month  2-day  Month 2-day Month 2-day  Month

A. Near-ideal conditions

0.5% spread  0.7% 0.2% 0.9% 0.1% 0.7%  0.8% 0.8% 1.0% 0.5% 1.5%
1.0% spread  0.3% 0.0% 0.8% 0.0% 03%  0.5% 0.8% 0.8% 0.6% 1.5%
3.0% spread —0.6% —0.1% 02% —-01% —-04% 0.8% 0.7% 0.5% 0.6% 1.9%
5.0% spread —0.7% 0.0% 00% —-01% —-04% 0.9% 0.6% 0.6% 0.6% 2.2%
8.0% spread —0.4% 0.0% —-02% —-02% —-0.5% 0.7% 0.5% 0.6% 0.6% 2.7%

B. Each trade is visible with a chance of 10% (average of 39 trades Per day)

0.5% spread  0.7% 0.2% 0.6% —0.3% 0.7%  0.8% 0.8% 0.7% 0.4% 1.5%
1.0% spread  0.3% —0.1% 03% —0.5% 03% 0.5% 0.8% 0.5% 0.7% 1.5%
3.0% spread —0.6% —0.1% —-03% —-0.8% —-04% 08% 0.8% 0.6% 1.0% 1.9%
5.0% spread —0.7% —-0.1% —0.7% —08% —0.5% 0.9% 0.6% 0.9% 1.0% 2.2%
8.0% spread —0.5% —0.1% —-09% —-09% —-04% 0.8% 0.6% 1.1% 1.1% 2.6%

C. Each trade is visible with a chance of ~0.5% (average of two trades per day)

0.5% spread  0.6% 0.3% 0.0% —0.4% 1.0%  0.8% 1.0% 0.3% 0.5% 2.3%
1.0% spread  02% —0.1% —-0.5% —0.9% 0.6%  0.6% 1.0% 0.6% 0.9% 2.2%
3.0% spread —09% —-09% —19% —-2.6% —-04% 13% 1.7% 2.0% 2.6% 2.8%
5.0% spread —18% —13% -3.1% -38% —-1.0% 2.1% 2.1% 32% 4.0% 3.8%
8.0% spread —2.7% —18% —4.6% —52% —1.6% 32% 2.7% 4.8% 5.5% 5.4%

D. Random spreads

0.5% Spread  0.7% 0.2% 0.9% 0.1% 0.7%  0.8% 0.8% 1.0% 0.5% 1.6%
1.0% Spread  0.4% 0.0% 0.7% 0.0% 04%  0.5% 0.9% 0.8% 0.6% 1.5%
3.0% Spread —0.3% 0.4% 0.1% —-0.2% 0.0%  0.6% 0.8% 0.6% 0.7% 1.9%
5.0% Spread —0.3% 0.7% —-03% —0.5% 04%  0.9% 1.1% 0.8% 0.9% 2.3%
8.0% Spread —0.3% 1.2% —-1.0% —1.1% 07%  12% 1.6% 1.5% 1.6% 3.1%

E. Rare trades, random spreads, and overnight price movements, all together

0.5% spread ~ 0.7% 0.4% 0.0% —0.4% 1.2%  0.9% 1.1% 0.4% 0.5% 2.6%
1.0% spread ~ 0.3% 0.1% —04% —-0.9% 09%  0.7% 1.1% 0.6% 0.9% 2.6%
3.0% spread —0.8% —0.6% —19% -25% —-0.1% 13% 1.7% 2.0% 2.6% 3.1%
5.0% spread —1.5% —0.8% —3.1% -38% —-04% 2.1% 2.3% 3.2% 4.0%  43%
8.0% spread —2.5% —1.1% —4.8%  -55% —0.6% 3.4% 3.1% 5.0% 5.8% 6.0%

Each simulation consists of 10,000 21-day months of stock prices, and each day consists of 390 minutes. For
each minute, the trajectory of a geometric Brownian motion with daily volatility of 3% and a constant relative
spread with the values mentioned in the table is simulated. The labels in the first row refer to the estimators from
the following models: ours (CHL), Corwin and Schultz’s (HL; 2012), and Roll’s (Roll; 1984). 2-day and month
refer to the two-day corrected and monthly corrected versions, in which two-day or monthly negative estimates
are set to zero. We run the simulations in five separate scenarios. Panel A shows the results in the near-ideal
situation. Panel B shows the results when trades in each minute are observable with only a 10% chance. Panel
C shows the results when on average only two trades are observed per day. That is, trades in each minute are
observable with around 0.5% chance. For both monthly and two-day corrected estimates, every two-day input
that included a day with no trade or only one trade is discarded. Panel D shows the results when the spreads of
each day are uniformly distributed between zero and twice the nominal average value. Panel E encompasses the
“imperfections” in scenarios C, D, and adding an “overnight” price change with 50% of the standard deviation
of the daily price change. The overnight adjustment procedure for HL estimates is as the same as that used in
Corwin and Schultz (2012).

2.1 Less-frequently observed trades
Using a similar setting, we now consider a certain chance to observe each of
the one-minute trades, which can introduce a downward bias in estimating the

variance using the range (Garman and Klasd[1980; [Beckerd[1983). We already

confirmed its effect on volatility estimates in the previous section. Here, we
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aim to assess how the environment of infrequent trades affects bid-ask spread
estimates. As the downward bias is larger for the cases with less-frequently
observed trades, we design two separate settings. In panel B of Table Pl each
per-minute trade has a 10% chance of being observed, allowing an average of
39 trades per day. In panel C, each trade only has a chance of 2/390~0.5%
of being observed, allowing an average of two trades per day. This implies
that sometimes there are no transactions or only one trade per day meaning
identical high and low prices, and zero range. To avoid these cases, we discard
any two-day period that includes a nontrading day or a day with zero price
range, and calculate the spreads for the rest of the two-day periods in the
sample.

Three clear results emerge from this analysis. First, under the most
challenging circumstances in panel C, HL estimates are always more severely
downward biased compared to the CHL estimates. Second, comparing panels
A and B, it is clear that even a small reduction of number of trades per
day leads to a significant change in levels for the HL estimates, but not
for CHL estimates. Finally, in both settings of moderate and low number
of observed trades per day, CHL estimates tend to have lower estimation
errors when the effective spreads are large, which represent the less liquid
stocks.

To visualize the estimates’ sensitivity to the number of trades per day, we
perform several simulations allowing different number of observed trades per
day, with averages between 390 and 2 trades (as in the Table[). Figure Blshows
the CHL and HL two-day corrected estimates for these simulations in which the
bid-ask spread is set to be 1%. Each one-minute trade is observed with a certain
chance, which is set in a way that allows the average number of trades per day
being the values shown in the horizontal axis. The figure illustrates two main
findings: First, the CHL estimates are only marginally sensitive to the number
of observed trades per day, and only for the very low number of trades per day,
say below five trades per day. The opposite applies for HL estimates. From 5 to
390 trades per day, the HL estimates range from 74 to 175 bps (instead of the
100-bps “true” proportional spread), whereas the CHL estimates remain in a
narrow range from 127 to 132 bps. The steepness of the HL curve in the figure
illustrates the high sensitivity of the HL estimates to the number of trades per
day, especially below 100 trades per day. Perhaps a more important concern
is the direction of this sensitivity, which entails that the HL estimates indicate
a considerably narrower spread when fewer transactions take place, contrary
to common wisdom that the occurrence of fewer trades indicates more illiquid
stocks or markets.

To have a better sense of the actual number of trades per day, we look into the
Daily TAQ consolidated data set between October 2003 and December 2015
and count how many regular trades for the U.S. common stocks are recorded
between 9:30 a.m. to 4:00 p.m. EST. We refer to the landmark of 100 trades
represented by the dotted line in Figure B We find out that not only 25% of
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Figure 3

Sensitivity of bid-ask spread estimates to the number of daily trades

This figure shows the estimates from our model (CHL) and the one proposed by Corwin and Schultz (HL; 2012)
for a simulated price process. For every expected number of trades between 2 and 390, specified in the horizontal
axis, we simulate 10,000 months of 21-day price evolution, in which the unobservable efficient price has a daily
volatility of 3%, and one trade in every 390 minuts. Each of 390 trades are equally likely above (below) the
efficient price process by half-spread, and are observed with a certain chance, allowing average number of trades
specified in the horizontal axis. The simulations are performed using a constant spread of 1%.

stock-days in our sample include less than 100 trades, but also theses stock-
days belong to 77% of stocks in the sample. These numbers suggest that the
HL estimates’ sensitivity to the daily number of trades can be a broader issue
that goes way beyond a limited number of illiquid stocks.

2.2 Random spreads

The settings in panel D of Table[Plare the same as those used in panel A, except
that the spreads are no longer constant. By considering various spread sizes
(a% spreads), the spreads for each day are randomly drawn from a uniform
distribution with the range of (0,2a). We find two interesting results: First,
comparing panels A and D of Table Pl we see that the biases of CHL two-day
corrected estimates change the least amongst the other estimates, which means
that they are the least sensitive to the release of the assumption of constant
spreads. At the same time HL estimates tend to considerably decrease by making
the spreads random, allowing a —1% bias for the 8% average spreads. Second,
in most of the cases of panel D, the CHL two-day corrected estimates show
lower estimation errors compared to the HL ones.
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2.3 All imperfections together

In panel E of Table [2l we report the simulation results in which we include
different imperfections at the same time, namely observing average of two
trades per day, random spreads as specified before, and an “overnight” price
change corresponding to a half standard deviation of daily price returns to panel
A. The overnight characterization represents more general nontrading periods,
such as weekends, holidays, and overnight closings|'4 Two clear results emerge.
First, CHL estimates are less biased and more accurate for medium to large
spread values. Second, although the CHL monthly corrected estimates tend
to show lower bias than the CHL two-day corrected estimates, the two-day
corrected estimates are more accurate in terms of estimation errors for four out
of the five spread levels. HL two-day corrected estimates are also more accurate
than the HL monthly estimates, confirming|Corwin and Schulta (2012) results.
For this reason, we analyze the two-day corrected CHL estimates in the next
sections.

3. A Comparison of Spread Estimates from Daily Data Using the TAQ

Benchmark

We now turn to the analysis and comparison of the main estimation methods
of transaction costs specified in the literature, using the TAQ effective spreads
as the benchmark. We conduct the main analysis using Daily TAQ data, as
recommended by [Holden and Jacobserd (2014), between October 2003 and
December 2015, and follow up with a robustness check using Monthly TAQ
benchmark between January 1993 and September 2003 at the end of the section.
Using CRSP daily data, we estimate the effective spreads for common stocks
listed in the main three stock markets in the United States, namely, NYSE,
AMEX, and NASDAQ. In addition to our estimator (CHL), we estimate the
spreads originating from the following estimators: Roll @ , Gibbs
e ot i B B ) o G
R00d), HL 2012, and FHT (Fong. Holden. and Trzcinkd
). We also include CRSP average end-of-day spreads using a more recent
sample of 1993 onwards, in which end-of-day quote data are available. In the
following analysis, we use the two-day corrected version for our estimator and
for the HL measure, as recommended by [Corwin and Schultd (2012).

To calculate our CHL measure, we do the following: (1) we keep the previous
daily high, low, and close prices on those days when a stock does not trade, or
has a zero price range; (2) we use the two-day corrected version; that is, we set
negative two-day estimates of squared spreads to zero and then take the square

We perform additional numerical simulations reported in the Internet Appendix. These include overnight price
movements, and the relaxation of the assumption of equal likelihood of buyer-initiated and seller-initiated trades.
The trade direction imbalance highly affects the Roll estimates but the effect on CHL and HL estimates is marginal.
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roots and average over the month; and (3) we discard estimates for months in
which there are less than 12 applicable days*

To calculate the HL estimates, we exactly followlCorwin and Schult4 dZQlj).
More specifically, (1) we keep the previous daily high and low prices on those
days when a stock does not trade, or has a zero price range, and, for the days
with zero range, we adjust the high and low prices of previous day in the ad-hoc
way explained in their paper. (2) we perform the ad-hoc overnight adjustment
as explained in their paper; (3) we use the two-day corrected version; that is,
we set negative two-day estimates to zero; and (4) we discard stock-months
with less than 12 two-day estimates. We then calculate the other measures and
merge all the estimations. We finally discard stock-months in which (1) any of
the estimates produce a missing value, (2) a stock split or enormous distribution
occurred, (3) a change of the primary exchange occurred, or (4) a stock has a
time-series of less than six monthly estimates 13119

We construct the main high-frequency benchmark for our analysis by
calculating the effective spread from Daily TAQ data. Equation (I2) defines
the proportional effective spread at time ¢. As recommended by Holden and
Jacobsen ), we use Daily TAQ data, with milliseconds time stamps,
instead of the Monthly TAQ data. In fact, the authors show that in fast,
competitive markets of today, the Daily TAQ granularity is more precise,
whereas the usage of Monthly TAQ data might lead to incorrect statistical
inferences.

2| P, — M, B, +A,
ESj=———, M;=——.
M, 2
The time span of the data set, covering 147 months of Daily TAQ data, starts
in October 2003 and ends in December 2015. To calculate the effective spread
from Daily TAQ data, we closely apply the procedure explained by Holden
and Jacobsen More precisely, we first clean up the National Best
Bid and Offer (NBBO) data set by removing any best bid (ask) in which the
bid-ask spread is above five dollars and the bid (ask) is more than 2.5 dollars
above (below) the previous midpoint. We also remove any quotes from the

12)

An applicable day is defined as one with a closing price, high price, low price, price range, and volume above
zero. Inclusion or exclusion of the volume criterion does not visually change any outcomes. It is also possible
and accurate to replace missing 7,1 values, for the two-day estimates in which no trade occurs on day ¢ +1, with
readily available mid-quotes. However, to have a fair comparison with other estimates, we refrain from using
midquotes in our estimates. In favor of the [Corwin and Schulid m) estimates, we keep using the midquotes
for their nontrading days and overnight price adjustments.

As we merge the estimates in the next step, this filter will be applied to other estimates as well. Therefore, all the
estimates will have similar quality in terms of the selected months-stocks.

We discard stock-months in which the cumulative price adjustment factor (cfacpr) changes more than 20%.

For example, the Gibbs estimator’s code returns errors for the few stock-months in which the price remains
constant for most of the days in the month, because the initial trade directions used in the simulations are
calculated as sign of daily returns.

To calculate the effective spreads using Daily TAQ data, we use the same SAS codes kindly provided by Craig
Holden on his Web site. We add additional criteria to keep the trades/quotes records with no symbol suffixes.
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Table 3
Summary statistics for different estimators

N Mean Median SD o(ES; ;) % <0
Effective spread 579,872 0.82% 0.27% 1.41% 1.000 0.00
CHL - Two-day 579,872 1.39% 1.02% 1.30% 0.745 0.00
CHL - Monthly 579,872 1.24% 0.74% 1.85% 0.680 33.96
HL - Two-day 579,872 1.21% 0.93% 1.03% 0.660 0.00
HL - Monthly 579,872 0.58% 0.31% 0.87% 0.625 24.25
Roll 579,872 1.50% 0.72% 2.56% 0.454 42.81
Gibbs 579,872 2.13% 1.47% 2.96% 0.397 0.00
EffTick 579,872 2.03% 0.64% 4.81% 0.419 27.44
EffTick — Alt. incr. 579,872 0.25% 0.07% 0.72% 0.514 0.00
FHT 579,872 0.26% 0.00% 0.69% 0.436 61.61
CRSP_S 579,872 0.82% 0.21% 1.61% 0.957 0.30

This table provides the main summary statistics for the pooled sample of the main estimators considered in
this paper. The column labeled N refers to the number of stock-months of estimates in the sample. The column
labeled p(.,ES; ;) refers to the correlation of different estimates with the TAQ effective spread benchmark.
The row labels refer to the TAQ effective spread benchmark (effective spread), our estimator (CHL), and the
estimators proposed by Corwin and Schultz (HL; 2012), Roll (Roll; 1984), Hasbrouck (Gibbs; 2009), Holden
(EftTick; 2009), and Fong, Holden, and Trzcinka (FHT; 2017). For the sake of completeness, we include the
CRSP end-of-day bid-ask spreads (CRSP_S) as motivated by[Chung and Zhand Z014). For calculating the CHL
estimates, we replace the missing high, low, and close price with the previous days’ values. We then discard
monthly estimates for the months with fewer than 12 trading days (that is, days with positive high, low, and
close price, as well as positive volume). The HL estimates are exactly calculated like in Corwin and Schultz
(2012); that is, (1) missing daily high and low prices are replaced with those of previous days, (2) overnight
adjustments are applied, and (3) monthly estimates with fewer than 12 two-day estimates are discarded. We
merge the results of different estimators and discard stock-months in which any of the estimates are missing. We
compute two versions of the HL (CHL) estimator, that is, the two-day corrected and monthly corrected versions
labeled two-day and monthly. In the two-day corrected version for HL (CHL), we set each negative two-day
spread (squared spread) to zero, and then the spreads (square roots of estimated squared spreads) are averaged
within a month. The monthly corrected HL estimates are calculated by averaging all the two-day spreads within
the month and then setting negative monthly averages to zero. The monthly CHL estimates are calculated like
those in Equation (10). The Roll estimates are calculated by setting positive monthly autocovariance estimates
to zero. The zeros reported for EffTick estimates reflect the months in which none of the prices are divisible by
the base-eight denomination increments, and presumably reflect smaller spreads. We consider a second variant
of EffTick measure (EffTick — Alt. incr.) by using the tick sizes of 1¢, 5¢, 10¢, 25¢, 50¢, or $1.00 as our sample
time span lies after the decimalization of stock markets.

consolidated quotes (CQ) file if the spread is more than five dollars. Second,
we merge the CQ and NBBO (cleaned) data to construct a complete official
NBBO data set. Third, we match trades with constructed official NBBO quotes
one millisecond before them In addition to the above-mentioned filters, we
discard all trades outside the market opening hours and with proportional
effective spreads above 40%. We compute the dollar-weighted average for
intraday proportional effective spreads to obtain the average daily spreads.
Then we take the average of daily spreads to construct the monthly benchmark.

The final step in the data preparation is to link the CRSP and Daily TAQ
using CUSIPs in the TAQ master files[™ This matching strategy allows us to
cover 98% of stock-months estimates from the CRSP. We provide the summary
statistics for the estimates in Table[3l As we compare the pooled data in Table[3]

Starting from July 27 2015, Daily TAQ timestamps are provided in microseconds, and, we match trades with the
official NBBO quotes one microsecond before them.

We use the monthly master files, which cover a longer portion of our sample. For 2015, however, we rely on
daily master files because monthly master files are not available after 2014.
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A Simple Estimation of Bid-Ask Spreads from Daily Close, High, and Low Prices

both the mean and standard deviation convey valuable information about the
explanatory power of the estimators. The mean provides a simple measure for
the level or size of the estimated transaction costs, and the standard deviation
gives information about the time-series and cross-sectional dispersion of spread
estimates around the mean. We also include overall correlations of estimates
with the TAQ effective spreads benchmark, confirming the better association
of two-day corrected estimates over monthly corrected estimates, with the
benchmark. Running a pooled regression of TAQ effective spreads on the CHL
two-day corrected estimates, ES; ;=a+b CHL; ,+¢;, we obtain the values of
—0.29%, 0.8053, and 56% respectively for a, b and R2, whereas the same
regression on the CHL monthly corrected estimates delivers the values of
0.18%, 0.5169, and 46% respectively for a, b and RZ. Although the sample
means shown in Table [ suggest that CHL monthly corrected estimates are
slightly less biased, the two-day corrected estimates are better associated with
the TAQ benchmark by showing a higher R? and a slope coefficient closer
to one. Therefore, following [Corwin and Schultd (2012)), we use the two-day
corrected estimates for our analysis in the rest of the paper.

Calculating EffTick estimates, we observe some stock-months in which none
of the prices are divisible by the base-eight denomination increments. Since
this is likely because their spread is smaller than the base-eight denomination
increments, we set the estimates for these stock-months to zero. To address this
issue in a more comprehensive way, we also consider a second variant of the
EffTick measure using the tick sizes of 1¢, 5¢, 10¢, 25¢, 50¢, or $1.00 as our
sample time span lies after the decimalization of stock markets. In Table[3] this
second variant is labeled EffTick — Alt. Incr. Clearly, this variant underestimates
both the mean and the variations of the effective spread. This is why we consider
the original base-eight denomination variant in the next sections.

The summary statistics in Table [ suggest that the end-of day quote spread
is generally the best low-frequency measure in terms of correlation with the
TAQ effective spread benchmark. The CHL is the best measure not relying on
quotes data followed by the HL estimator.

To provide empirical support to the numerical analysis of the previous
section, we perform two subsampling attempts with respect to the results of
Table @] First, to show that the bias sensitivity in bid-ask spread estimation to
the average number of trades per day, we sort the stock-months of the estimates
into 10 decile groups based on monthly averages of the number of trades per
day. We then measure the average bias of CHL (HL) estimates as the average of
the difference between CHL (HL) estimates and the TAQ effective spreads, for
every decile. Figure@lshows the average biases for the decile groups. In line with
the simulation patterns in Figure[3] CHL (HL) estimates are less (more) sensitive
to the number of trades per day. HL estimates show an average bias ranging
from — 146 to 78 bps, whereas the average bias of CHL estimate range from —80
to 84 bps. Compared with HL, the negative bias of CHL is substantially smaller
for the less liquid deciles, confirming the numerical simulation results. In the
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Figure 4

Estimation bias and average daily number of trades

The labels in the legend refer to the TAQ effective spreads (ES), estimators from our method (CHL), and Corwin
and Schultz’s estimates (HL; 2012). We group 579,872 stock-months into ten deciles sorted by the average
number of daily trades in the month. For every decile, we measure the difference between average CHL (HL)
estimates with the average ES estimates.

second subsampling attempt, we group stocks into five quintiles sorting them
by their average number of daily trades during the sample period. TableElshows
the correlation coefficients between different estimates and the TAQ effective
spread benchmark for each quintile and for the entire sample. As expected, in
the absence of quote data the CHL estimates have the highest correlation with
the TAQ benchmark for the entire sample, as well as for the first three quintiles
representing stocks less frequently traded P9

As a decomposition of the standard deviations reported in Table 3 we also
compute the cross-sectional standard deviation of the estimates on a monthly
basis to assess how well the estimators’ dispersion follows that of the TAQ
benchmark across time. Figure [§] shows the results for some estimators. It is
clearly evident that the cross-sectional dispersions from our estimator most
closely track that of the benchmark.

We now turn to identifying which criteria should be used to assess the
measurement performance of the effective spread estimators. As stressed by

We also observe that CHL has the highest correlation with the Amihud price impact measure, which reflects
another dimension of market liquidity. This holds for the entire sample, and for each of the five quintiles, sorted
by average number of daily trades. Moreover, the correlations are higher for less-frequently traded quintiles. The
Internet Appendix provides the results.
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Table 4
Correlations for quintiles based on the average number of trades

N CHL HL Roll Gibbs EffTick FHT CRSP_S
Full sample 579,872 0.745 0.660 0.454 0.397 0.419 0.436 0.957

ANTD quintile 1 77,978 0.820 0.762 0.572 0.685 0.371 0.367 0.936
ANTD quintile 2 103,920 0.785 0.721 0.459 0.459 0.406 0.450 0.945
ANTD quintile 3 110,083 0.701 0.677 0.357 0.334 0.444 0.444 0.943
ANTD quintile 4 130,725 0.616 0.627 0.282 0.251 0.485 0.430 0.931
ANTD quintile 5 157,166 0.529 0.557 0.246 0.240 0.519 0.463 0.912

The table shows the correlation coefficients between different monthly estimates and the TAQ effective spread
benchmark. We group the stocks into five quintiles sorting them by their average number of trades per day during
the sample period. The daily number of trades is counted using TAQ consolidated trades data for trades that
occur between 9:30 and 16:00 and have a positive price and volume. The first four quintiles are constructed of
1,392 stocks, and the fifth is constructed of 1,393 stocks. The labels in the first row refer to our estimator (CHL)
and the estimators proposed by Corwin and Schultz (HL; 2012), Roll (Roll; 1984), Hasbrouck (Gibbs; 2009),
Holden (EffTick; 2009), Fong, Holden, and Trzcinka (FHT; 2017), and Chung and Zhang (CRSP_S; 2014). N
refers to the number of stock-months of estimates for the entire sample, as well as for each quintile. To compare
estimators in the absence of quote data, we exclude the CRSP_S, and an asterisk would indicate numbers not
significantly different from the estimator with the highest correlation marked in bold, using Fisher’s z-test to
compare the correlation coefficients.

7 T T T T T T T T T T T
—— ES (TAQ)
———-CHL
6 ——=HL :
-~ Roll
5 — -~
4} &

Cross-Sectional Dispersion (Percent)

0
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 5

Cross-sectional dispersion of monthly spread estimates

This figure shows the standard deviations of spread estimates across stocks for each month from October 2003 to
December 2015. In addition to the effective spread based on the Daily TAQ data, the labels refer to our estimator
(CHL) and the estimators proposed by Corwin and Schultz (HL; 2012) and Roll (Roll; 1984).

[Goyenko, Holden, and Trzcinkd @2009), the choice of the best estimator,

depending on the specific application, should be based on different criteria.
For the sake of completeness, our analysis encompasses the three main criteria
used in the literature: cross-sectional correlation, time-series correlation, and
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Figure 6

Cross-sectional correlation of monthly spread estimates

This figure shows the cross-sectional correlation between model-implied percentage spread estimates and
effective spreads from the Daily TAQ data for each month from October 2003 to December 2015. The labels
refer to our estimator (CHL) and the estimators proposed by Corwin and Schultz (HL; 2012), Roll (Roll; 1984),
and Hasbrouck (Gibbs; 2009).

prediction errors. In addition, we test whether the average partial correlations
of our estimates with the effective spread benchmark, controlling for other
estimates, are positive. Doing so, we can test whether our estimates provide
additional explanatory power that cannot be explained by combination of other
estimates. In the following part, we analyze the accuracy of the estimators
applying the explained set of criteria that should support a complete assessment
and cover a wide range of applications.

3.1 Cross-sectional correlations

For each month, we calculate the correlation of the estimates with TAQ effective
spreads that serve as the benchmark. Figure |6l shows the development across
time for the cross-sectional correlations of the spread benchmark with the CHL,
HL, Roll, and Gibbs estimators. It is clearly discernable that our CHL estimator
provides the highest cross-sectional correlation for each month. The results
in panel A of Table [ confirm that end-of-day quote data provide the most
accurate spread estimates and, in the absence of quote data, the CHL estimates
have the highest time-series average cross-sectional correlation over the entire
sample and across all subperiods. We apply the approach proposed by Goyenko,
Holden, and Trzcinka (2009) to perform the statistical inferences to assess
whether the average correlations are significantly different. More specifically,
to compare the average correlation of the two estimators, we compute the
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Table 5
Average cross-sectional correlations with the TAQ benchmark

N CHL HL Roll Gibbs EffTick FHT CRSP_S
A. Average cross-sectional correlations with effective spreads for monthly estimates
Full period 3,944.7 0.738 0.642 0.424 0.369 0.409 0.426 0.959
2003-2007 4,380.5 0.762 0.664 0.435 0.378 0.458 0.522 0.963
2008-2011 3,870.8 0.736 0.635 0.428 0.442 0.391 0.401 0.959
2012-2015 3,555.5 0.715 0.625 0.409 0.288 0.374 0.349 0.956
B. Average cross-sectional correlations with changes in effective spreads for monthly estimates
Full period 3,895.7 0.298 0.284 0.114 0.093 0.026 0.037 0.666
2003-2007 4,266.2 0.328 0.306 0.128 0.093 0.029 0.066 0.659
2008-2011 3,765.9 0.304 0.292 0.121 0.122 0.028 0.036 0.643
2012-2015 3,461.3 0.245 0.239* 0.086 0.057 0.018 0.002 0.684
C. Analysis across different markets
NYSE 1,337.1 0.495%* 0.481%* 0.213 0.239 0.500 0.405 0.919
AMEX 297.1 0.735 0.644 0.452 0.522 0.318 0.435 0.947
NASDAQ 2,310.5 0.710 0.588 0.404 0.334 0.368 0.348 0.955
D. Analysis across market capitalization
Size quintile 1 595.4 0.690 0.564 0.380 0.377 0.239 0.304 0.942
Size quintile 2 678.3 0.568 0.388 0.339 0.277 0.216 0.200 0.935
Size quintile 3 755.8 0.457 0.331 0.212 0.155 0.251 0.237 0914
Size quintile 4 860.4 0.423 0.398 0.165 0.145 0.349 0.282 0.887
Size quintile 5 1,055.0 0.439 0.494 0.153 0.178 0.456%* 0.340 0.856
E. Analysis across effective spread size
ES quintile 1 1,035.0 0.385 0.458 0.129 0.175 0.351 0.159 0.651
ES quintile 2 841.4 0.375 0.419 0.141 0.159 0.339 0.220 0.752
ES quintile 3 753.2 0.400 0.388* 0.148 0.147 0.331 0.280 0.843
ES quintile 4 715.9 0.497 0.390 0.246 0.204 0.248 0.251 0.897
ES quintile 5 599.1 0.693 0.579 0.415 0.465 0.225 0.275 0.918

This table shows the average cross-sectional correlations between estimates of transaction costs and the TAQ
benchmark for each month. The monthly correlations are averaged over the specified sample periods. The labels
in the first row refer to our estimator (CHL) and the estimators proposed by Corwin and Schultz (HL; 2012), Roll
(Roll; 1984), Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), Fong, Holden, and Trzcinka (FHT; 2017), and
Chung and Zhang (CRPS_S; 2014). N is the average number of stocks per month. To compare estimators in the
absence of quote data, we exclude the CRSP_S and an asterisk indicates numbers not significantly different from
the estimator with the highest correlation marked in bold in every row. We test our hypotheses on the time series of
pairwise difference in correlations for two estimators and assess whether the mean is significantly different from
zero. We adjust for any potential time-series autocorrelation by using Newey-West (1987) standard errors with
four lags autocorrelation. The size quintiles are sorted by increasing market capitalization at the last observed
period for each individual stock. The spread quintiles are sorted by increasing average effective spreads during
the whole sample period.

pairwise difference of their cross-sectional correlations with the benchmark at
each month. We then test if the average value for this time series is significantl
different from zero, while adjusting for the autocorrelations usingﬁc;m:Eﬁ
(@) standard errors with four lags. To compare estimators not relying on
quote data, we exclude the CRSP spreads and an asterisk indicates numbers not
significantly different from the estimator with the highest correlation marked in
bold in every row. The findings in Table Blindicate that the time-series average
cross-sectional correlation coefficients of our estimator are statistically higher
than other measures that are not relying on quote data.

We substantiate the previous analysis by examining the cross-sectional
correlations in first differences, that is, taking the changes in monthly
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(estimated) spreads. Panel B of Table[Qlshows the time-series average of cross-
sectional correlations for the changes. As expected, average correlations based
on changes in spreads are lower than those based on spread levels. However,
as for the correlation in levels, the average correlation in first differences of our
estimator with the benchmark is the highest and statistically different from the
other estimates.

Next, we perform a subsampling analysis of the cross-sectional correlation
for levels of effective spreads across three dimensions: market venues, market
capitalization, and effective spread size. First, we identify the three primary
exchanges in which the stocks are listed using the CRSP exchange codes, that
is, NYSE, AMEX, and NASDAQ. Second, we examine whether our results
from the cross-sectional analysis depend on firm size. To do this, we decompose
the entire sample into five quintiles by the firm’s market capitalization value for
each individual stock at the last observed period. Third, we consider whether
our findings are sensitive to the magnitude of transaction costs. As before, we
form five quintiles according to the average effective spread size over the entire
sample period. The results of these three subsampling analyses are reported in
panels C, D, and E of Table[3] respectively.

Three main findings arise: First, our estimator provides the best results for
stocks listed on the AMEX and NASDAQ. Though, when only NYSE stocks
are considered, it shares the highest cross-sectional correlation with the HL
and EffTick measures. This is in line with the previous simulation results
highlighting the relative accuracy of CHL estimates for less-liquid stocks.
Second, our estimator significantly outperforms the other measures across all
market capitalizations, except for the fifth quintile (Quintile 5), which includes
the largest capitalization. Third, our estimator performs significantly better than
the other estimators for stocks traded with medium and large transaction costs
(from Quintiles 3 to 5 sorted by smallest to largest effective spreads). In sum,
our estimator provides the overall highest cross-sectional correlations with the
effective spread benchmark in the absence of quote data. Its estimates are
particularly accurate for stocks with lower liquidity, proxied by small-medium
market capitalizations and effective spreads of medium and large magnitude.

3.2 Time-series correlations
As the second criterion, we analyze stock-by-stock time-series correlations
between the different spread estimates and the TAQ effective spread. We first
calculate the time-series correlation between bid-ask spread estimates and the
effective spread benchmark for each individual stock and each individual
estimator. Then we compute the average of these time-series correlations
across all sample stocks for each individual estimator. To compare the average
correlations originating from different estimates, we use paired 7-test.

Table [@ shows the main results. Similar to Table Bl Table [l panel A (B),
shows the average time-series correlations for the levels (changes) of effective
spreads and stocks are sorted by exchanges, market capitalization, and spread
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Table 6
Average time-series correlations for spread estimates of individual stocks compared to the TAQ
benchmark

N CHL HL Roll Gibbs EffTick FHT CRSP_S
A. Average time-series correlations with effective spreads: Monthly estimates
Full period 7,210 0.518 0.510 0.242 0.330 0.310 0.181 0.739
2003-2007 5,652 0.393 0.377 0.140 0.247 0.252 0.124 0.614
2008-2011 4,783 0.611 0.604 0.317 0.436 0.267 0.150 0.757
2012-2015 4,406 0.314 0.325 0.106 0.175 0.148 0.072 0.614

B. Average time-series correlations with changes in effective spreads: Monthly estimates

Full period 7,124 0.287* 0.290 0.115 0.166 0.050 0.024 0.452
2003-2007 5,574 0.256* 0.258 0.096 0.167 0.040 0.012 0.386
2008-2011 4,727 0.340 0.351 0.146 0.211 0.064 0.034 0.470
2012-2015 4,331 0.190 0.196 0.066 0.102 0.016 0.003 0.388
C. Analysis across different markets

NYSE 2,174 0.430 0.454 0.181 0.279 0.305 0.133 0.622
AMEX 831 0.557 0.505 0.261 0.408 0.291 0.264 0.822
NASDAQ 4,587 0.540 0.525 0.258 0.333 0.305 0.183 0.770
ID. Analysis across market capitalization

Size quintile 1 1,442 0.695 0.650 0.381 0.514 0.332 0.334 0.900
Size quintile 2 1,442 0.571 0.522 0.291 0.391 0.310 0.190 0.836
Size quintile 3 1,442 0.478 0.469 0.207 0.282 0.305 0.153 0.752
Size quintile 4 1,442 0.427 0.453 0.163 0.224 0.302 0.134 0.650
Size quintile 5 1,442 0.417 0.456 0.167 0.241 0.300 0.092 0.555
E. Analysis across effective spread size

ES quintile 1 1,442 0.409 0.444 0.160 0.242 0.269 0.066 0.502
ES quintile 2 1,442 0.420 0.468 0.160 0.228 0.308 0.129 0.654
ES quintile 3 1,442 0.460 0.471 0.190 0.262 0.337 0.200 0.786
ES quintile 4 1,442 0.588 0.532 0.282 0.361 0.328 0.243 0.856
ES quintile 5 1,442 0.711 0.634 0.417 0.559 0.309 0.265 0.895

The labels in the first row refer to our estimator (CHL) and the estimators proposed by Corwin and Schultz (HL;
2012), Roll (Roll; 1984), Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), Fong, Holden, and Trzcinka (FHT;
2017), and Chung and Zhang (CRSP_S; 2014). N is the number of stocks in the subsamples with, at least, six
months of estimates. The averages are computed across stocks. To compare estimators in the absence of quote
data, we exclude the CRSP_S and an asterisk indicates numbers not significantly different from the estimator
with the highest correlation marked in bold in every row. We use a paired t-test for the statistical inferences. The
size quintiles are sorted by increasing market capitalization at the last observed period for each individual stock.
The spread quintiles are sorted by increasing average effective spreads during the whole sample period.

size in panels C, D, and E, respectively. End-of-day quoted spreads show the
highest average time-series correlations. In the absence of end-of-day quotes,
our model provides the highest average time-series correlation for monthly
spreads of the overall sample and for two out of three subperiods. The only
exception is the 2012-2015 subperiod, in which the HL measure has a 0.01
higher correlation. For changes of spreads, the HL method generates the highest
time-series correlation. Our estimator provides the second-highest time-series
correlations, except for the 2008—2011 subperiod, which, in statistical terms, is
not significantly lower than the HL one. The remaining parts of Table[@]suggest
that (1) our estimators outperform the others for stocks listed on the AMEX and
NASDAQ, whereas the HL has the highest time-series correlation for NYSE
stocks; (2) our measure (the HL measure) performs best for small- and medium-
sized (large-sized) firms; and (3) our measure (the HL measure) performs best
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Table 7
Prediction errors

N CHL HL Roll Gibbs EffTick FHT CRSP_S

A. RMSEs, breakdown for different periods, and across different markets

Full period 3,944.7 0.0104 0.0107 0.0221 0.0289 0.0441 0.0130 0.0043
2003-2007 4,380.5 0.0084 0.0086 0.0182 0.0250 0.0368 0.0101 0.0030
2008-2011 3,870.8 0.0141 0.0141* 0.0291 0.0317 0.0551 0.0175 0.0062
2012-2015 3,555.5 0.0089 0.0094 0.0192 0.0302 0.0408 0.0117 0.0037
NYSE 1,337.1 0.0089 0.0077 0.0162 0.0231 0.0170 0.0030 0.0012
AMEX 297.1 0.0115 0.0124 0.0286 0.0253 0.0994 0.0190 0.0062
NASDAQ 2,310.5 0.0111 0.0118 0.0238 0.0316 0.0436 0.0154 0.0050

B. RMSEs, excluding stock-months with zero estimates

Full period 648.4 0.0115 0.0127 0.0261 0.0201 0.0771 0.0168 0.0059
2003-2007 819.2 0.0089 0.0096 0.0214 0.0173 0.0623 0.0124 0.0039

2008-2011 617.8 0.0156 0.0173 0.0347 0.0245 0.0965 0.0227 0.0089
2012-2015 497.5 0.0101 0.0114 0.0226 0.0186 0.0733 0.0155 0.0050
NYSE 125.3 0.0101 0.0085 0.0224 0.0185 0.0345 0.0042 0.0017
AMEX 80.8 0.0111 0.0123 0.0288 0.0204 0.1421 0.0177 0.0064

NASDAQ 4424 0.0119 0.0137 0.0262 0.0202 0.0681 0.0185 0.0064

‘We measure the accuracy of different monthly estimates by computing their root-mean-squared errors (RMSEs),
as well as mean absolute errors (MAEs) with respect to the TAQ benchmark. Prediction errors are calculated
every month and then averaged through the months in the sample. N is the average number of stocks per month.
The labels refer to our estimator (CHL) and the estimators proposed by Corwin and Schultz (HL; 2012), Roll
(Roll; 1984), Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), Fong, Holden, and Trzcinka (FHT; 2017), and
Chung and Zhang (CRSP_S; 2014). To compare estimators in the absence of quote data, we exclude the CRSP_S
and an asterisk indicates numbers not significantly different from the estimator with the lowest average prediction
error marked in bold in every row. We test our hypotheses on the time series of pairwise difference in prediction
errors for two estimators and assess whether the mean is significantly different from zero. We adjust for any
potential time-series autocorrelation by using Newey-West (1987) standard errors with four lags autocorrelation

when stocks are traded with large (small) effective spreads The time-series
correlation analysis confirms the previous findings that our estimator generally
provides the most accurate estimates of effective costs, especially for less liquid
stocks.

3.3 Prediction errors
A straightforward way to assess the accuracy of the bid-ask spread estimation
is to observe how far an estimate, that is, the model prediction of the effective
spread, is from the TAQ effective spread benchmark. We measure this by
RMSEs of monthly estimates with respect to the TAQ effective benchmark
at the same period{] In line withhg;&nkg_Hgﬂ_dgn_and_T:zgmkd (IZM)Q), we
calculate the prediction errors every month and then average them through the
time.

We report the results in two separate settings in Table[] and like in TablesEl[3]
and[@ we focus on the comparison of the estimators not relying on quote data.

As an additional test, which we report in the Internet Appendix, we construct equally weighted portfolios of stocks
and then compare the correlation of the estimated portfolios’ spread to that of the high-frequency benchmark.
The estimated spreads of market-wide portfolio show a time-series correlation of 0.965 with the ones of the TAQ
benchmark.

‘We repeat this analysis using mean-absolute errors (MAEs) and, confirming the results of this section, find out that
for the entire sample CHL estimates have the lowest MAEs compared with other estimates. The Internet Appendix
provides the results.
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In panel A, we include the entire sample, including the zero estimates for
all measures to compare the overall accuracy of estimates. In panel B, we
exclude the stock-months in which Roll, EffTick, or FHT estimates are zero to
compare the accuracy nonzero estimates. In both settings, end-of-day quoted
spreads show lowest RMSEs. However, in absence of end-of-day quotes, our
estimator (CHL) provides the lowest RMSEs compared with other estimators
across the entire sample, as well as AMEX and NASDAQ listed stocks. The
difference between average RMSEs of our estimates and the other estimates
is also significant, using [Newey-Wes{ (1987) standard errors with four lags to
test whether the time-series of pairwise difference of RMSE:s is statistically
different from zero.

3.4 Partial correlations

Since our CHL estimates jointly use close, high, and low prices, which are
also partially used in other estimators discussed in the paper, it is worth testing
whether our estimates include any additional information in explaining the
bid-ask spreads beyond the combination of other estimates ] We measure this
additional explanatory power in terms of average partial correlations. More
specifically, by setting the partitioned regression framework of Equation (I3)),
we examine the ability of CHL to predict the effective spread benchmark,
whereas the predictive power of the other estimates is already taken into
account.

ESi’[:a'*'ﬂ ESTI"[‘*')/CHLI”['*'E[’[, (13)

ES;, represents the TAQ effective spread for stock i in month ¢, and EST;
is a vector of other estimates including HL and Roll. Using the Frisch-Waugh-
Lovell theorem, we first regress ES; ; and CHL; , on EST; and then calculate
the correlation between the orthogonal complements yielded from of above
regressions, that is, €ES; |EST; s and ecnr,,| Est;,- To calculate time-series
(cross-sectional) partial correlations, we perform the above regressions in the
time-series (cross-sectional) dimension for every stock (month) and average
the calculated partial correlations across stocks (months).

Table Bl shows the average partial correlations calculated, while controlling
for different set of estimates in the following order: we control for HL (third
column titled “CHL|HL”), we add Roll (fourth column titled “CHL|HL, Roll”),
and we move forward by adding other estimators to the set of controls
(adding Gibbs in the fifth column, EffTick in the sixth column, and FHT
in the last column). Panel A of Table [§] shows the average partial cross-
sectional correlations testing whether they are different from zero by using

We also consider comparing the correlation of CHL estimates and the effective spread benchmark, with the ones
from combination of other estimates. To do so, we combine other estimates both by taking their simple average
and using their first principal component. As reported in the Internet Appendix, our estimates show the highest
time-series and cross-sectional correlation with the effective spread benchmark.
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Table 8
Partial correlations
CHL | HL,
CHL | HL, Roll,
CHL | HL, Roll, Gibbs,
CHL | HL, Roll, Gibbs, EffTick,
N CHL | HL Roll Gibbs EffTick FHT
A. Average partial cross-sectional correlations with the TAQ benchmark
All stocks, levels 3,944.7 0.478 0.455 0.450 0.439 0.430
All stocks, changes 3,895.7 0.159 0.155 0.151 0.150 0.149
NYSE 1,337.1 0.188 0.202 0.190 0.166 0.159
AMEX 297.1 0.473 0.436 0.412 0.408 0.405
NASDAQ 2,310.5 0.496 0.469 0.465 0.456 0.450
ES quintile 1 1,035.0 0.042 0.067 0.056 0.048 0.045
ES quintile 2 841.4 0.078 0.095 0.089 0.074 0.070
ES quintile 3 753.2 0.159 0.175 0.176 0.164 0.157
ES quintile 4 715.9 0.338 0.325 0.330 0.326 0.320
ES quintile 5 599.1 0.472 0.429 0.402 0.402 0.401

B. Average partial time-series correlations for spread estimates of individual stocks compared to the
TAQ benchmark

All stocks, levels 5,964 0.219 0.229 0.199 0.186 0.183
All stocks, changes 5,896 0.132 0.137 0.120 0.119 0.119
NYSE 1,895 0.117 0.147 0.120 0.111 0.111
AMEX 591 0.325 0.308 0.260 0.250 0.245
NASDAQ 3,711 0.251 0.253 0.226 0.212 0.207
ES quintile 1 1,325 0.088 0.122 0.100 0.095 0.094
ES quintile 2 1,235 0.091 0.126 0.109 0.098 0.097
ES quintile 3 1,156 0.166 0.186 0.171 0.154 0.153
ES quintile 4 1,159 0.338 0.332 0.302 0.280 0.271
ES quintile 5 1,089 0.454 0.408 0.343 0.332 0.327

We calculate the partial correlation between the daily TAQ effective spread and our estimates (CHL) removing
the effects explained by other estimates, that is, P(GESl-’tlESTi‘, stHLl-.,ESTi’,)- EST; ; includes a constant,
Corwin and Schultz (HL; 2012), Roll (Roll; 1984), Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), and Fong,
Holden, and Trzcinka (FHT; 2017) estimates. The spread quintiles are sorted by increasing average effective
spreads during the whole sample period. In panel A, N refers to the average number of stocks per month, and,
in panel B, N refers to the number of stocks in the subsamples with at least 24 months of estimates. Panel A
shows the average partial cross-sectional correlations. The bold numbers are significantly different from zero
using a 5% two-tailed confidence interval. The statistical test for the average of cross-sectional correlations is
based on Newey-West (1987) standard errors with four lags autocorrelation. Panel B shows the average partial
time-series correlations, as the average of partial time-series correlations for individual stocks. The bold numbers
are significantly different from zero using a ¢-test for the average of time-series correlations. To avoid overfitting
in calculating the partial time-series correlations, we discard the stocks with fewer than 24 months of estimates.

[Newey-West (1987) standard errors with four lags in the time-series of monthly-
estimated cross-sectional correlations. All average cross-sectional correlations
are significantly different from zero and positive, indicating that CHL has
some additional explanatory power, not already included in any overidentified
models, in predicting the effective spread. For instance, the average partial
cross-sectional correlation of CHL and TAQ effective spreads after controlling
for HL, Roll, Gibbs, EffTick, and FHT is 0.430 for the entire sample and
0.159, 0.405, and 0.450 for NYSE, AMEX, and NASDAQ stocks, respectively.
Another interesting result is that the additional explanatory ability of CHL is
larger for less liquid stocks as indicated by the increasing partial correlations
from quintiles 1 to 5 in rows 8 to 12. All these findings remain consistent when
average partial time-series correlations are considered (panel B of Table[8).
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To show that the additional explanatory ability of CHL is related to illiquidity
rather than to volatility, we double sort the stocks by these two properties.
First, we construct illiquidity terciles by sorting the stocks by average effective
spreads across the entire sample. Then we construct volatility terciles within
every illiquidity tercile by sorting stocks according to their daily price volatility
across the entire sample. We then calculate average partial cross-sectional and
time-series correlations with the TAQ effective spread benchmark for the nine
groups controlling for the explanatory power of HL and Roll. Panel A (B) of
Figure [J] shows the average partial cross-sectional (time-series) correlations
for the nine groups. It delivers two main messages: First, correlations are
considerably higher for the illiquid terciles corroborating the previous findings.
Second, there is no discernable pattern in terms of volatility within the three
illiquidity terciles, suggesting that illiquidity rather than volatility explains the
additional explanatory power of CHL.

All in all, in the absence of end-of-day quotes our estimates generally show
the highest average time-series and cross-sectional correlations, as well as the
lowest RMSEs, with respect to the Daily TAQ benchmark. Moreover, the
estimates include additional information in explaining the TAQ benchmark
that cannot be explained by the other bid-ask spread estimates. As showed in
Table[] the results are confirmed when we repeat the analysis for the period of
January 1993 to September 2003 using the Monthly TAQ effective spreads
Over this sample period, our estimates have even higher (lower) average
cross-sectional correlations (estimation errors) than end-of-day quotes. The
subsampling across time shows that this mainly occurs in the two subsamples
before 2001 suggesting that end-of-day quote data are less accurate in the
predecimalization era of U.S. stock market 2

4. Other Applications

24

25

Well-performing estimators of transaction costs can be applied in a variety
of research areas. To illustrate their potential uses, we propose two simple
applications. The first example is a description of the historical spread estimates
for stocks listed on NYSE (AMEX) from 1926 (1962) to 2015. In the
second example, the spread estimates are applied to measure systematic risks
originating from liquidity issues.

See the Internet Appendix for more details on the construction of Monthly TAQ benchmark and additional
analysis.

Intuitively, when tick sizes are larger, measuring end-of-day spreads produces larger estimation variance, and,
consequently, larger estimation errors. For example, when the tick size is large enough that the spread size is
only two (one) ticks wide, observing either the end of day bids or asks one tick further than the intraday value
causes a 50% (100%) measurement error.
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Figure 7

Average partial correlations after controlling for HL and Roll

We split the stocks sample into three illiquidity terciles by sorting them with their average effective spread
during the sample period. Then we break down each illiquidity tercile into three volatility terciles using the
daily volatility of the stocks during the sample period. The partial correlations are the correlations between the
residuals of regressing TAQ effective spreads and our estimates (CHL) on Corwin and Schultz’s (HL; 2012) and
Roll’s (Roll; 1984) estimates.

4.1 Estimating historical spreads for U.S. stocks

By using the close, high, and low price data from CRSP and the methodology
explained above, we calculate the estimates of the bid-ask spreads based on our
model. Specifically, we use the price values from previous days for the days
with missing price values and construct the two-day corrected version of our
estimates. We finally discard stock-months with fewer than 12 trading days.
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Table 9
Comparison with the monthly TAQ benchmark, J: 'y 1993-September 2003

N CHL HL Roll Gibbs  EffTick FHT CRSP_S

A. Average cross-sectional correlations with the TAQ benchmark

All stocks, levels 5,009.2 0.861 0.833 0.605 0.713 0.637 0.644 0.846
All stocks, changes ~ 4,925.6 0.471 0.460 0.206 0.266 0.194 0.153 0.578

1993-1995 39224 0.812 0.808*  0.609 0.747 0.562 0.607 0.787
1996-2000 5,830.4 0.890 0.869 0.620 0.737 0.728 0.684 0.836
2001-2003 4,701.5 0.860 0.795 0.572 0.635 0.552 0.614 0.927
NYSE 1,578.4 0.810* 0.808*  0.453 0.629 0.812 0.755 0.856
AMEX 353.1 0.929 0.918 0.651 0.846 0.788 0.743 0.850
NASDAQ 4,925.6 0.471 0.460 0.206 0.266 0.194 0.153 0.578

B. Average time-series correlations for spread estimates of individual stocks

All stocks, levels 10,783 0.586 0.580 0.280 0.445 0.464 0.402 0.778
All stocks, changes 10,676 0.401 0.400*  0.155 0.285 0.221 0.116 0.586

1993-1995 6,137 0.496 0.504 0.229 0.379 0.527 0.243 0.634
1996-2000 9,130 0.558 0.575 0.252 0.415 0.590 0.350 0.777

2001-2003 5,805 0.568 0.539 0.211 0.446 0.273 0.249 0.761

NYSE 2,754 0.343 0.353 0.095 0.286 0.460 0.408 0.584
AMEX 1,078 0.644 0.622 0.285 0.505 0.600 0.350 0.649

NASDAQ 7,744 0.645 0.632 0.326 0.482 0.450 0.383 0.863

C.Root-mean-square errors w.r.t TAQ benchmark

All stocks 5,009.2 0.0142 0.0151 0.0309  0.0252  0.0466  0.0225 0.0224
1993-1995 39224 0.0205 0.0217  0.0313  0.0233  0.0420  0.0288 0.0266
19962000 5,830.4 0.0113 0.0121 0.0296  0.0237  0.0398  0.0198 0.0250
2001-2003 4,701.5 0.0126 0.0135  0.0328 0.0299  0.0639  0.0205 0.0133
NYSE 1,578.4 0.0065 0.0059  0.0168 0.0161 0.0182  0.0074 0.0213
AMEX 353.1 0.0118 0.0156  0.0319 0.0186  0.0522  0.0238 0.0466
NASDAQ 3,077.7 0.0223 0.0234  0.0408 0.0341  0.0591  0.0326 0.0208

This table compares different estimates with the monthly TAQ (MTAQ) benchmark between January 1993 and
September 2003. The labels in the first row refer to our estimator (CHL) and the estimators proposed by Corwin
and Schultz (HL; 2012), Roll (Roll; 1984), Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), Fong, Holden,
and Trzcinka (FHT; 2017), and Chung and Zhang (CRSP_S; 2014). The spread quintiles are sorted by increasing
average effective spreads during the whole sample period. To compare estimators in the absence of quote data,
we exclude the CRSP_S and an asterisk indicates numbers not significantly different from the estimator with the
highest correlation (lowest RMSE) marked in bold in every row. In panel A, N refers to the average number of
stocks per month. Cross-sectional correlations are calculated per month and averaged across the sample. We test
our hypotheses on the time series of pairwise difference in correlations for two estimators and assess whether the
mean is significantly different from zero. In panel B, N refers to the number of stocks in the subsamples with at
least six months of estimates. Time-series correlations are calculated for each individual stock and then averaged
across assets. We use a paired 7-test for the statistical inferences. In panel C, N refers to the average number of
stocks per month. RMSEs are calculated for every month and then averaged through time. We test our hypotheses
on the time series of pairwise difference in prediction errors for two estimators and assess whether the mean is
significantly different from zero. We adjust for any potential time-series autocorrelation by using Newey-West
(1987) standard errors with four lags autocorrelation. An asterisk indicates numbers not significantly different
from the highest correlation marked in bold in every row of panels A and B, and from the estimator with the
lowest average prediction error marked in bold in every row in panel C.

Figure[Blshows the time development of the estimated spreads computed for
three equally weighted portfolios: the smallest and largest market capitalization
deciles, as well as the entire stocks sample. The spreads originated from our
model display relatively stable variation over time. Reassuringly, this also
applies to the smallest market capitalization decile. In contrast, Corwin and
Schultz (]E!Ha) document that the spread estimates generated by their model
display considerable variation over time, and these are extraordinarily high
during the Great Depression, in which the market-wide average estimates of
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Figure 8

Time-series evolution of estimated spread, calculated as equally weighted portfolios of stocks

This figure shows the monthly historical developments of spread estimates from our model. Small cap and large
cap portfolios are represented by the first and last decile of stocks sorted by market capitalization at the end of
each month. Panel A (B) shows the estimates for stocks listed on the NYSE (AMEX) between 1926 (1962) and

2015.
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the effective spreads are as high as 20% for NY SE stocks and 50% for small cap
stocks. Instead, panel A (B) of Figure[§]shows that our estimates for the NYSE
(AMEX) stocks evolve pretty steadily across every decade, remaining within
an economically reasonable range; that is, the market-wide estimated effective
spread does not exceed 4% (6%) for NYSE (AMEX) stocks. Moreover, the
average estimated effective spread for the small cap stocks listed on the NYSE
(AMEX) does not exceed 12% (19%) during the entire sample.

The results in this subsection suggest that our estimator can be used in various
research areas across many types of markets and assets, including less actively-
traded ones. This is especially true for researchers interested in the ability of
an estimator to capture the temporal evolution of spreads over long time spans
that predate quote data or international markets without quote data.

4.2 Estimating systematic liquidity risk

The results presented in Section 3 show that the spread estimates from our
model closely follow the effective spread benchmark, suggesting that our
estimator can be adopted for gauging transaction costs and liquidity. Another
crucial application of spread estimates is liquidity risk. As liquidity risk is not
diversifiable, its accurate measurement is crucial for at least two purposes:
first, to identify and gauge systematic risk stemming from illiquidity issues,
and, second, to perform effective asset and risk management. The collapse of
Long-Term Capital Management L.P. (LTCM) and more recent experiences
during the last financial crises are vivid examples of incorrect consideration of
liquidity risk.

Acharya and Pedersen (2009) propose a liquidity-adjusted capital asset
pricing model (LCAPM) in which expected returns in time 7 for stock i (r/) net
of transaction costs (s ) are explained by the risk-free interest rate, and expected
market returns (rtM ) net of market transaction costs (sfM ). Then the systemic
risk of return net of trading costs is decomposed into four components:

Cov(rti+l’rtlill) _ COU(S;+1,S%1)

’ _var(rrﬁfl_s%l)

=
var (”%1_5%1)

3

B cov(rt’ﬂ,s%l) B cov(s;ﬂ,r%l)
Ba=—— i —wmy P iy 4
var (rt+l _Sz+l) var (rt+1 _sz+1)

Whereas S represents the standard market beta, S, B3, and B4 capture
important aspects of systematic risk due to liquidity issues. B, measures the
commonality of liquidity with the market-wide liquidity and is expected to be
positive (]th_dm__&)l]__ﬁn_d_&ubmhmmmnihﬂ[ﬁ]) Higher B, translates into
less liquid stocks in times of market illiquidity. [Huberman and Halkd (2001)),
and[Hasbrouck and Seppi (2001l) document the presence of a systematic, time-
varying component of liquidity that comoves with the liquidity of individual
stocks. |Kam.am_Lpu_and_S_a_dkd (]ZIK)_Q) show important implications of the
cross-sectional variation of commonality in liquidity, including the decline over
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time of diversification benefits against aggregate liquidity shocks by holding
large-cap stocks. [Karolyi, Lee, and van DijK (2012) study the commonality
in liquidity across 40 countries and over two decades, and suggest that
commonality in liquidity is better explained by the demand-side determinants.
B3 is typically negative as market liquidity tends to dry up when stock prices
decline. 2003) show that investors demand a premium
for the sensitivity of stock returns to aggregate liquidity shocks. Watanabe and
WatanabeM) document that aggregate liquidity is priced and the liquidity
risk premium is twice as high as the value premium in high-beta states. g, is also
expected to be negative as the liquidity of individual stocks tend to decrease in
downturn markets. [Hameed, Kang, and Viswanathan (2010) provide empirical
evidence of significant increases of bid-ask spreads when the stock market
experiences large negative returns.

The above-mentioned literature points to the importance of an accurate
measurement of different dimensions of liquidity risk and its variation in the
cross section of stocks. By using the effective spread estimates of Section 3,
we calculate the four systematic risk components of Equation (15) for each
stock in our sample based on the Daily TAQ effective spreads, as well as the
Roll estimates, the HL estimates, and our estimates. In addition to the filtrations
explained in Section 3, we discard stocks with fewer than 30 months of data
and the stock-months in which the monthly CRSP return is missing. Following
[Asparouhova, Bessembinder, and Kalcheva 201d,[2013), we use a gross return-
weighted portfolio of all the stocks to construct the market return and market
liquidity to avoid biases calculating portfolio returns.

To assess the quality of the estimates for systematic risk, we compare them
to those based on the TAQ effective spreads. In other words, we gauge how
well the liquidity risk estimates generated by the Roll, the HL, and our model
are associated to those obtained from Daily TAQ data, for the cross section
of US stock market. Table [10] shows the cross-sectional correlations between
the liquidity risks estimates generated from different estimators, and the ones
estimated using the Daily TAQ benchmark.

Because the correlations for §; are close to one as a result of the secondary
importance of transaction costs to compute standard betas, they are not tabulated
Thus, we concentrate our analysis on 8, B3, and B4 because they are more
influenced by transaction costs. Overall, the results for all stocks, shown in panel
A of Table clearly indicate the superiority of our estimator to capture the
cross-sectional estimation of systematic liquidity risks. The correlation between
CHL estimates and the benchmark spreads for 8, B3, and B, are pretty high,
that is, 0.830, 0.935, and 0.755, respectively. The same correlation coefficients
for the HL and the Roll estimators are lower, especially for 8, and B4, which
are around 0.1 lower for the HL and around 0.2 lower for the Roll. In many
of the cases, these differences are statistically significant using a two-tailed
Fisher’s z-test with a 5% significance level. The same picture generally holds
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Table 10
Cross-sectional correlations of estimated systematic liquidity risks with the ones of TAQ benchmark
p(ﬁZES,ﬁZE‘”[ma’”) p(ﬁfsﬁﬁfstimmw) p(ﬁfS!ﬁf.wimaleS)
N CHL HL Roll CHL HL Roll CHL HL Roll

A. Cross-section of estimated systematic risks: All stocks

Full period 5,547  0.830 0.744 0.652 0.935 0919 0.838 0.755 0.673  0.459
2003-2007 4,119  0.501 0.457 0.170 0.670 0.658* 0.407  0.532 0.439 0.214
2008-2011 3,574 0.736 0.604 0.354 0.971 0.970* 0.896  0.557 0.428 0.296
2012-2015 3,268  0.325 —0.032 0.078 0.545 0.327 0.298 0.571 0.510 0.243

B. Cross-section of estimated systematic risks considering liquidity shocks of AR(2) model

Full period 5433 0.524 0.446 0.158 0.856 0.879 0.563 0.530 0.266 0.234
2003-2007 4,010 0.285 0.152  —0.078 0.808* 0.812 0.595 0.364 0.147  0.064
2008-2011 3,654  0.398 0.265 —0.031 0.893 0913 0.627 0.520 0.107  0.142
2012-2015 3,231  0.137 0.126*  0.080 0.724 0.752  0.398  0.295 0.221 0.148

C. Analysis across different markets

NYSE 1,777 0.697 0.681%  0.443 0.935 0.925 0.844 0.670* 0.675 0.244
AMEX 515 0.883 0.825 0.689 0.925 0.918* 0.824 0.787 0.706  0.524
NASDAQ 3,429  0.855 0.782 0.692 0.934 0914 0.835 0.775 0.692  0.460

D. Analysis across market capitalization

Size quintile I 1,032 0.870 0.790 0.726 0.945 0.936% 0.842  0.793 0.712  0.525
Size quintile 2 1,009  0.722 0.577 0.558 0.920 0.885 0.822  0.612 0.533  0.328
Size quintile 3 1,062  0.632 0.510 0.363 0.939 0.928* 0.847 0.516 0.423  0.220
Size quintile 4 1,161  0.570 0.487 0.314 0.921 0.905 0.832 0.551 0.530% 0.208
Size quintile 5 1,283  0.444 0.431*  0.265 0.922 0910 0.825 0.444*  0.500 0.098

E. Analysis across effective spread size

ES quintile I 1,278  0.566*  0.567 0.353 0.898 0.888* 0.768 0.568* 0.618 0.238
ES quintile2 1,153 0.708*  0.719 0.369 0.935 0919 0.846 0.603 0.662 0.147
ES quintile3 1,059  0.713 0.694%  0.365 0.939 0.927 0.840 0.659 0.651% 0.244
ES quintile4 1,074  0.789 0.724 0.507 0.924 0.899 0.827 0.746 0.712% 0.384
ES quintile 5 983  0.884 0.821 0.765 0.943 0.934* 0.849 0.811 0.744  0.526

We calculate the components of systematic risk implied by the LCAPM model (Acharya and Pedersen 2005)
by using the daily TAQ effective spreads, Roll model estimates (Roll; 1984), the HL estimates (Corwin and
Schultz; 2012), and the estimates from our model (labeled CHL). N refers to the number of stocks. The table
reports the cross-sectional correlation of betas based on Roll, HL, and CHL estimates (ﬂiE‘m’"“m), with betas

based on the TAQ effective spreads (,BI.ES). We discard stocks with fewer than 30 months of effective spread
estimates. Betas are calculated for the spreads in levels and the residuals of AR(2) regressions in panels A and B,
respectively. Panels C, D, and E show the results from subsampling analyses across exchanges (NYSE, AMEX,
and NASDAQ), market capitalization, and spread size. In panel D, the size quintiles are sorted by increasing
market capitalization at the last observed period for each individual stock. In panel E, the spread quintiles are
sorted by increasing average effective spreads during the whole sample period. An asterisk indicates values not
significantly different from that with the higher correlation marked in bold for every set of values. The statistical
inferences are performed using Fisher’s z-test.

when we perform the subsampling analysis across the 2003-2007, 2008-2011,
and 2012-2015 subpen’ods@)

Following |Acharya and Pedersen (2009), we analyze liquidity innovations
generated from an AR(2) model. The analysis of liquidity in innovations,
rather than by levels, helps us control for the persistence in the transaction
cost process, thereby capturing the unexpected component of transaction costs.

We reiterate the analysis using 25 portfolios sorted by illiquidity level like inlAcharya and Pedersed (2003). As
reported in the Internet Appendix, the results are fully consistent.
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The results in panel B of Table[L0lconfirm the high accuracy of CHL estimates
to gauge systematic liquidity risks using spread innovations. The correlation
coefficients between the estimates of 8,, B3, and B4 from our model and the
TAQ spreads are 0.524, 0.856, and 0.530, whereas the same correlations for HL
estimates are 0.446, 0.879, and 0.266, and those for the Roll estimates are 0.158,
0.563, and 0.234, respectively. The subsampling analysis across shorter periods
delivers consistent results, confirming that CHL estimates provide systematic
risk estimates that follow the ones of the TAQ benchmark more closely, no
matter if transaction costs are in levels or innovations.

Like in Section 3, we reiterate the subsampling analysis across primary
exchange, market capitalization, and effective spread size (panels C, D,
and E)[] Overall, our estimator outperforms the other measures when stocks
are grouped by market venues, market capitalization, and spread size. The only
exceptions are B4 for the NYSE and the largest capitalization quintile, for which
the correlation between HL estimator and TAQ benchmark is higher, but the
difference is not statistically significant. When stocks are subsampled from
smallest to largest transaction costs, our estimator (the AL estimator) performs
better across less (more) liquid stocks.

Conclusion

Building on the seminal model proposed by [Roll m), we have derived
a new way to estimate bid-ask spreads using price data. Compared with the
Roll measure, our model has two important benefits: First, it takes advantage
of a richer information set of daily close, high, and low prices, whereas the
Roll measure solely relies on the close prices. Thereby, our model improves
estimation accuracy. From the high and low prices, we can compute the mid-
range, that is, the mean of the daily high and low log-prices, that proxies
the efficient price. Second, our estimator is fully independent of order-flow
dynamics, and therefore it does not rely on bid-ask bounces, as the original Roll
measure does. Our method of estimating effective spreads is straightforward,
is easy to compute, and has an intuitive closed-form solution that resembles
the Roll measure. Whereas the Roll measure relies on the covariance of
consecutive close-to-close price returns, our estimator relies on the covariance
of close-to-mid-range returns around the same close price.

We tested our method numerically and empirically by using Trade and Quotes
(TAQ) data. The simulation analysis shows that considering all imperfections
together (i.e., infrequent trading, inconstant spreads, and nontrading periods),
our model provides more accurate estimates than those from the high-low

estimator proposed by ICorwin and Schultd 2012) and the Roll model for

less liquid securities, for which transaction costs and liquidity issues are of

To facilitate comparisons, we use the same quintile groups like in Section 3. However, here we remove a few
more stocks that have fewer than 30 months of data.
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much more concern. In the empirical analysis, the effective spread computed
with TAQ data serves as the benchmark for our comparative considerations.
When end-of-day quote data are available, that is, from 1993 onwards, the
closing percentage quoted spread generally represents the most accurate low-
frequency spread proxy. This is especially true across the post-decimalization
era in the U.S. stock market from 2001 onwards, whereas before it, the closing
percentage quoted spread (our estimator) outperforms the other estimators in
terms of average time-series correlations (average cross-sectional correlations
and lowest estimation errors).

On the other hand, when quote data are unavailable, our estimator is the
most accurate one. Assessed against other estimates, it generally provides
the highest cross-sectional and average time-series correlation with the TAQ
effective spread benchmark, as well as the smallest prediction errors. We
also have documented the additional explanatory ability of our estimates that
systematically goes beyond that of other estimates. This additional predictive
ability is especially larger for less liquid stocks. The numerical and empirical
analyses suggest that our estimates are stable and much less sensitive to the
number of trades per day, whereas the [Corwin and Schultd (2012) high-low
estimates produce substantially smaller spread estimates for lower number of
trades per day, that is, for more illiquid stocks. The ability of our estimator to
provide much more accurate spread estimates for less liquid stocks is a suitable
characteristic because accurate estimates of transaction costs are particularly
needed for less liquid securities and markets.

To illustrate some potential applications, we reconstructed the historical
development of our spread estimates for stocks listed on NYSE (AMEX) from
1926 (1962) through 2015. These patterns display relatively stable variation
over time and remain within an economically meaningful range, even for
small-cap stocks. Then we estimated the components of systematic liquidity
risk like in the liquidity-adjusted capital asset pricing model (LCAPM), which
was postulated by [Acharya and Pedersend (2003). The overall result is that our
estimator provides accurate estimations of the systematic liquidity, in the sense
that systematic risk betas based on our estimates are the closest to those of
the TAQ benchmark and that our model generally outperforms other models
in estimating systematic risk originating from commonality in liquidity and
covariation between stock returns and illiquidity.

Our estimator has many potential applications for future research. It should
be useful for researchers who work in asset pricing, corporate finance, risk
management, and other important research areas and need a simple but accurate
measure of trading costs over long periods. Our model could be suitably applied
to many securities, including those traded over-the-counter or in emerging
markets, for which data are of limited quality or availability.
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Appendix A. Proof of Propositions 2 and 3
We first derive two propositions ATland[A2]that we need for the proofs.
Proposition Al.  Under the model assumptions, Equation (&I} holds:
E[(h¢ —cf) (cf —1¢)]=(2log(2)— D)o 2. (A1)

Proof of proposition to prove Proposition_Eﬂ we use the two following equations from Garman
and Klass ]i )5521)

E [(hf —lf)z} =4log(2)a; (A2)

E[(he—c)*]=E[ (=<0’ ] =02 (A3)
Plugging (&2) and (A3) into (AT} leads to the proof

I
E[(hf —cf) (cc—1¢)]= 5E[(hf e =) = (1 =) = (¢ =)’ ] = log @)~ 2.
(Ad)

Proposition A2.  Under the model assumptions, Equation (AS) holds:
2 2
E[ (e =nf)*]=E[ (et =htn)’]- (A5)

Proposition[AZlis the result of the symmetry of Brownian motion in forward-looking and backward-
looking expressions. More specifically, the distance between the efficient close price of day ¢ and
the efficient high (low) price of the same day is equal to the distance between the efficient open
price and the efficient high (low) price of the next day:

2 2
E[(e = | =E[ (o —hin)*]. (46)
Proof of Proposition[A2} We assume no overnight price movements, so the efficient close price of

day ¢ and the efficient open price of day #+1 are identical and therefore, replacing o, ; with ¢}
leads to the proof.

Proof of Proposition 2
Now we use the two propositions for the proof of Proposition P]of the paper. The stepwise proof
is as follows:

£t =+ /27 = E[(c§+ais/2=n /2= /2)) A7)
= E[ g5 /44 1/4(ct =)+ 1/4(cf = e )P+ 1/2(c6 = i) f =)

+qs/4(cf =) +qs/4(cf —n)]. (A8)

=52/4+1)2E [(cf —hf/2—lf/2)2}, (A9)

=s2/4+(1/2)E[(1/4)(cf —h)P (1A (= 1) +(1/2) (cf —18) (¢ —hf)},
(A10)
=52 /4+02/4—(log(2)/2—1/4)02 =52 /4+(1/2—log(2)/2)02.  (All)

Equation (&7 is the result of the definition of the Rall {1984) model. Equation is the result
of Proposition[A2]and finally, we derive Equation (ATT) using Proposition ATl
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Proof of Proposition 3
The proof for PropositionBlof the paper is similar to that of Proposition 2}

E[Oner=n0? |=E [ (a1 =<+ =n.)°]. A12)
=2E[(cf—n,)2]=2E[(cf—hf/z—z;’/z)z], (A13)
:2E[(1/4)(cf—hf)2+(l/4)(cf —1)+(1/2) (cC 1) (c¢ —hf)}, (Al4)

=(2—2log(2))o?. (A15)

Equation (AT13) is the result of Proposition and, finally, we derive Equation using
Proposition ATl

Appendix B. Proof of Robustness to Nontrading Periods

To prove the robustness of our estimator to nontrading periods, we repeat the logical steps followed
in the paper by including the nontrading period in the efficient price variance. We then show that
this term cancels out when we derive the outcome expression.

Definition B1. The nontrading period (e.g., overnight) efficient-price variance is defined as
follows:

2
J]%/ontrading=E|:(0f+l_cf) ] (Bl)

Proposition B1. If we consider a price movement during nontrading periods with the variance
2 1 .
of UNontrading’ Equatlon m holds:

E[(er = (n+mien) 207 | =5 /4+(1/2=1082) /20024 /40 R iracing- (B2)

Proof of Proposition [BI} The proof is similar to the proof of Proposition Bl which is explained in
Appendix A. The only difference arises because the distance between efficient close price of day
t and the efficient high (low) price of day #+1 is higher than the distance between efficient close
price of day ¢ and the efficient high (low) price at the same day. Therefore, Equation (&3 no longer
holds, and, instead, Equation (B3) shows the link between the two quantities. Using Equation (B3)
and following the steps of the proof in in Appendix A leads to the proof of Proposition B1.

2 2
E [(Cf _hf+1) I=E |:((‘te _0f+1 +()?+l _hf) :| =U}%/0mrading
2 2
+E|:(0te+l _hte) ]zgl%/(mtrading'*'EI:(cle _hf) ] (B3)

Proposition B2.  If we consider a price movement during nontrading periods (e.g., overnight)
with the variance of 01%, ontrading® Equation (B4) holds:

E (et =100 =2 = 21082007+ gnraing- (B4)

Proof of Proposition B2: The proof is very similar to the proof of Proposition B1.
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Proof of robustness to nontrading periods
When calculating s? using the two equations of proposition B1 and B2, the nontrading variance
terms cancel out, and the result is identical to Equation ©:

s =4E [(e; — o) (e — nes)]- (BS)

Therefore, the spread estimates are independent of price movements during nontrading periods.

Appendix C. Relaxing the Assumption of the Buyer- (Seller-) Initiated
High (Low) Prices

By relaxing the assumption of buyer- (seller-) initiated high (low) price, we obtain Equations
and (C2) as a generalization of settings expressed in Equations @) and ().

h,:hf+q,h%,q,h=:|:1, (1

1,=lf+qtl%,q,l=j:1. (€2)

Compared to Equations @) and @), here we allow the trade direction of high and low prices to be
stochastic and independent of the efficient price process. The midrange 7, is the same as the one
used in Definition 1 of the paper, that is, the average of observed high and low log-prices.

Proposition C1. Theorem 1 still holds if the assumptions of buyer-(seller-) initiated high (low)
prices are replaced with the following assumptions:

(1) The trade directions of high and low prices are independent of the ones of previous day.
(2) The trade directions of high and low prices are independent of the ones for close prices.
(3) The chance of high price being buyer-initiated is equivalent to the chance of low price being

seller—initiated@ This symmetry between the two trade directions is specified more formally
in Equation {C3).

E[q/]=~E[q;] (C3)

Proof of Proposition [CT} Starting from the right-hand side of Equation (@) and replacing the
observed close, high and low prices with the right-hand sides of Equations (@, {CID, and (C2).
Using the assumptions that the efficient price path and trade directions are independent of each
other, and the expected symmetry in efficient log-price movements, one can derive Equation

CD:

1 1
4E[(c;—n)(ci —n)]=s" E [q3+ 2@ +a)) (@l +ain) — 5 (o +a;+4ls +q,’+1)} :
(C4)

Then, using the assumptions in Proposition C1, the expectation term in the right-hand side of
Equation (C4) reduces to E [qtz], which is equal to Equation (@) of the paper. It is important
to note that qf’ and q,l refer to the trade direction of observed rather than efficient high (low)
prices. Hence, Equation (C3) does not necessarily impose dependence between trade directions
and efficient price values. More specifically, while trade directions can be independent of the
efficient price path, the high (low) observed trades might more often reflect buyer- (seller-)
initiated trades because these trades are more likely to be selected as high (low) observed
prices.

28 Asshown in the Internet Appendix, the analysis of Daily TAQ data provides empirical support to this assumption.
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