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A SIMPLE ESTIMATOR OF COINTEGRATING VECTORS 
IN HIGHER ORDER INTEGRATED SYSTEMS 

BY JAMES H. STOCK AND MARK W. WATSON1 

Efficient estimators of cointegrating vectors are presented for systems involving deter- 
ministic components and variables of differing, higher orders of integration. The estima- 
tors are computed using GLS or OLS, and Wald Statistics constructed from these 
estimators have asymptotic x2 distributions. These and previously proposed estimators of 
cointegrating vectors are used to study long-run U.S. money (Ml) demand. Ml demand is 
found to be stable over 1900-1989; the 95% confidence intervals for the income elasticity 
and interest rate semielasticity are (.88,1.06) and (-.13, -.08), respectively. Estimates 
based on the postwar data alone, however, are unstable, with variances which indicate 
substantial sampling uncertainty. 

KEYWORDS: Error correction models, unit roots, money demand. 

1. INTRODUCTION 

PARAMETERS DESCRIBING THE LONG-RUN RELATION between economic time 
series, such as the long-run income and interest elasticities of money demand, 
often play an important role in empirical macroeconomics. If these variables are 
cointegrated as defined by Engle and Granger (1987), then the task of describ- 
ing these long-run relations reduces to the problem of estimating cointegrating 
vectors. Recent research on the estimation of cointegrating vectors has focused 
on the case in which each series is individually integrated of order 1 (is I(1)), 
typically with no drift term. Johansen (1988a) and Ahn and Reinsel (1990) 
derived the asymptotic distribution of the Gaussian MLE when the cointegrated 
system is parameterized as a vector error correction model (VECM), and 
Johansen (1991) extended this result to the case of nonzero drifts. A series of 
papers has considered other efficient estimators based on a different model for 
cointegrated systems, the triangular representation. Phillips (1991a) studied 
estimation in a cointegrated model with general I(O) errors; Phillips and Hansen 
(1990) and Park (1992) considered two-step, frequency-zero seemingly unrelated 
regression estimators; and Phillips (1991b) used spectral methods to compute 
efficient estimators in the frequency domain. 

This paper makes three main contributions. First, it develops two alternative, 
computationally simple estimators of cointegrating vectors. These estimators, 
which have been independently proposed and studied elsewhere in the case of 
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Gustavo Gonzaga and Graham Elliott provided able research assistance. This research was sup- 
ported in part by the Sloan Foundation and National Science Foundation Grants SES-86-18984, 
SES-89-10601, and SES-91-22463. 
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I(1) variates (Hansen (1988), Phillips (1991a), Phillips and Loretan (1991), and 
Saikkonen (1991)), are developed here for cointegrating regressions among 
general I(d) variables with general deterministic components. (For an applica- 
tion of this estimator in the I(1) case, see King, Plosser, Stock, and Watson 
(1991).) The estimators are motivated as Gaussian MLE's for a particular 
parameterization of the triangular representation. However, under more gen- 
eral conditions they are asymptotically efficient in Saikkonen's (1991) and 
Phillips' (1991a) sense, having an asymptotic distribution that is a random 
mixture of normals and producing Wald test statistics with asymptotic chi- 
squared null distributions. In the I(1) case with a single cointegrating vector, 
one simply regresses one of the variables onto contemporaneous levels of the 
remaining variables, leads and lags of their first differences, and a constant, 
using either ordinary or generalized least squares. The resulting "dynamic 
OLS" (respectively GLS) estimators are asymptotically equivalent to the Jo- 
hansen/Ahn-Reinsel estimator. 

The second contribution is an examination of the finite sample performance 
of these estimators in a variety of Monte Carlo experiments. Although all the 
estimators perform well when the designs incorporate simple short-run dynam- 
ics, for designs that mimic the dynamics in U.S. real money (Ml) balances, 
income, and interest rates, there is considerable variation across the estimators 
and associated confidence intervals. In these designs, the dynamic OLS estima- 
tor performs well relative to the other asymptotically efficient estimators. 

The third contribution is the use of these procedures to investigate the 
long-run demand for money (Ml) in the U.S. from 1900 to 1989. Other 
researchers (recently including Hafer and Jansen (1991), Hoffman and Rasche 
(1991), Miller (1991), and Baba, Hendry, and Starr (1992)) have argued either 
explicitly or implicitly that long-run money demand can be thought of as a 
cointegrating relation among real balances, real income, and an interest rate in 
postwar data. We find this characterization empirically plausible for the longer 
annual data as well, and therefore use these estimators of cointegrating vectors 
to examine Lucas' (1988) suggestion that there is a stable long-run Ml money 
demand relation spanning the twentieth century. Based on the full sample, 95% 
confidence intervals for the income elasticity and interest rate semielasticity are, 
respectively, (0.88, 1.06) and (- 0.127, - 0.075). The postwar data are dominated 
by a single long-run trend, reflected in growth in income and interest rates and 
stable real money balances from 1946 to 1982; this results in imprecise estima- 
tion of the long-run money demand parameters when only the postwar data are 
used. 

The paper is organized as follows. The model and estimators are introduced 
in Section 2 for I(1) variables and are extended to 1(d) variables in Section 3. 
The large-sample properties of the estimators and test statistics are summarized 
in Section 4. In Section 5, the I(2) case is examined in detail. Monte Carlo 
results are presented in Section 6. The application to long-run Ml demand is 
given in Section 7. Section 8 concludes. Readers primarily interested in the 
empirical results can skip Sections 3-5 with little loss of continuity. 
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2. REPRESENTATION AND ESTIMATION IN I(1) SYSTEMS 

Let y, denote a n-dimensional time series, whose elements are individually 
I(1). Suppose that E(Ay,) = 0, and that the n X r matrix of r cointegrating 
vectors is a = (- 0, Ir)" where 0 is the r X (n - r) submatrix of unknown 
parameters to be estimated and Ir is the r X r identity matrix. We assume that 
there are no additional restrictions on 0. The triangular representation for yt is 

(2.1a) Ay' = u' 

(2.1b) y2 = A+ oyl + u2 

where yt is partitioned as (yl, y72), where yJ1 is (n - r) x 1 and y2 is r X 1, and 
where u, = (ul, u,2')' is a stationary stochastic process, with full rank spectral 
density matrix. This representation has been used extensively in theoretical 
work by Phillips (1991a, 1991b), typically without parametric structure on the 
I(O) process ut, and in applications by Campbell (1987) and Campbell and 
Shiller (1987, 1989) (also see Bewley (1979)). For the moment, ut is assumed to 
be Gaussian to permit the development of the Gaussian MLE for 0. 

The parameterization that forms the basis for the proposed estimators is 
obtained by making the error in (2.1b) independent of {ull, where {ull denotes 
{u ,1 t = +, ? 1, + 2, ... .. When u, is Gaussian, stationary, and linearly regular, 
E[u21{Ay)l] = E[u21{u,l] = d(L)AyJ1, where d(L) is two-sided in general. Thus 
(2.1b) can be written 

(2.2) y, = / + Oy, + d(L)Ayl + v, 
where v2= U2 - E[u21{ull]. By construction, {Ay') and {v,2} are independent. 

The two-sided triangular representation (2.1a) and (2.2) suggests an uncon- 
ventional factorization of the conditional Gaussian likelihood for a sample of 
size T. Assume: (i) the data are generated by (2.1), (ii) ut in (2.1) is Gaussian 
and stationary with a bounded full rank spectral density matrix, (iii) d(L)= 
ELq qdjL. The likelihood is conditioned on the required pre- and post-sample 
values of Ay' (i.e., Aylq, ...,Ay and Ay1,...,y1+). Let A1 denote the 
parameters of the margin7al distribution of (u1, .. ., ul), let A2 denote ,u and the 
parameters of d(L) and of the marginal distribution of (vl, ... ., v2), and let Yi 
denote (y', ...., yr), i = 1, 2. Then the likelihood can be factored as 

(2.3) f(Yl Y210, A1l A2) =f(Y2lYl, 0, A2)f(Y'IA1). 

This differs from the usual prediction-error factorization because the condi- 
tional mean of y2 involves future as well as past values of y'. Assumptions (i) 
and (ii) allow the triangular representation (2.1) to be represented by its 
two-sided analogue, (2.2). 

The representations (2.2) and (2.3) provide a framework for estimation and 
inference in these Gaussian systems. If there are no restrictions between A1 and 
[0, A2], then Y' is ancillary (in Engle, Hendry, and Richard's (1983) terminol- 
ogy, weakly exogenous, extended to permit conditioning on both leads and lags 
of Ay') for 0, so that inference can be carried out conditional on Yl. In this 
case, the MLE of 0 (conditional on the initial and terminal values) can be 
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obtained by maximizing f(Y2lY1, 0, A2). This reduces to estimating the parame- 
ters of the regression equation (2.2) by GLS. Because the regressor y' is I(1), as 
is shown in Section 4 an asymptotically equivalent estimator of 0 can be 
obtained by estimating 0 in (2.2) by OLS; this will be referred to as the dynamic 
OLS (DOLS) estimator, to distinguish it from the static OLS (SOLS) estimator 
obtained by regressing y2 on (1, y'). Similarly, the feasible GLS estimator of 0 
in (2.2) will be referred to as the dynamic GLS (DGLS) estimator. 

The representation (2.2) warrants three remarks. First, Sims' (1972) Theorem 
2 implies that the projection d(L)Ay will involve only current and lagged 
values of Ay ' if (and only if) u2 does not Granger-cause Ay'. If so, and if v2 
has a finite order autoregressive representation, then (2.2) can be rewritten as 
an r-dimensional error correction model, i.e. as a regression of Ay2 onto 
(Ay, y - 

1 1, A yt9 A ., Ayt_p, y71 - 6'y_1). In this case, the nonlinear least 
squares estimator of 0 (with Ay' included as a regressor; see Stock (1987)) is 
the Gaussian MLE. 

Second, the large-sample properties of the OLS and GLS estimators of 0 are 
readily deduced from the representation (2.2). Because v2 is uncorrelated with 
the regressors at all leads and lags, conditional on Y' the GLS estimator has a 
normal distribution and the Wald statistic testing the hypothesis that 6 = 00 has 
a x2 distribution. Because y' is I(1), the conditional covariance matrix of the 
GLS estimator differs across realizations of y, even in large samples; thus 
unconditionally the GLS estimator of 0 has a large-sample distribution that is a 
random mixture of normals and the Wald statistic has a x2 distribution. Phillips 
(1991a) and Saikkonen (1991) provide insightful discussions of the asymptotic 
mixed normal property of the MLE of 0 and the local asymptotic mixed normal 
(LAMN) behavior of test statistics. Also note that results apply even if some 
rows of 0 are equal to zero, so that the corresponding elements of yt are I(0). 

Third, although the interpretation of (2.2) as a factorization of the likelihood 
(2.3) assumes Gaussianity, a two-sided triangular representation with EvAy4 y 
0 for all t and d can be constructed under weaker conditions as discussed in the 
next section. 

3. REPRESENTATION IN I(d) SYSTEMS 

This section extends the framework of Section 2 to systems with maximum 
order of integration d and with polynomial time trends. First, a linear triangular 
representation for the n-dimensional time series yt is derived for the general 
I(d) case under general conditions on the Wold representation for yt and the 
error distribution. This representation is then used to motivate simple OLS and 
GLS estimators of cointegrating vectors. Properties of these estimators and test 
statistics based on the estimators are the subject of Section 4. 

The maximum order of integration of any element of yt is assumed to be d. 
The process yt is assumed to have the representation 

(3.1) Adyt 
= + F(L)Et, 

where ad = (1 - L)d is the dth differencing operator. The shocks Et and the 
matrix lag polynomial F(L) are assumed to satisfy the following assumption. 
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AssUMPrION A: (i) {e,} is a n-dimensional martingale difference sequence, with 
E(E,E'IEtI,_ 1E-2 ...) In; 

(ii) F(L)= E=OFjLj, where F(L) is k-summable (that is, E10 Fjl < 00, 
where IA I = maxij lAijI for a matrix A) for some k > d; 

(iii) F(e @) is nonsingular for w # 0 (mod 2 7r); 
(iv) rank(F(1)) = k1, 0 < k1 < n; and 
(v) among all linear combinations of yt and its differences which include at least 

one element of yt in levels, the lowest order of integration is zero. 

The triangular representation for an I(d) process satisfying (3.1) and Assump- 
tion A is derived in Appendix A and is: 

(3.2) Yt = , o t 

ad-lY = /2,0 + t2,1t + OYtl(ady ) + ut, 

ad 2 3= 0 + L3, 1t + L3,2t2 

+od-l(Ad-ly1) + od2(Ad-2yl) + od-2(Ad2y2) + u3, 

d d d 
1r = E E od-ijAd-iyj) + d+l 

j=0 j=1 i=j 

where 

ut =H(L)Et 

for t = 1,..., T, where ut = (Ul', u,',. . ., ud+')' and where y,i, j=1,..., d + 1, is 
a ki X 1 vector, chosen so that yt can be partitioned as yt = (ytI Yt2',t yd+1t ) 
In addition, H(L) = E-j=OHjLj, H(eiw) is nonsingular for all w, and H(L) is 
k - d summable for k defined in Assumption A(ii). 

Assumption A(iv) ensures that there are at least n - k1 cointegrating vectors 
in the system. Assumption A(v) serves to fix d, and is made without loss of 
generality. In practice, A(v) can be achieved by redefining yt to be A - 1yt or Ayt 
as needed for ut to be I(0) and not cointegrated. Finally, the normalization 
E(EtE,) = In is made without loss of generality because Fo is not restricted to be 
diagonal. The assumption of conditional homoskedasticity is made for conve- 
nience and could be weakened to admit conditional heterskedasticity; see, for 
example, Phillips and Solo (1992). 

Note that not all elements of yt need to be I(d) for (3.2) to apply (see the 
examples in Section 5 and the empirical application to long-run money demand 
in Section 7). Moreover, some blocks of (3.2) might not appear. For example, 
with d = 2 and n = 2, if yt is CI(2, 2) in Engle and Granger's (1987) terminol- 
ogy, then k1 = 1, k2 = 0, and k3 = 1. 

The triangular representation (3.2) partitions yt into components correspond- 
ing to stochastic trends of different orders. Abstracting from the deterministic 
components, y' is a k1-vector corresponding to the k1 I(d) stochastic trends in 
the system. In the second block of k2 equations, y - 2od1 1y corresponds to the 
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k2 I(d - 1) stochastic trends; for rows of 2d,1 which equal zero, yt is I(d - 1), 
while for nonzero rows of t4dy1, y2 is I(d) and (y1, y72) are CI(d, 1). The k3 
equations in the third block describe the I(d - 2) components, and so forth. It is 
straightforward to generalize the representation (3.2) to include higher order 
polynomials in t, or to specialize it to the leading case in which higher-order 
polynomials do not appear. 

As in the I(1) case, we orthogonalize the errors in (3.2) by projecting onto 
leads and lags of the errors in the preceding equations. This amounts to 
premultiplying ut by an appropriate lower triangular matrix lag polynomial 
D(L) which is in general two-sided. Let D(L)H(L) = C(L), partitioned con- 
formably with ut, and let vt = D(L)ut. Then, since ut = H(L)Et, 't = D(L)ut = 

D(L)H(L)Et = C(L)Et, that is, 

d2(L) u (3.3) ut= 
-2()I*- O u 

-dd+lSl(L) -dd+l 2(L) - I d+ 

c1(L) 

C2(L) 
Et. 

Cd+l(L) 

The matrix D(L) is chosen so that the cross spectrum between vu, and vu7, 
c,(e`i)cm(eiW)', is zero for all 1 O m. (Because H(e"") is nonsingular and 
absolutely summable, Brillinger's (1980) Theorem 8.3.1 guarantees that such a 
D(L) filter can be constructed.) The matrix polynomials {dim(L)} generalize 
d(L) in (2.2) and are constructed from the projection of u$ onto {um} for 
m = 1, ... ,1 - 1. For example, d2l(L) = h2(L)hl(L1)'[hl(L)hl(L1-)'1]-, where 
the rows of H(L) are partitioned conformably with ut, so 

H(L) = [h4(L), h2( L),. . ., hd+( L) ]'. 

More generally, vi<=u -Proj (u1j{u1,...,u1-'}), where Proj(xtJ{zt}) denotes 
the linear projection of xt onto {zt}. 

Substitution of the /th equation in (3.3) into (3.2) yields 

1-i 1-1 1-1 

(3.4) d-l+ly E TI,,jti + E E od-i(Ad-iyJ) 
j = 0 j=1 i=j 

+ E dlm(L) (Ad-m+lym) - E od-J(Ad-yi) + v 
m=l j = i=j 
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where 1 j = O,... , / - 1) are functions of {djm(L), ,UM' j = O, ..., m - 1, 
m= 1,..l.2 

The subspaces that cointegrate yt with (y',..., y1t-1) and its differences are 
determined by the matrices 07d ̀1 appearing in the second term on the right- 
hand side of (3.4). In general the /th block of equations contains all of the 
cointegrating vectors for m < 1, which appear in the higher order error correc- 
tion terms making up the third term on the right-hand side of (3.4). For 
example, in a system with d = 2 the equations describing cointegration in the 
levels can contain cointegrating relations between the first differences. 

We consider estimators of the cointegrating coefficients appearing in the /th 
block of (3.2). Because the errors {vl) in (3.4) are uncorrelated with the 
variables on the right-hand side of (3.4), (3.4) constitutes a correctly specified 
regression equation. We therefore consider estimators based on this regression 
equation. To construct a feasible estimator, we will assume that djm(L), m = 

1,... ., - 1 are finitely parameterized. Specifically, we make the following as- 
sumption. 

ASSUMPTION B: dlm(L)= Em_ dlm,jLj, where qlm and '1m are finite and 
known, for m= 1,...,l-1. 

Under Assumption B, the block of k, equations in (3.4) can be rewritten as 

(3.5) Ad+ lytl = (x't C) IkJ)3 + vt 

where xt is the vector of regressors in (3.4) and 13 is the vector of the stacked 
unknown regression coefficients in (3.4). Specifically, 13 consists of the elements 
of (iJS j=O,...,I-1; od/7, j=1,...,1-1; and dlm1j, m=1,...,l-1, 1= 
-qlm,* . ,qlm. It is assumed that xt is a linear combination of yl,y2,..., 
wifh known nonrandom weights, where Yi = (y', y . ... yT), i = 1, .. ., d + 1. In 
this notation, Evlx' = 0 for all t and r. 

Because the regressors in (3.5) in general have stochastic or deterministic 
trends in common, they are asymptotically multicollinear. To obtain nondegen- 
erate asymptotic results, the regressors are transformed to isolate these differ- 
ent trends. This is accomplished by defining zt = Bxt, where B is an invertible 
matrix of constants (possibly unknown), chosen so that zt are the canonical 
regressors of Sims, Stock, and Watson (1990). (The choice of transformation 
matrix B depends on the specific application.) Partition zt as (zl, z7,..., "z2)I 

where by construction z' is an 1(0) vector with mean zero (zl contains the 
required leads and lags of {u7m, m < 1}, dictated by the polynomials {dm(L)}), 

2 IiS Ij,Z = t so forth. _ 

Zt 1, z (1), 4 t, Z is 1(2), Z6 t2, and so forth. In general E'1z'z7' is 
O9(T'- 1) for i > 2. Using the approach in Sims, Stock, and Watson (1990, 

2Johansen (1988b, 1992) studied the restrictions on the coefficients of vector autoregressions 
implied by the existence of cointegration in higher order systems. Johansen (1988b) examined 
systems with, in Engle and Granger's (1987) terminology, cointegration of the form CI(d, b), where 
d > b. As Johansen (1992) points out, this excludes cointegration of the general form (3.4), which 
generalizes what Granger and Lee (1990) term "multicointegration." Johansen's (1992) results 
complement ours, since both explicitly handle multicointegration: Johansen (1992) relates multicoin- 
tegration to restrictions on the parameters of the levels VAR, whereas we consider the moving 
average representation of the dth difference. 
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Section 2), write zt as zt = G(L)vt, where G(L) is a block lower triangular 
matrix and vt = (eo?' 1, el' t, e ' . . ., 1,, t'1),, where eo = Et and where (/ is t , , 

defined recursively by ei = t= 1 for i > 1. Also, let gi denote the dimen- 
sion of zi, and let g = E21gi be the dimension of zt. 

With these definitions, the system (3.5) can be rewritten, 
(3.6) Ad-l+ Ytl = (Zt ? Ikl)8 + Vt 

where E(v'lz) = 0 for all t and T. The regression coefficients 83 in (3.5) are 
related to the coefficients 8 in the transformed regression (3.6) by /3= 
(B' I 0k1)8. Because the parameters of interest (the cointegrating parameters) 
are the coefficients on the integrated elements of zt, it is convenient to partition 
the gkl-vector 8 as 8 = (81 8'2, 81)', where Si is the gikl-vector of coeffi- 
cients on z t. 

4. ESTIMATION AND TESTING 

This section examines the least squares estimation of the parameters 8 in 
(3.6). There are two natural estimators of 8. Because the regressors zt are 
uncorrelated with the errors vl, the first estimator is the OLS estimator in the 
dynamic regression (3.6) (the DOLS estimator), which is 

(4.1) 8OLS [(EzTz) ?k] k (Z t k,)(AYt) 

where these and subsequent summations run over the sample used for the 
regression, leaving sufficient observations for initial and terminal conditions for 
the leads and lags of the data in zt. 

Because the error term in (3.6), vi - cl(L)et, is serially correlated and 
uncorrelated with the regressors at all leads and lags, a second natural estimator 
is the feasible GLS estimator of the dynamic regression (3.6) (the DGLS 
estimator). Let P(L) be a k, x k, lag polynomial such that 

0( L) cl( L) cl( L - 1)' (L -1)' = 
Ikl, 

and let ?(L) be an estimator of P(L). Then the DGLS estimator is 

(4.2) 8GLS [Eitjt iAdE + 1t] 

where iZ = [O(LXz' ? Ikd1' and y 1 = O(L)yl. In principle ?(L) can always be 
constructed as the inverse Fourier transform of the inverse of the Cholesky 
factor of c1(e`i)c,(ei)Y. In general this will yield a two-sided polynomial ?(L). 
In practice, a simple strategy is to model ?(L) as being one-sided and finite 
order and this is the case studied in the formal analysis of the DGLS estimator 
in this section. 

Associated with the DGLS estimator is the Wald statistic testing the h 
restrictions RS = r (where R and r have dimensions h x gkl and h X 1, respec- 
tively), 

(4.3) WGLS =(RGLS- r)[R( Eiti;) R'] -(RGLS-r) 

Because the disturbance in (3.6) is serially correlated, the Wald statistic for AOLs 
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must be constructed using a modified covariance matrix. When the hypotheses 
of interest do not involve the coefficients on the mean-zero stationary regressors 
in (3.6), this is the spectral density matrix of vu at frequency zero, U,1= 
cl(1)cl(1)', estimated by (say) U,,. That is, 

(4.4) WOLS= [R&OLS-r]'{R[(Eztz )? l]R'} [ R OLS-r ] 

The next four theorems, proven in Appendix A, summarize the asymptotic 
distributions of these statistics. To prove these theorems, we strengthen some- 
what Assumption A, which was used to derive the triangular representation. 

ASSUMPTION C: (i) max supt E(e4itet-Pet-2,...) < oo. (ii) F(L) in (3.1) is 
d + 2 summable. 

Assumption C(i) strengthens A(i) to include finite fourth moments, and 
Assumption C(ii) fixes k in A(ii) to be k = d + 2. Let the matrix Gmm(L) denote 
the mth diagonal block of G(L) (where zt = G(L)vt) and let Em = Gmm(1)M', 
for m = 3, 5,..., 21 - 1, where M is a (n - kl) X n matrix with rows that span 
the null space of the rows of P(1)cl(l) and MM' = In-kl Also let [ I denote the 
greatest lesser integer function and " = " denote weak convergence on D[O, 1]. 
Finally, define the g x g scaling matrix TT to be a block diagonal matrix 
partitioned conformably with zt, with diagonal blocks TIT= T1/21g1 and TiT= 
T('- 1 g2I for i > 2. 

THEOREM 1: Suppose that yt has the representation (3.1), that Assumptions A, 
B, and C hold, that ?P(L) is one-sided with known finite order q, and that P(L) 
is a consistent estimator of P(L) (that is, i i = O, . . ., q). Then (TT? 
1kl)(8GLS - 6) Q *- 14, where after partitioning Q and 4 conformably with 8: 

Qjj=Ef1f-', where 21= [P(L)(z1'0Ikj)]v Qlj=QS1=0, j>2, 
and 

Qij=1Kj?U-71 for i,j> 2, where V22 =1, 

Vm p = Fm [ft Wl(m - 1)/2 (s) Wl(P - 1)/2 (s)' dS ]rp, 

m = 3,5,7,...,21- 1; p = 3,5,7,...,21- 1, 

Vmp = Gmm(1) [s(m - 2)/2 Wi(p - 1)/2 (s)' ds ]pf = Vp'm' 

m = 2,4,6,...,21; p = 3,5,6,...,21- 1, 

Vmp = [2/(p + m - 2)]Gmm(l)Gpp(l)', 
m = 2,4,6,...,21; p = 2,4,6,...,21, 

4)1 N 0(, E I Zt Zt ]) 

'km = fl(Gmm(1)(m-2)/2 s P( 1)') dW2(s), m = 2,4,6, ... v21, 

0)m= (rWlm- )/(s) @ P(1)') dW2(s) m = 3 5, 7,... 1 -1 
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where W1 and W2 are independent standard Wiener processes of dimension 
El'ikm and k,, respectively, where Wi(m)(r)fJrWi(m-l)(s)ds m=2,3,...,g 
initialized with Wi1 = Wi for i = 1, 2, and where d? is independent of W1 and Om, 
m > 1. 

THEOREM 2: Suppose that yt has the representation (3.1) and that Assumptions 
A, B, and C hold. Then: 

(a) (TT ? 'k1)(6OLS 
- 6) [VW1 Ikl ]W where after partitioning V and w con- 

formably with 6: 
00 

N(0 ),where E [E(zlz"j) E(vlv ) 
J= -00 

= f (Gmm(1) s(m 2)/2Q 2)dW2(s), m=2,4,6, ... . 21, 

&)M= Fl(M W,(m )/2(s)? 2)dW2(s), m=3,5,7, ..., 21-1, 

where a)1 is independent of W1 and wnmy m > 1, and where V= [Vij], i,= 
1,2,...,21, where V1, =E(zlz '), V1j=0, j>2, and Vij, i,j>2 are given in 
Theorem 1. 

(b) Partition 6 = (61, '* ) so that 6, denotes the g1kl elements of 6 correspond- 
ing to z1 and 6 * corresponds to the remaining (g - g1)k, elements of 8. Similarly 
partition 6OLS' 6GLS' z =( (z1, 4*')', and TT = diag(T1r* T ) If in addition 
?P(L) and P(L) satisfy the assumptions of Theorem 1, then (T* T 0 1k1)(6 * OLS - 

* GLS) A. 

THEOREM 3: Under the conditions of Theorem 1, WGLS Xh- 

THEOREM 4: Suppose that the conditions of Theorem 2 hold, that the first g1kl 
columns of R equal zero, and that Ql, A Qll. Then WOLS Xh. If in addition the 

p 
conditions of Theorem 1 are satisfied, then WOLS - WGLS ?b 0. 

Note that P(L) must be finitely parameterized to implement the DGLS 
estimator. Although this is not strictly needed to compute the DOLS estimator, 

l,, = cl(1)cl(1)' must be consistently estimated to construct WOLS, which in 
practice entails estimating a parametric or truncated approximation to Qll. 

The asymptotic equivalence of the DOLS and DGLS estimators of 8 * 
(Theorem 2(b)) is a consequence of the trends in zt: for m > 2 the GLS-trans- 
formed regressors are asymptotically collinear with their untransformed coun- 
terparts. This result extends the familiar result for the case of a constant and 
polynomial time trend (Grenander and Rosenblatt (1957)). Results similar to 
Theorems 1-4 are obtained by Phillips and Park (1988) for single equation 
static OLS regressions with strictly exogenous I(1) regressors. 

In practice, the coefficients of interest usually are the original coefficients X3 
in (3.5) rather than 8. The distribution of A3GLS is obtained using (I3GL - A3) = 

(B' ? Ik1X8GLS - 8), and similarly for I3OLS (recall that 8 = (B' ? Ik,)8). More- 
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over, the Wald statistic testing RS = r equivalently tests Pf3 = r, where P = 

R(B' 1 ( Ik,). Theorem 3 implies that WGLS is asymptotically x2 for all R, so 
the Wald statistic testing Pf3 = r is asymptotically x2 for all P. When Pfl - r 
places no restrictions on coefficients that can be written as coefficients on 
mean-zero stationary regressors, Theorem 4 implies that the Wald test of 
Pf3 = r based on J3OLS (with an autocorrelation-robust covariance matrix) is 
asymptotically x2. Importantly, this result, that the Wald statistic testing restric- 
tions on cointegrating vectors is asymptotically x2, applies whether or not the 
integrated regressors have components that are polynomials in time. However, 
the limiting distribution of the estimator itself will differ depending on whether 
time (say) is included as a regressor and whether some of the regressors have a 
time trend component; for specific examples in the I(1) case, see West (1988) 
and Hansen (1989). 

These theorems apply to models with a fixed number of regressors (Assump- 
tion B). Conceptually, one could view these estimators as semiparametric by 
embedding the parametric regression in a sequence of regressions where the 
number of regressors increase as a function of the sample size. A formal 
treatment of this extension would entail generalizing the univariate 1(0) results 
of Berk (1974) and the univariate I(1) results of Said and Dickey (1984) to the 
I(d), vector-valued case, an extension not undertaken here. In the d = 1 case, 
this result was obtained by Saikkonen (1991) who showed that, if the number of 
included leads and lags grows at rate TA, where 0 < A < 1/3, then the model 
misspecification induced by the truncation of the dlm(L) polynomials vanishes 
asymptotically so these theorems continue to hold. He also demonstrated that in 
the d = 1 model, the DOLS and DGLS estimators are asymptotically efficient 
and asymptotically equivalent to the Johansen (1988a)/Ahn and Reinsel (1990) 
Gaussian MLE's constructed from a vector error correction model. For addi- 
tional discussion of efficiency in the d = 1 case, see Phillips (1991a). 

5. EXAMPLES 

The following examples explore specification and inference with DOLS and 
DGLS in I(2) systems. To simplify exposition, all deterministic terms are 
omitted and their coefficients are taken to be zero. From (3.2), the general I(2) 
model is 

(5.la) A2yl =ul 

(5.lb) Ay2 = 0,1,Ayl + u2, 

1) 3=01 jY+ 0?0Y1+ 002Y + U3 (5.1c) Yt 3It 3Iy +ut . 

Some of the 0's can have rows of zero, or be zero, and the second block of 
equations might not be present at all (if so, k2 = 0). These possibilities are 
examined here by considering a series of special cases with k2 = 0 or k2 = 1; 
more general cases can be analyzed by combining these special cases. 
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Case 1: k2= 0. Then (5.lb) does not appear in the system and y2 does not 
enter (5.lc). Elements of yt3 corresponding to rows of zeros in 00? and 031 are 
1(0) (these variables do not enter any cointegrating relations), those correspond- 
ing to rows of zeros in 03? 1 but not 01,1 are I(1), and the remaining elements are 
1(2). The dynamic OLS and GLS estimators of (06 1, 0 1) are asymptotically 
efficient and inference is x2. 

Case 2: k2 = 1, 1 known. Then the estimation equation (3.4) becomes 

(5.2) 3y = 0,1 Ayl + 0? y + 00 y2 

+ d 31(L)2 jy + d32(L)(Ay7 - 021Ayl) + V3 

where EVt3U and Ev3u2' are zero for all t, s. Because 0, 1 is known, the 
regressors A2yl, Ay2 - 02 1Ay', and their leads and lags are I(0) with mean 
zero, so these comprise zl. Because y' and yt are CI(2, 1), we can set 
Z3 = (Aylt, y2 - 0 Iyt 1Y) and z4 = y (other assignments of zt are possible but 
they produce the same distributional results). The coefficients on Z3 and Z4 are 
respectively 83 = (1',823)' = (Ot'1, 03 2) and 85 = 0+0 102 so 

0 2=63, and0 = - 0 13. Because (83 35) converge at rates (T, T2) 1 
032o A2 ad3,1 

= 6 
2,1'2~ T) 3,1, 

3,2 and A0 individually converge at the rate T. Jointly, (0Ao + 

03,2 2 03,2 1) converge at rates (T2, T, T). The estimators are asymptotically 
efficient and inference is x2. These results hold for 01 known, whether or not 

1 = 0. 

Case 3: k2 = 1, 02,1 unknown. In this case there are cross-equation restric- 
tions between (5.lb) and (5.lc) so that in general the DOLS and DGLS 
estimators are not efficient. Nonetheless, the dynamic OLS and GLS estimators 
have desirable properties. With 0, 1 unknown, Ay 2 - 0'2 Ay, cannot be used as 
a regressor and the estimation equation (5.2) becomes 

(5.3) yt3 = (01,1 - d32(1)021)Ayt + d32(1),Ay2 + 0,lyl + 2 

+ (d3l(L) -d*2(L)02, l)A2y Y + d*2(L) A2y2 + V? 

where d*2(L) = (1 - L)-(d32(L) - d32(1)). Because A2yl is 1(0) and A2y2 is 
either 1(0) (if 02 1 0 0) or I(- 1) (if 01 = 0), and because both have mean zero, 
their presence does not affect the asymptotic distribution of the other estima- 
tors and they will be ignored in this discussion. Whether or not 01, = 0, a valid 
assignment of zt iS Zl = Ay2 y 01, ly 3 = (Aylt, y2 - 02 1 and 5 = y . 

Evidently 03 1 is not identified from (5.3) alone. Using a consistent estimator of 
21 from (5.1b) to estimate 01,1 would in general result in loss of X2 inference 

(although the resulting estimator would be consistent). However, 0, 1 and 0 2 

are separately identified in (5.3) and individually converge at rate T. Together, 
the coefficients on (Z3, Z4) have an asymptotic mixed normal distribution. 
Moreover, the distribution Of (0? 3, A 32) iS the same as in Case 2, when the true 
value of 02 1 is known. Thus (03 1, 0?,2) are asymptotically efficient even if 0O 1 is 
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unknown, for general O3 .1 The exception to this is the special case of O3,1 
known to be zero, in which case Ay 1 would not enter as a regressor in (5.2) 
were 02 1 known. Even in this case, however, inference on (03, 1, 032) iS X 

6. MONTE CARLO RESULTS 

This section summarizes a study of the sampling properties of seven estima- 
tors of cointegrating vectors in three bivariate probability models. The data 
were generated by the model: 

(6.1a) Ay' = u, 

(6.1b) y2 = oy + u2, 

with P(L)ut = O, ?(L) = I2- PL, vt NIID(O, L;), where ut = (ul, u2)'. The 
true drift in the series is zero. Because ut follows a VAR(1), yt follows a 
VAR(2). Under (6.1), T(O - 0) is invariant to 0 for all the estimators consid- 
ered, so without loss of generality 0 is set to zero. This design, or variants with 
moving average rather than autoregressive errors, forms the basis of several 
previous Monte Carlo studies of estimators of cointegrating vectors (Banerjee et 
al. (1986), Phillips and Loretan (1991), and Hansen and Phillips (1990)). 

The six estimators considered are the static OLS estimator (SOLS; Engle and 
Granger (1987), Stock (1987)), the dynamic OLS estimator 8OLS (DOLS), the 
dynamic GLS estimator 8GLS (DGLS), the zero frequency band spectrum 
estimator of Phillips (1991b) (PBSR), the fully modified estimator of Phillips 
and Hansen (1990) (PHFM), and Johansen's (1988a) VECM maximum likeli- 
hood estimator (JOH). Two serial correlation-robust estimators of the covari- 
ance matrix of the DOLS estimator were considered, one using a weighted sum 
of the autocovariances of the errors (DOLS1), the second using an autoregres- 
sive spectral estimator (DOLS2). To make results invariant to initial conditions 
for the level of yt, a constant was included in all estimation procedures. All of 
the estimators relied on lead and lag lengths that depended only on sample size. 
This makes it possible to examine the consequences of overparameterization 
and truncation bias without the complications which would arise with data 
dependent lag lengths. The details of the construction of the estimators are 
given in the notes to Table I. 

The design (6.1) parsimoniously nests several important special cases. First 
(Case A), when all elements of P except 01P equal zero and L; is diagonal, ytJ 
is strictly exogenous in (6.1b) and SOLS is the MLE (except that the zero 
intercept is not imposed). In this case, all the efficient estimators are asymptoti- 
cally equivalent to SOLS, although they estimate nuisance parameters that in 
fact are zero. Second (Case B), if the second column of P is zero, but '21 A 0 
or I, is not diagonal or both, then SOLS is no longer the MLE and does not 
have an asymptotic mixed normal distribution, but the DOLS, DGLS, and JOH 
estimators are correctly specified and are asymptotically MLE's (again except 
for the estimation of some parameters which have true values zero). In this case, 
PBSR and PHFM are efficient if interpreted semiparametrically. Third (Case 
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C), for general (P and L;, JOH with one lag of Ay, is the MLE and DOLS, 
DGLS, PBSR, and PHFM are asymptotically efficient when interpreted semi- 
parametrically. 

Results for Cases A, B, and C are reported in the respective panels of Table I 
for T = 100 and 300. Panel A verifies that the estimation of the nuisance 
parameters in the asymptotically efficient estimators does not substantially 
impair performance in the special case that OLS is the MLE. Panel B explores 
the performance of the estimators in 22 models in which DOLS, DGLS, and 
JOH are correctly specified. Even when 021 = 0, SOLS can have substantial 
bias; for example, for T = 100 and 401 = -.90, the 5%, 50%, and 95% points of 
the SOLS distribution are -.001, .076, and .196. The DOLS, DGLS, and JOH 
estimators eliminate this bias. The DOLS t statistics tend to have heavier tails 
than predicted by the asymptotic distribution theory, particularly when the 
regressor is positively autocorrelated. The PBSR and PHFM estimators tend to 
have biases comparable to SOLS, evident in Table I from the shift in the 
distribution of their t statistics. When this bias is small (for example when 
Oll = 021 = 0), their t statistics have approximately normal distributions. 

Case C (i, X; unrestricted) introduces two additional parameters, and it is 
beyond the scope of this investigation to explore all aspects of this case. Rather, 
it is examined by generating data from a model relevant to the empirical 
analysis in Section 7, specifically a bivariate model of log Ml velocity (v) and the 
commercial paper rate (r), estimated using annual data from 1904-1989 (earlier 
observations were used for initial lags) imposing a long-run interest semielastic- 
ity of .10. The data are discussed in Section 7. While this simple model does not 
provide a full characterization of these data-that is the subject of Section 7-it 
is a useful way to calibrate the Monte Carlo design so that it informs our 
subsequent empirical analysis. The estimated VAR(1) for the triangular system 
(Avt, vt - .10rt) is reported in panel C of Table I. The results for this system 
indicate large bias in SOLS and, to a lesser extent, in DGLS, PBSR, and 
PHFM. DOLS exhibits less bias and, not surprisingly because it is the (over- 
parameterized) MLE in this system, JOH is essentially unbiased. The dispersion 

TABLE I 

MONTE CARLO RESULTS 

A 4t 0 O 1 ] 

T= 100 T = 300 
Estimator Bias(8) o-(6) t05 t95 P(W> 3,84) Bias(8) o-(O) t05 t95 P(W> 3.84) 

SOLS .000 .021 -1.67 1.68 .054 .000 .007 -1.63 1.70 .052 
DOLSi .000 .023 - 1.86 1.87 .083 .000 .007 - 1.69 1.79 .062 
DOLS2 .000 .023 -1.87 1.86 .087 .000 .007 -1.66 1.78 .061 
DGLS .000 .024 -1.80 1.76 .073 .000 .007 -1.64 1.75 .056 
PBSR .000 .021 -1.78 1.81 .073 .000 .007 -1.67 1.76 .060 
PHFM .000 .022 -1.88 1.88 .086 .000 .007 -1.71 1.81 .065 
JOH .000 .025 - 1.98 1.96 .077 .000 .007 - 1.84 1.67 .057 
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TABLE 1. (Continued) 

B. T= 100, ' = ['PI1 ?I' [ 1 .5] 

SOLS DOLS1 DOLS2 DGLS PBSR PHFM JOH 

'P21 'P11 bias(8) t.05 t.95 t.O5 t,95 t 05 t 95 t 05 t 95 t.05 t.95 t.o5 t.95 

0.0 -.90 .084 -1.80 1.84 -1.84 1.84 -1.77 1.77 -1.46 1.69 -1.06 2.98 -1.95 1.83 
-.80 .092 - 1.81 1.84 - 1.85 1.86 - 1.77 1.76 - 1.49 1.74 - 1.17 2.74 - 1.95 1.83 
-.70 .089 - 1.82 1.84 -1.84 1.85 - 1.77 1.76 - 1.52 1.77 - 1.25 2.55 - 1.95 1.83 
-.60 .081 - 1.83 1.84 - 1.85 1.84 - 1.77 1.76 - 1.56 1.78 - 1.31 2.40 - 1.94 1.84 
-.50 .071 - 1.83 1.84 - 1.84 1.84 - 1.77 1.76 - 1.58 1.79 - 1.38 2.32 - 1.95 1.86 

.00 .026 - 1.85 1.83 -1.86 1.83 -1.77 1.77 - 1.76 1.72 - 1.67 2.05 - 1.97 1.90 

.50 .000 - 1.87 1.89 -1.90 1.87 - 1.80 1.77 - 2.05 1.46 - 2.01 1.65 - 1.99 2.01 

.60 -.002 - 1.88 1.89 -1.89 1.89 -1.81 1.80 - 2.15 1.34 - 2.11 1.55 - 1.97 2.01 

.70 -.003 - 1.88 1.91 - 1.91 1.91 - 1.82 1.82 - 2.25 1.25 - 2.21 1.42 - 1.96 2.05 

.80 -.003 - 1.92 1.94 - 1.91 1.94 - 1.81 1.82 - 2.36 1.13 - 2.33 1.28 - 1.97 2.04 

.90 -.002 - 1.90 1.93 - 1.93 1.94 - 1.85 1.83 - 2.45 1.04 - 2.42 1.15 - 1.99 2.02 

0.8 -.90 - 2.83 - 1.80 1.84 - 1.84 1.84 - 1.77 1.77 - 0.58 1.23 - 3.80 0.69 - 1.90 1.79 
-.80 -.078 - 1.81 1.84 - 1.85 1.85 - 1.77 1.76 -0.77 1.46 - 1.80 1.34 - 1.90 1.79 
-.70 .007 - 1.82 1.84 - 1.84 1.85 - 1.77 1.75 -0.86 1.62 - 1.31 1.75 - 1.91 1.79 
-.60 .048 - 1.83 1.84 - 1.85 1.84 - 1.77 1.76 - 0.94 1.73 - 1.15 2.00 - 1.91 1.79 
-.50 .068 - 1.83 1.84 -1.84 1.84 - 1.77 1.76 -0.98 1.82 - 1.09 2.13 - 1.92 1.79 

.00 .065 - 1.85 1.83 - 1.86 1.83 - 1.77 1.77 -1.08 2.08 - 1.09 2.28 - 1.97 1.80 

.50 .028 - 1.87 1.89 -1.89 1.87 - 1.80 1.77 - 1.14 2.18 - 1.16 2.30 - 2.00 1.84 

.60 .021 - 1.88 1.89 - 1.89 1.89 - 1.81 1.80 - 1.15 2.20 - 1.18 2.30 - 2.01 1.85 

.70 .015 -1.88 1.91 -1.91 1.91 -1.82 1.82 - 1.17 2.19 - 1.19 2.31 - 2.00 1.87 

.80 .010 - 1.92 1.94 - 1.91 1.94 - 1.81 1.82 - 1.24 2.16 - 1.23 2.30 - 2.03 1.84 

.90 .005 - 1.90 1.93 - 1.93 1.94 -1.85 1.83 - 1.45 2.18 - 1.38 2.36 - 1.98 1.87 

[.-. '103 -.0391 F951 49xi- 
[-.062 .643] 4[.499 1.374] 

T= 100 T = 300 

Estimator Bias(8) o-(6) t.05 t 95 P(W> 3.84) Bias(8) o-(b) t.05 t.95 P(W> 3.84) 

SOLS .085 .120 - 1.95 5.16 .466 .033 .045 - 1.90 5.29 .483 
DOLS1 .026 .125 - 2.10 2.71 .188 .007 .041 -1.79 2.32 .118 
DOLS2 .026 .125 - 1.72 2.25 .111 .007 .040 - 1.55 1.97 .071 
DGLS .045 .131 - 1.52 2.35 .111 .012 .042 - 1.43 2.08 .076 
PBSR .039 .123 -1.83 2.79 .180 .012 .041 -1.64 2.41 .122 
PHFM .041 .122 - 1.91 3.01 .206 .011 .041 -1.69 2.46 .131 
JOH .003 .330 - 2.40 2.07 .095 - .001 .044 - 1.97 1.75 .064 

Notes: Bias (6) and o-(b) are the Monte Carlo bias and standard deviation of 6, respectively. t.o5 and t.95 are the empirical 
5% and 95% critical values of the t ratios, and P(W> 3.84) is the percent rejections at the asymptotic 5% level of the test 
statistic testing 6 = 00 which, for all but JOH, is the square of the t statistic, and for JOH is the likelihood ratio statistic. 
5000 Monte Carlo replications were used. The number of observations (100 and 300) refer to the span of the regressions; 
100 startup observations, plus terminal conditions as needed, were also generated. All regressions included a constant in 
addition to the terms listed below. The estimators are: 

SOLS-Static OLS regression of y2 on y . 
DOLS1-Dynamic OLS regression of y,2 on (ytl,AyYl, Ayl? 1. A .y1?k), where k = 2 for T= 100, k = 3 for T= 300. 

The covariance matrix is estimated by averaging the first r error autocovariances using the Bartlett kernel, where r = 5 for 
T= 100, r= 8 for T= 300. 

DOLS2-Same as DOLS1 except that the covariance matrix is estimated by an autoregressive spectral estimator with 2 

lags for T = 100, 3 lags for T = 300. 
DGLS-Dynamic GLS regression of y, on (Y1, Ayl,A yl ? 1, . A y k), where k = 2 for T = 100, k = 3 for T = 300. The 

errors were modeled as an AR(2) for T = 100 and AR(3) for T= 300. 
PBSR-Phillips (1991b) band spectral regression, where the spectral density at frequency zero was estimated using the 

Bartlett kernel with 5 lead and lags for T = 100 and 8 lead and lags for T = 300. 
PHFM-Phillips-Hansen (1990) fully modified estimator using the Bartlett kernel with 5 lead and lags for T = 100 and 8 

lead and lags for T = 300. 
JOH-Johansen (1991) VECM MLE based on the estimated model yt = y__ + Eyaky - A,Ay + a, where k = 4 for 

T= 100 and k = 6 for T= 300. 
The DOLS and DGLS standard errors were computed using a degrees-of-freedom adjustment, specifically df = number 

of periods in the regression minus number of regressors in the DGLS or DOLS regression minus number of autoregressive 
lags in the GLS transform (DGLS) or AR spectral estimator (DOLS). The JOH standard errors were computed as 

described in Watson (1992) with a degrees-of-freedom adjustment (df = number of periods in the regression minus number 
of regressors in a single equation of the VECM). The degrees-of-freedom corrections are motivated by analogy to the 
classical linear regression model. No adjustments were made for PBSR or PHFM. 
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of the distributions are comparable, except for the JOH estimator which has 
some large outliers for T= 100. The x2 approximation to the Wald statistic 
(testing 0 = .10) works best for JOH, next best for DOLS2 and DGLS, less well 
for the remaining efficient estimators. 

To interpret the DOLS and DGLS results, it is useful to write (6.1) in the 
triangular form (2.1a) and (2.2). Write the VAR(1) for ut as I(L)ut = t where 
IF(L)= 

- 
1/2?(L) and Et =71/2;t, so that E(EtEt)=I. Then Ay' has a 

univariate ARMA(2, 1) representation, say I W(L) 1Ay = K(L)a', where K(L) is 
the first degree polynomial with its root outside the unit circle that solves 
K(L)X11 K(L - l) = 122(L)t22(L - 1) + WI/L2(L)'I12(L-). The projection of y t 
Oyl onto {Ay'} is d(L),Ayl; for this design d(L) = -[V21(L)1122(L-1) + 

- - ~~~~~~~~~~~~~~~~~~~~~~2 iI11(L)If2(L -1)][K(L)K(L- 1)]-1. Finally, the residual from this regression, Vt, 
follows the AR(1) model K(L)vU = at. Thus K(L) dictates both how quickly the 
coefficients on leads and lags of Ay' in the DOLS/DGLS regressions die out 
and the degree of serial correlation in the regression error. In Cases A and B, 
K(L) = 1, and the DOLS/DGLS regressions have no omitted variables. In Case 
C, K(L)_ 1 -.66L so the true d(L) is infinite order but the DOLS/DGLS 
regressions include on 2(T = 100) or 3(T = 300) leads and lags of Aytl. 

The results from the experiments can be summarized as follows. First, SOLS 
is biased in almost all trials, with nonstandard distributions for the estimator 
and test statistics. Second, DOLS and DGLS are unbiased for Cases A and B, 
but exhibit bias in Case C, although this diminishes when the sample size 
increases. The relatively large root of K(L) suggests that the bias is attributable 
to the truncation of d(L) in the DOLS/DGLS regressions.3 Third, in results 
not shown in the table, doubling the number of leads and lags for DOLS and 
DGLS and the order of the AR correction for DGLS has little effect in Cases A 
and B and reduces the bias in Case C. However, doubling the number of lags 
and the AR order increased the dispersion of the DOLS and DGLS statistics. 
Fourth, the PBSR and PHFM bias has the same sign as, but is somewhat less 
than, the SOLS bias. A possible explanation is that both PBSR and PHFM rely 
on initial biased SOLS estimates of 0, which results in inaccurate spectral 
density estimates subsequently used to compute PBSR and PHFM. Fifth, for 
Case C (where the error is highly serially correlated) the autoregressive spectral 
estimator used in DOLS2 produces a more normally-distributed t statistic than 
does the kernel estimator used in DOLS1. Sixth, tripling the sample size 
noticeably improves the quality of the asymptotic approximations. 

These results suggest four conclusions. First, each estimator (except the 
correctly-specified JOH) has substantial bias in at least some of the simulations, 
although the bias is in each case less than for SOLS: no single estimator is. a 
panacea. Second, the distributions of the t ratios tend to be spread out relative 
to the normal distribution, suggesting that the usual confidence intervals will 

3This interpretation is supported by an additional Monte Carlo experiment in which Ay' was 
replaced by [K(L)K(L-1)]Ay'. (Of course in an empirical application K(L) would be unknown.) 
This eliminates nearly all of the bias: for T = 100, the bias falls from .026 to -.006 for DOLS and 
from .045 to -.008 for DGLS. 



COINTEGRATING VECTORS 799 

overstate precision. Third, in Case C each estimator has shortcomings: the 
DGLS, PBSR, and PHFM estimators are substantially biased, and the JOH 
estimator, while unbiased, has an empirical distribution with a much greater 
dispersion than the other efficient estimators; DOLS has the lowest RMSE. 
Fourth, of the autoregressive and kernel estimators used to compute the DOLS 
covariance matrix, t statistics based on the former have distributions closer to 
their asymptotic N(0, 1) approximation. The DOLS standard errors reported in 
the empirical analysis in Section 7 therefore are based on the autoregressive 
covariance estimator. 

7. APPLICATION TO THE LONG-RUN DEMAND FOR MONEY IN THE U.S. 

The long-run demand for money plays an important role in the quantitative 
analysis of the effects of monetary policy. Unfortunately, estimates of long-run 
income and interest elasticities obtained using postwar data have been sensitive 
to the sample period and specification (see the reviews by Laidler (1977), Judd 
and Scadding (1982), and Goldfeld and Sichel (1990)). In his review of this 
research and of early work by Meltzer (1963), Lucas (1988) presented informal 
but highly suggestive evidence that this apparent sensitivity resulted not from a 
breakdown of the prewar long-run Ml demand relation, but from the lack of 
low frequency variation in the postwar data. This section examines this interpre- 
tation using the econometric techniques for the analysis of cointegrating rela- 
tions developed in this paper and elsewhere. Our analysis focuses on the annual 
data studied by Lucas (1988), extended to cover 1900-1989, although results for 
postwar monthly data are also presented to permit a comparison with other 
studies. This section addresses two questions. First, is there a stable long-run 
Ml demand equation spanning 1900-1989 in the United States? Second, what 
are the income elasticity and interest semielasticity, and how precisely are they 
estimated?4 

A. Results for annual data. The annual time series are Ml (in logarithms, m), 
real net national product (in logarithms, y), the net national product price 
deflator (in logarithms, p), and the commercial paper rate (in percent at an 
annual rate, r). Data sources are given in Appendix B. Real Ml balances 
(m -p, plotted with y in Figure la) grew strongly over the first half of the 
century, but experienced almost no net growth over most of the postwar period. 
Over the entire period, velocity (y - m + p) and r (plotted in Figure lb) exhibit 

4Most empirical analyses of money demand predate the literature on cointegration. Exceptions 
are Hoffman and Rasche (1991), who apply Johansen's (1991) estimator to monthly U.S. Ml data 
from 1953 to 1987, and Johansen and Jeuslius (1990), who apply Johansen's procedure to the 
long-run demand for money in Denmark and Finland. Baba, Hendry, and Starr (1992) focus on 
short-run U.S. Ml demand (1960-1988, quarterly), but a preliminary step is their estimation of 
long-run Ml demand using a single equation error correction model (the "NLLS" estimator). With 
the same purpose and methodology, Hendry and Ericsson (1991) present results for the U.K. as well 
as the U.S. Related results for the U.S. are reported in Miller (1991). Hafer and Jansen (1991) 
investigate long-run money demand (Ml and M2) for the U.S. using Balke and Gordon's (1986) 
quarterly data and Johansen's estimator. 
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1900-1989. 

FIGURE 1 

strikingly similar long-run trends, dropping from the 1920's to the 1930's, 
growing from 1950 to 1980, then declining after 1981. 

Inspection of these figures suggest that real balances, output, velocity, and 
interest rates might be well modeled as being individually integrated, and 
formal tests summarized in Appendix B support this view. Specifically, Dickey- 
Fuller (1979) tests of one or two unit roots, augmented Dickey-Fuller tests for 
cointegration, and Stock-Watson (1988) tests of the number of unit roots in 
multivariate systems are consistent with the following specifications: m -p is 
I(1) with drift; r is I(1) with no drift; y is I(1) with drift; and (m -p), y, and r 
are cointegrated. The tests also suggest that r - Ap is I(0). Whether p and m 
are individually I(1) or 1(2) is unclear: the inference depends on the subsample 
and the test specification. Because rt is nonnegative, characterizing rt as I(1) 
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raises conceptual difficulty. Our decision to do so is driven by the empirical 
evidence that rt exhibits considerable persistence; in any event, this I(1) speci- 
fication is consistent with interest rate specifications used by other researchers 
(e.g., Campbell and Shiller (1987) and Hoffman and Rasche (1991)). 

The applicability of the DOLS and DGLS estimators to I(1) and I(2) systems 
makes it possible to estimate Op in the nominal Ml cointegrating relation, 
m = Op P - Oy y - Orr, and to test whether Op = 1. Based on the foregoing charac- 
terizations of the integration and cointegration properties of these series, we 
consider three specifications. In each rt is modeled as I(1) and mt - opPt - 
oyyt - Orrt is modeled as 1(0). First, if m and p are I(1), then (m, p, y, r) 
constitute the I(1) system analyzed in Section 2 with one cointegrating vector, 
extended to nonzero drifts, and inference on (0Y, Or, 09p) using DOLS or DGLS is 
x . Second, if m and p are I(2) and (r, Ap) are not cointegrated, then this is an 
I(2) system with y p=Pt, yt2= (yt,rtY, and y3 =mt' where O' o = 1 =? 

3 2=(OyOr), and 0 1 = op. This is Case 2 in Section 5 (with 01 1 = 0), and 
inference is x2. Third, if p is I(2) and if, as the evidence suggests, the real rate 
r - zip is I(0), then this is an extension of Case 2 in Section 5, with yl =Pt, 

2 = I ol 00 =00 p and 00=( Y hnA t23(yt, A -1r)',01 1= (0,1)', = OrI 3 p, rn O2=(,0). Then , 

-2A,1 O Ay=(yt,r -Apt)'. Following the discussion in Section 5, inference 
based on DOLS or DGLS is x2. 

Estimates for the four-variable system are reported in Table II for these three 
specifications. The sample periods in Table II and subsequent tables refer to the 
dates over which the regression are run, with earlier and later observations used 
for initial and terminal leads and lags as necessary. The estimates of Op do not 
differ from 1 at the 10% (two-sided) level in any of the specifications. In all 
cases, OY is statistically indistinguishable from 1 at the 10% level. In most cases 
OY is imprecisely estimated, with standard errors in the range 0.12-0.27. To be 
consistent with economic theory and with the rest of the money demand 
literature, we henceforth impose Op = 1 and study in more detail the estimation 
of OY and Or. 

Estimates of cointegrating vectors in the system (m - p, y, r) are presented in 
panel A of Table III. The estimators are those studied in the Monte Carlo 
experiment, plus the single-equation nonlinear least squares estimator (NLLS), 
which is used by Baba, Hendry, and Starr (1992) to estimate their long-run Ml 
demand equation. The full-sample estimates are similar across estimators and 
none of the efficient estimators reject the hypothesis that Oy= 1 at the 10% 
level.5 The remaining columns examine the stability of the estimates over two 
subsamples, 1900-1945 and 1946-1989. The subsamples were chosen both 
because of the natural break at the end of World War II and because they 
divide the full sample nearly in two. Using only the first half of the sample, with 
the exception of DGLS and JOH the efficient estimators provide smaller 

5Our static OLS estimates differ slightly from those presented in Lucas (1988) because of 
transcription errors in his original data set, now corrected. We thank Lucas for bringing these errors 
to our attention. 
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TABLE II 

ESTIMATED COINTEGRATING RELATIONS: mt = /, + Oppt + Oyyt + Orrt 

Specifications: 
I. Pt, r,, y,, I(1) and not cointegrated: 

m, = ,u + opp, + oyy, + Otrr + dp(L)p, + dy(L)Ay, + dr(L)Ar, + et. 

II. p,I(2), r, and y,I(1), and (r,, A p,) not cointegrated: 

mt = ,u + 0pp, + oyy, + ORr r + dp(L) A2 + dy(L)Ay, + dr(L)Ar, + et. 

III. For p, 1(2), r, and y, I(1), and r, - p, I(0): 

m, = ,u + opp, + oyy, + Orrt + dp(L) A2pt + dy(L)Ay, + dr(LXr, - Ap,) + et. 

Estimates (Standard Errors) 
Sample No. Leads 

Specification Estimator Period and Lags OP OY Or 

I DOLS 1903-1987 2 1.119 0.858 -0.114 
(0.202) (0.168) (0.017) 

DOLS 1904-1986 3 1.159 0.831 -0.122 
(0.234) (0.191) (0.018) 

DGLS 1903-1987 2 0.997 0.685 - 0.034 
(0.194) (0.237) (0.015) 

DGLS 1904-1986 3 1.105 0.890 - 0.115 
(0.159) (0.133) (0.015) 

II DOLS 1904-1987 2 1.163 0.841 -0.114 
(0.249) (0.208) (0.021) 

DOLS 1905-1986 3 1.277 0.754 -0.125 
(0.290) (0.238) (0.023) 

DGLS 1904-1987 2 1.022 0.725 - 0.032 
(0.205) (0.241) (0.016) 

DGLS 1905-1986 3 1.140 0.723 - 0.062 
(0.228) (0.265) (0.023) 

III DOLS 1904-1987 2 0.981 0.972 - 0.086 
(0.190) (0.158) (0.017) 

DOLS 1905-1986 3 1.051 0.922 - 0.095 
(0.185) (0.151) (0.016) 

DGLS 1904-1987 2 0.854 0.671 - 0.002 
(0.217) (0.263) (0.014) 

DGLS 1905-1986 3 1.087 0.917 - 0.098 
(0.141) (0.115) (0.013) 

Notes: di(L) = Sk kdijLJ , where k is the number of leads and lags listed in the fourth column. Standard errors are in 
parentheses. An AR(2) error process was used to implement the GLS transformation for the DGLS estimator and to 
estimate the DOLS covariance matrix when k = 2, and an AR(3) was used for k = 3. The shorter regression periods for 
k = 3 than for k = 2, and for specifications II and III than for specification I, allow for necessary initial and terminal 
conditions (leads and lags). 

income elasticities and comparable interest elasticities than over the full sample, 
but the differences are slight. In sharp contrast to the first-half estimates, the 
postwar estimates in Table III differ greatly across estimators. The SOLS, 
DOLS, PBSR, and PHFM estimates are close to zero, and the NLLS and 
JOH(3) elasticities have the "wrong" sign. The JOH estimator is highly sensitive 
to the number of lagged first differences used. (Likelihood ratio statistics testing 
2 vs. 3 lags in the VECM reject for the full and postwar samples, and thus 
suggest relying on the JOH(3) estimates.) 

The final set of estimates refer to the system (m -p, y, r*), where r* is the 
commercial paper rate passed through a low-pass filter; the results in Table III 
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TABLE III 

MONEY DEMAND COINTEGRATING VECTORS: 

ESTIMATES AND TESTS, ANNUAL DATA 

Dynamic OLS/GLS estimation equation: 

mt Pt = A + oyy, + Orr, + dy(L)Ayt + dr(L)Art + et. 

A. Point Estimates (Standard Errors) 
1903-1987 1903-1945 1946-1987 1946-1987 

Estimator 0y or 6y or 0y or y or* 

SOLS 0.943 -0.083 0.919 - 0.085 0.192 -0.016 0.410 - 0.046 
NLLS 0.856 -0.110 0.897 0.014 -0.435 0.082 0.297 - 0.023 
DOLS 0.970 -0.101 0.887 -0.104 0.269 -0.027 0.410 - 0.047 

(0.046) (0.013) (0.197) (0.038) (0.213) (0.025) (0.319) (0.042) 
DGLS 0.829 -0.051 1.166 -0.084 0.951 -0.020 1.170 -0.091 

(0.135) (0.015) (0.199) (0.031) (0.307) (0.009) (0.131) (0.013) 
PBSR 0.965 -0.097 0.866 -0.098 0.216 -0.020 0.366 -0.042 

(0.035) (0.010) (0.099) (0.018) (0.091) (0.011) (0.147) (0.019) 
PHFM 0.963 - 0.097 0.899 - 0.094 0.204 - 0.018 0.391 - 0.045 

(0.034) (0.009) (0.083) (0.015) (0.054) (0.006) (0.106) (0.014) 
JOH(2) 0.975 -0.114 0.886 0.058 163.93 - 23.52 -2.174 0.316 

(0.042) (0.013) (0.193) (0.116) (38167.1) (5479.1) (4.024) (0.568) 
JOH(3) 0.994 -0.113 0.839 0.081 -3.140 0.472 -0.393 0.073 

(0.040) (0.012) (0.220) (0.160) (12.63) (1.860) (0.559) (0.082) 

B. Tests for Breaks in the Cointegrating Vector Base on DOLS, 
Break Date = 1946 

Interest No. Leads X2 Wald statistics Point Estimates (Standard Errors) 
Rate and Lags (p-value) 0y or b5y r 

r 2 1.75 1.047 -0.090 -0.500 0.040 
(0.42) (0.164) (0.034) (0.413) (0.045) 

3 1.38 1.059 -0.090 - 0.525 0.040 
(0.50) (0.177) (0.037) (0.481) (0.047) 

r* 2 0.57 0.945 -0.116 -0.349 0.055 
(0.75) (0.183) (0.043) (0.597) (0.081) 

3 1.16 0.943 - 0.117 - 0.551 0.079 
(0.56) (0.180) (0.042) (0.582) (0.079) 

Notes: Panel A: NLLS is the nonlinear least squares estimator; the other estimators are defined in the notes to Table I 
(DOLS here and in subsequent tables is DOLS2 in Table I). JOH(k) is the JOH estimator evaluated using k lagged first 
differences. JOH(3) was computed over regression dates 1904-1987, 1904-1945, and 1946-1987. For the NLLS estimator, 
A(m -p)t was regressed on (m -p),ti,yt-1,r,ti, and 2 lags each of A(m -p)t-i, Ayt.-1, and Art- 1; Oy and Or were 
estimated from the coefficients on the lagged levels. DOLS and DGLS used 2 leads and lags of the first differences in the 
regressions and an AR(2) process for the error. The frequency zero spectral estimators required for PBSR and PHFM were 
computed using a Bartlett kernel with 5 lags. All regressions included a constant. 

Panel B: The statistics are based on the regression, (m -p)t = A + OyYt + O,rrt + -y(Yt-Y,)1(t > T) + 8,(rt - r)1(t > T) 
+ dy(L)Ayt + d,(L)Art, where 1(-) is the indicator function, dy(L) and d,(L) have the number of leads and lags stated in 
the second column, and T = 1945. Regressions with k = 2 were run over 1903-1987, with k = 3, over 1904-1986. The Wald 
statistic tests the hypothesis that 8b = 8 = 0 and has a X2 distribution. The covariance matrix was computed using an 
AR(2) spectral estimator for k = 2 and an AR(3) estimator for k = 3. 

refer to r* produced using a two-sided filter based on the Kalman smoothing 
algorithm and are typical of results based on other low-pass filters.6 This 
smoothed interest rate can be interpreted as a proxy for a long-term rate which, 

6r* was constructed as the two-sided estimate of the permanent component of rt calculated 
using the Kalman smoother for the model rt = r* + ,ult, Ar* = /2t, with (lt, A2d) independent and 
var(Ault)/var(A2t) = 3. Other filters that yield similar results are a one-sided exponentially weighted 
moving average filter with coefficient .95 and the Hodrick-Prescott filter. 
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under the risk-neutral theory of the term structure, is an average of current and 
expected future short rates. The empirical money demand literature is inconclu- 
sive on whether a long- or short-term interest rate is more appropriate. Because 
there is no consistent risk-free long-term rate with constant tax treatment over 
the full sample, using r* provides a way to compare specifications with 
long-term and short-term rates. Although the full-sample estimates (not tabu- 
lated here) change little using r*, using r* rather than r changes the postwar 
estimates substantially. The postwar OLS, DOLS, DGLS, PBSR, and PHFM 
elasticities and (except for DGLS) standard errors are all larger using r*. The 
JOH and NLLS estimates are quite sensitive to using r* rather than r, and the 
differences across estimators remain. 

The differences between the prewar and postwar estimates raise the possibil- 
ity that there has been a shift in the long-run money demand relation. To 
evaluate this and to ascertain the source of the instability in the postwar point 
estimates, we examine four related pieces of evidence. The first consists of 
formal tests of the null hypothesis of a constant cointegrating relation, against 
the alternative of different cointegrating vectors over 1900-1945 and 1946-1989, 
under the maintained hypothesis that the parameters describing the short-run 
relations are constant. These tests, implemented using the DOLS estimator and 
summarized in panel B of Table III, fail to reject the null of no break at all 
conventional significance levels. Although the point estimates of the changes, by 
and br, are large-the income elasticity point estimates are 0.94-1.06 prewar 
and 0.39-0.60 postwar-these shifts are imprecisely estimated and are not 
statistically significant.8 

The second piece of evidence concerns the properties of the cointegrating 
residuals, it = (mO -Pr)- 0yYt - Orrt, which are quite different for the prewar 
and postwar point estimates. Residuals constructed using either the full-sample 
or first-half point estimates are consistent with cointegration, while the residuals 
based on the postwar estimates are not. For example, when ?t is constructed 
using the prewar DOLS elasticities, the sum of the coefficients in a levels AR(3) 
specification for it (with a constant) estimated over 1946-1989 is .49. In 
contrast, the postwar DOLS elasticities yield residuals with greater persistence: 
the corresponding sum of coefficients is .73. More formal evidence is obtained 
by computing the detrended Dickey-Fuller r, statistic using postwar Zt, where 
it is constructed using prewar DOLS elasticities. Because these elasticities are 
estimated from data prior to those used for the test, under the null of 
noncointegration this ?, statistic has the asymptotic univariate demeaned 
Dickey-Fuller distribution. This ?, statistic is -3.29 (2 lagged first differences; 

7 The results in Table III are robust to changes in the details of the computation of each of the 
estimators, in particular: using a Bartlett kernel with 7 lags for PBSR and PHFM, using. 3 rather 
than 2 leads and lags for DOLS and DGLS, and using 1 rather than 2 or 3 lags for JOH. The only 
exception is the postwar instability of the JOH estimates, as discussed below. 

8 The statistics in Table IIIB only consider the possibility of a break in 1946. Recently, Gregory 
and Nason (1991) have computed sequential tests for the stability of the cointegrating coefficients 
with these data, treating the break date as unknown. Using Monte Carlo critical values, they also 
fail to reject the null hypothesis of constant coefficients. 
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with 4 lags, it is - 3.31), and so rejects at the 5% one-sided level, supporting the 
view that the prewar money demand relation cointegrates the postwar series. In 
short, the postwar cointegrating residuals based on the first-half estimates 
exhibit less persistence than those computed using the postwar elasticities. 
However, postwar cointegrating residuals have a smaller standard deviation 
(0.054 over 1946-1987) when computed with the postwar DOLS elasticities than 
they do when computed with the prewar DOLS elasticities (the standard 
deviation is 0.166 over 1946-1987). 

Third, 95% confidence regions for (OY, Or) estimated using DOLS over the full 
sample, the first half, and the second half using r* overlap, and the DOLS 
region computed using r over 1946-1987 nearly overlaps, near the full-sample 
DOLS estimates of (.970, -.101). Because Wald statistics testing hypotheses 
about (oy 1Or) using the efficient estimators have large-sample x2 distributions, 
standard formulae can be used to construct confidence ellipses for (Oys or). The 
estimators for the two subsamples are independent asymptotically (but not in 
finite samples because of short-run dependence in the data and the presence of 
initial and terminal leads and lags). Confidence sets for the subsamples in Table 
III are plotted in Figure 2a-2d for, respectively, the DOLS, DGLS, PBSR, and 
PHFM estimators. In almost all cases, the major axes of the prewar and postwar 
ellipses are approximately orthogonal and the confidence region for the full 
sample is much smaller than for either half. Comparing the DOLS with the 
other confidence regions, however, produces two qualitative differences. First, 
the postwar DGLS region computed using r has different axes and location 
than the other postwar regions. This arises because the estimated GLS transfor- 
mation for DGLS approximately differences the postwar data (the estimated 
AR(2) filter is 1 - 1.39L + .41L2). In effect, this DGLS point estimate is 
determined by covariances between first differences of the data, not their levels, 
which leads us to conclude that this DGLS estimator is not estimating a 
cointegrating relation. Second, although the DOLS confidence sets contain or 
nearly contain (.970, -.101), the postwar sets constructed using the other 
estimators do not. This might correctly reflect better finite-sample precision of 
these estimators relative to DOLS. Alternatively, because the postwar regions 
are based on only 42 observations, the postwar regions for DGLS, PBSR, 
PHFM, and perhaps DOLS, might overstate the precision of these estimators. 
To investigate these possibilities, we performed an additional Monte Carlo 
experiment to check the empirical confidence coefficient of asymptotic 95% 
confidence intervals based on these estimators. Specifically, 42 observations of 
Gaussian pseudo-data (plus initial conditions) were generated from a trivariate 
VECM(2), estimated using the full sample with (m - p, y, r) (including a con- 
stant) imposing the full-sample DOLS elasticities (.970, -.101). Wald statistics 
testing these values of (Oy Or) were constructed using the same kernels, number 
of lags, etc. as in Table III. For each of the estimators, the asymptotic X2 
approximation was found to understate substantially the dispersion under the 
null hypothesis: the Monte Carlo coverage rates for asymptotic 95% confidence 
regions for (Oy Or) for the DOLS, DGLS, PBSR, PHFM, and JOH statistics are, 
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respectively, 57%, 32%, 33%, 14%, and 61%. These large coverage distortions 
diminish as the sample size, and with it the number of lags, increase. For the 
sample size at hand, however, these results strongly suggest that the postwar 
confidence regions in Figure 2-particularly the DGLS, PBSR, and PHFM 
regions-considerably understate the true sampling variability.9 

The fourth piece of evidence concerns the most extreme of the postwar 
estimates, the JOH estimates, and the instability of the JOH estimator with 
respect to the subsample. For example, for samples ending in 1987 and starting 
in 1940, 1942, 1944, 1948, and 1950, the JOH(2) estimates of OY are respectively 
0.04, -0.36, 0.89, 0.56, and 1.33. The postwar VECM likelihood for JOH(3) in 
Table IIIA, concentrated to be a function of (Oys Or), is bimodal for both the 
(m -p, y, r) and (m -p, y, r*) data sets. Inspection of the concentrated likeli- 
hood, plotted in Figure 3 for the (m -p, y, r) data set, yields two conclusions: 
that the JOH MLE's for 2 and 3 lags lie on a ridge that corresponds to the 
major axis of the postwar confidence ellipses in Figure 2, and that the likelihood 
is not well approximated as a quadratic. The shape of this surface is typical for 
JOH estimators for starting dates ranging from 1940 to 1950. This ridge in the 
likelihood therefore explains, in a mechanical sense, the sensitivity of the JOH 
estimates in Table III to the lag length and to the precise subsample. 

These four pieces of evidence lead us to conclude that, despite the large 
differences between the prewar and postwar point estimates, the results support 
Lucas' (1988) conclusion that long-run Ml demand has been stable over 
1900-1989. Using the postwar data alone, the elasticities are imprecisely esti- 
mated. The postwar data are dominated by the 1950-1980 trends in velocity and 
interest rates; as Lucas (1988) pointed out, this requires the estimates to lie on 
the "trend line" given by A( m - P) - Oy A - OrAj = 0 (where A53 is the aver- 
age annual growth rate of yt, etc.). This line constitutes the major axis of the 
postwar confidence ellipses in Figure 2 and the ridge in the postwar VECM 
likelihood in Figure 3. To make this concrete, consider the estimator obtained 
by solving the 1900-1945 and 1946-1989 trend lines uniquely for (Oyt or); the 
resulting estimators are 1.00 and -.147, respectively, strikingly close to the 
full-sample efficient estimates. This "trend line" analysis emphasizes three 
conclusions from the more formal results. First, because the efficient estimators 
of cointegrating vectors exploit this same low-frequency information, albeit in a 
more sophisticated way, the sampling uncertainty of the full-sample estimates is 
considerably less than that based on the prewar and especially the postwar data. 
Second, several such trend lines (or low frequency movements) can be seen in 
the prewar sample, resulting in tighter prewar than postwar confidence regions. 

9 Increasing the number of lags and kernel length does not appreciably improve the coverage 
rates, although increasing the number of observations does. For autoregressive lag length 4 and 
kernel truncation lag 7 (Bartlett kernel) and 42 observations, the DOLS, DGLS, PBSR, PHFM, and 
JOH coverage rates (for asymptotic 95% regions) are: 52%, 46%, 45%, 14%, and 53%. For 250 
observations and the same lag lengths, the respective empirical coverage rates improve to: 83%, 
62%, 61%, 44%, and 87%. These results are based on 1000 Monte Carlo replications. The low 
coverage rates in this trivariate system, particularly for PHFM, are consistent with the size 
distortions in the P(W> 3.84) columns of Table I, panel C, discussed in Section 6. 
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FIGURE 3. -Concentrated vector error correction model likelihood surface in (y,0,r) space, 
1946-1987 (JOH(3) estimator). 

Third, because the postwar data are dominated by a single trend and because 
the growth rate of real Ml balances is nearly zero postwar, a linear combination 
involving y and r alone can eliminate much of their long-term trend; the JOH 
estimator selects such a linear combination, placing small weight on m -p. 
When normalized so that m - p has a unit coefficient, the resulting postwar 
money demand relations are unstable, with the ratio oy/6r' but not the individ- 
ual elasticities, well determined. 

B. Results for postwar monthly data. Cointegrating vectors estimated using 
postwar monthly data on Ml, real personal income, the personal income price 
deflator, and a variety of interest rates are reported in Table IV. Compared to 
the postwar annual results, the income elasticities estimated over 1949:1-1988:6 
are large and there is somewhat less disagreement across the efficient estima- 
tors, with income elasticities ranging from .30 to .89 based on the commercial 
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TABLE IV 

MONEY DEMAND COINTEGRATING VECTORS: ESTIMATES, POSTWAR MONTHLY DATA 

Period: 49:1-88:6 49:1-88:6 60:1-88:6 60:1-88:6 60:1-88:6 
Interest rate: Comm. Paper Comm. Paper* Comm. Paper 90-day T-bill 10-yr T-bond 
Estimator OY 0, OY or OY 6, OY 6, Oy or 

SOLS .272 -.016 .398 -.035 .339 -.017 .362 -.021 .480 -.031 
NLLS .539 -.044 .259 .034 .570 -.030 -.483 -.026 .353 .012 
DOLS .326 -.025 .457 -.044 .398 -.027 .415 -.030 .529 -.037 

(.187) (.026) (.136) (.019) (.208) (.025) (.165) (.020) (.210) (.023) 
DGLS .890 -.008 .525 -.026 1.139 -.009 1.196 -.011 1.046 -.019 

(.203) (.003) (.109) (.007) (.289) (.003) (.269) (.003) (.173) (.003) 
PBSR .302 -.021 .404 -.036 .367 -.022 .389 -.025 .500 -.034 

(.037) (.005) (.045) (.006) (.053) (.005) (.049) (.005) (.052) (.005) 
PHFM .302 - .021 .412 - .037 .370 - .022 .393 - .025 .511 - .035 

(.033) (.004) (.042) (.006) (.048) (.004) (.045) (.004) (.047) (.005) 
JOH .561 - .068 .629 - .076 .520 - .075 .462 - .060 .631 - .067 

(.199) (.032) (.129) (.020) (.202) (.039) (.137) (.024) (.144) (.021) 

Notes: NLLS and JOH used 8 lagged differences of the variables; DOLS and DGLS used 8 leads and lags of the first 
differences in the regressions. An AR(6) error was used for DGLS and for the calculation of the standard errors for DOLS. 
The frequency zero spectral estimators required for PBSR and PHFM were computed using a Bartlett kernel with 18 
(monthly) lags. All regressions included a constant. The "Commercial Paper* rate was constructed using the Kalman filter 
as described in footnote 6 in the text. 

paper rate. The estimates are stable across the choice of interest rate (the 
exception is the DGLS estimates, for which GLS effectively first-differences the 
data, as in the postwar annual estimates). The point estimates agree closely with 
Baba, Hendry, and Starr's (1992) NLLS estimate of .5 obtained over 1960-1988, 
strikingly so since Baba, Hendry, and Starr (1992) used GNP rather than 
personal income, quarterly rather than monthly data, and several additional 
regressors designed to account for shifts in short-run money demand relation. 
They are also comparable to Hoffman and Rasche's (1991) JOH results based 
on Ml, personal income, and 90-day T-Bill data for 1953-1988; the difference 
between their income elasticity of .78 and the JOH estimate in Table IV for 
60:1-88:6 (.46) mainly arises from our use of levels and their use of logarithms 
of the interest rate. 

The relative stability of these estimates across estimators and initial dates 
contrasts with the results based on postwar annual data. Further examination, 
however, reveals that the monthly results are quite sensitive to the final 
regression date. For example, JOH estimates of the income elasticity, estimated 
over 60:1 to the last month in each quarter from March 1984 through June 1988 
using the commercial paper rate (8 lags), range from - 3.00 to 3.54; for the 
NLLS estimator, this range is .29 to 1.08. When computed over 60:1-78:12, the 
JOH, NLLS, and DOLS income elasticities are -.27, -.13, and .11. Compara- 
ble instability is present for each of the interest rates studied in Table IV, 
whether in logarithms or in levels. Because we do not provide uniform critical 
values for tests based on these "recursive" estimates, they do not provide formal 
evidence on the stability of the cointegrating vector estimated with the postwar 
data. Still, this sensitivity to terminal regression dates is consistent with our 
conclusions from the annual data. That is, the data from 1950 to 1982 are 
dominated by the single upward trend in real balances, income, and interest 
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rates, which results in income and interest elasticity estimates which are highly 
negatively correlated and are imprecisely estimated, except that they must lie on 
the trend line which determines their ratio. Only when the most recent data are 
used-the data since 1982 follow a second trend (increasing income, declining 
velocity, and interest rates)-are the estimates more precise with values that are 
comparable across estimators. 

C. Discussion and summary. Our analysis has relied heavily on asymptotic 
distribution theory to construct formal confidence regions and tests, and the 
estimation procedures typically entail the estimation of many nuisance parame- 
ters relative to the sample size. This and the Monte Carlo evidence leads us to 
suspect that the asymptotic standard errors reported here overstate the preci- 
sion of the estimated elasticities, at least for the postwar data. Also, of course, 
this work has not examined the long-run demand for other monetary quantity 
aggregates. 

Even with these caveats, these results suggest three conclusions. First, when 
viewed over 1900-1989, there appears to be a stable long-run Ml demand 
function. Estimated over the entire sample, 95% confidence intervals based on 
the DOLS estimator are, for the income elasticity, (.88,1.06), and for the 
interest semielasticity, (-.127, -.075). Qualitatively similar intervals are ob- 
tained using the other efficient estimators over the full sample. 

Second, these results are consistent with Lucas' (1988) suggestion that there is 
a stable long-run money demand relation over the pre- and postwar periods. A 
key piece of evidence for this is the apparent stationarity of the postwar 
residuals computed using long-run elasticities estimated from the prewar data. 

Third, in isolation the postwar evidence says little about the parameters of 
the cointegrating vector: the estimates have large standard errors and moreover 
are sensitive to the subsample and estimator used. The main reason for this is 
that the postwar data are dominated by steadily rising income and interest rates 
and effectively no growth in real balances. Only after 1982 is there a decline in 
interest rates that reduces multicollinearity between interest rates and income 
sufficiently to estimate the money demand relation, rather than simply the ratio 
oy/lr. We suspect that the postwar standard errors understate the sampling 
variability, particularly for the monthly results, both because of the evident 
sensitivity to terminal dates and because of Monte Carlo evidence in Sections 6 
and 7A that the asymptotic distributions provide poor approximations to the 
postwar sampling distributions in designs that approximate the empirical multi- 
variate models. 

8. CONCLUSIONS 

As do other asymptotically efficient estimators of cointegrating vectors, the 
procedures proposed here require at least partial knowledge of which variables 
cointegrate and of the orders of integration of individual series. With currently 
available techniques, this entails pretesting for unit roots or, when possible, 
relying on economic theory for guidance. A plausible suspicion is that this 
pretesting introduces additional sampling uncertainty, at least in finite samples, 
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beyond that which is formally studied here. It is worth emphasizing, however, 
that one advantage of our estimators is that Wald statistics testing restrictions 
on the cointegrating vectors will have asymptotic x2 distributions under a 
variety of assumptions about the orders of integration of the various estimators. 
This feature made it possible to perform inference on the price and interest 
elasticities in long run nominal money demand, relating log nominal Ml to the 
log price level, log income, and the interest rate, even though the evidence was 
inconclusive about whether money and prices were individually integrated of 
orders one or two. 

Our emphasis has been on inference about the cointegrating relations, and 
the proposed estimators treat the parameters describing the short-run dynamics 
of the process as nuisance parameters. In many applications, however, the 
short-run dynamics are of independent or even primary interest. For example, 
much of the empirical money demand literature has focused on the search for a 
stable short-run money demand function. In such cases, these efficient estima- 
tors can be used in subsequent stages of the analysis by imposing the estimated 
cointegrating vectors, for example in a variant of the triangular form (Campbell 
(1987), Campbell and Shiller (1987, 1989)), in a VECM (King, Plosser, Stock 
and Watson (1991)), or in a single-equation error correction framework (Hendry 
and Ericsson (1991)). 

A lesson suggested by the empirical investigation of Ml demand and by the 
Monte Carlo results is that, when estimating cointegrating vectors, it can be 
valuable to use more than one of the currently available asymptotically efficient 
estimators. In the prewar data and in the full data set, the efficient estimators 
produced qualitatively and statistically close estimates, but when only the 
postwar annual data were used the estimates differed substantially. This diver- 
gence signaled the need for further analysis of the postwar relations. The 
postwar data contain a single dominant trend, which results in Oy/0r but not the 
individual elasticities being well-determined. A Monte Carlo investigation sug- 
gested that, in this application, the DOLS estimator was preferable to the other 
estimators. 

The empirical analysis suggests that the precise estimation of long-run Ml 
demand requires a long span of data: estimates over the full 90 years are 
considerably more precise than over the first half of the century alone, and 
when used in isolation the data since 1946 contain quite limited information 
about long-run Ml demand. Overall, the evidence is consistent with there being 
a single stable long-run demand for money, with an income elasticity near one 
and an interest semielasticity near - 0.10. 

Kennedy School of Government, Harvard University, Cambridge, MA 02138, 
U.S.A. 
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Dept. of Economics, Northwestern University, Evanston, IL 60208, U.S.A. 
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APPENDIX A 

Derivation of the I(d) Triangular Representation (3.2) 

The triangular representation (3.2) is constructed under Assumption A by repeated application 
of the following Lemma: 

LEMMA A.1: Assume that the n x 1 vector xt is generated by Axt = E7j=o0Ujt1 + F(L)et, where 
F(L) is I-summable and rank [F(1)] = k < n. Without loss of generality arrange x, so that the upper 
k x n block of F(1) has full row rank. Then x, can be represented as: 

m 
AxIl= E sit'+ JI(L)E,, 

j=0 

m+1 

Xt2 = E ,uL2,jtj +Ox + J2(L)E,, 
j=O 

wherex, = (xl', x2')', where xl is k x 1, X2 is (n - k) x 1, J(L) = [J1(L)', J2(L)']' is (I - 1) summable, 
and J1(1) has full row rank k. When ,um lies in the column space of F(1), ,u2, m + 1 = ? 

PROOF OF LEMMA A.1: The result holds trivially for k = n, so consider k < n. Order x, so that 
F(L) can be partitioned as F(L) = [f1(L)', f2(L)']' where f1(L) is k x n, f2(L) is (n - k) x n, 
and f1(1) has full row rank. The expression for Ax' follows by setting J1(L) =fj(L). Because 
rank[F(1)] = rank[f1(1)], f2(1) = Of1(1), for some (n - k) x k matrix 0. Now partition ,ui as 
(1,u 1 ,u2, i)' so that 

m 
(A.1) Ax - OAxl = (2,i - li)t' + [f2(L) - Ofl(L)]Et. 

i=O 

Accumulating (A.1) yields x, - Oxt = Em=+tlu 2 1t' + J2(L)Et, where {,u2,i1 are linear combinations of 
(A2,i - OA1j, J2(L) = f2*(L) - Of (L), where f.*(L) = (1 - L) 1(fi(L) - fi(l)), i = 1, 2, and where 
/L2,0 subsumes the initial conditions of xl and x2. It is readily shown that, because f1(L) is 
l-summable, f1*(L) is (1 - 1)-summable. If Ium lies in the column space of F(1), then /2, m - Ol,m 
= 0 5O so2 m+l = 0. The Lemma follows by setting Tt1l, = j,u (i = 0,..., m). Q.E.D. 

To construct the triangular representation (3.2) for Ady =,u + F(L)e?, apply Lemma A.1 to 
xt =-d lyt to yield the decomposition: 

Ady = ,ul'o + F d (L)Et, 

a t = t12,0 + /2,1t + O,1 a 'yt +, 

where yt has been partitioned (and possibly reordered) into k1 x 1 and (n - k1) x 1 components yt 
and y32 such that Fd- 1(l) has full row rank k1. Some or all rows of j d-1 can be rows of zeros. Let 
H(L) = [hl(L)', h2 ..... hd+1(L)']' where hm(L) is kmxfn, and set h1(L)=Flf l(L). This 
determines the first k1 equations in (3.2). Without loss of generality let Fd-(1) = 

[Fild-(1)', F22(1)']' have rankk1+k2< n. Next, apply the lemma to xt=[Ad-lyt (Ad2512- 
O2d,ylAd-2y 1Y]t reordering as necessary the final n -k1 rows of xt; this determines the next k2 
equations of (3.2). Continuing this process yields (3.2), with uj = h(L), j =1...d + 1, where 
rank[hj(1)]=kj for j=1. d. Note that H=[h1(1)',h2(1)'. Jhd()']' has full row rank by 
construction, and assumption A(v) implies that hd+1(1) is linearly independent of the rows of H 
and has full row rank. 

By construction, ut = H(L)Et where H(1) has full rank, and so the spectrum of ut is nonsingular 
at frequency zero. At frequencies other than zero, the spectrum of ut is nonsingular because ut is 
F(L)Et passed through a linear filter which is nonsingular at frequencies W $ 0 (mod 2r), and 
because F(eiW) is nonsingular at w # 0 (mod 2w) by Assumption A(iii). Finally, the assumed 
k-summability of F(L) implies that H(L) is k - d summable for k > d. 
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The proofs of the theorems rely on an extension of Sims, Stock, and Watson's (1990) (SSW) 
Lemma 1, which gives limiting properties of moment matrices involving general I(d) regressors. This 
extension weakens one of the conditions of SSW Lemma 1. (The statement of this weaker condition 
and the revised proof of SSW Lemma 1 which follows will use the notation of SSW.) Specifically, 
replace SSW Condition 1 with the following condition. 

CONDITION 1': (i) Let m t be a n X 1 martingale difference sequence with E( t t--, 72,7 t ) = 0, 

E(,t7tr7t- 1, N.-2,**) = Inx and max supt E(-q' Wt1-, nt-2, ... ) < X 
(ii) E=0jIFmj,I < ??, m = 1, .... 

Condition 1'(i) is the same as SSW Condition 1(i). Condition 1'(ii) weakens the g summability in 
SSW Condition 1(i) to 1-summability. For completeness, we state the revised lemma: 

LEMMA A.2: Lemma 1 of SSW holds under Condition (1'). 

PROOF OF LEMMA A.2: SSW Lemma 1 contains parts (a)-(h). The proofs of parts (a)-(f) require 
only 1-summability of F(L) and thus they hold under Condition 1' automatically. To prove part (g) 
of the lemma, notice that the result follows if the last term in SSW equation (A.2) converges to 0 in 
probability. In turn, this follows if T- 2tltF0 for kp 1, where F,*l(L)= 
(1 - L) - '(F,, l(L) - F,,(1)). To show this, write: 

T-1 T-1 

T- /E T-P E t Fm*(L) qt < T-12- EtEl Fm*(L) qtI 
t=1 t=1 

T T- 1/2 T- (P-k- ')El Fm*,(L)-qt I 

< T-1/2T-(P-k-1)( E IFmll) El-qtl 0, 

where the last line follows p - k - 1 > 0 and Condition 1', noting that the 1-summability of Fni(L) 
implies the absolute summability of F,*1(L). Thus T- l/2tPE ltkFn,t(L)71t2 by Markov's 
inequality. 

To prove part (h), notice that the result follows if the last term in SSW equation (A.6) converges 
to 0 in probability. In turn, this follows if T-PE[t= t(F. l(Lb7t_)' O20 for k <p-1. To show 
this, again use Markov's inequality and assume for notational convenience that (t and F,*1(L)-qt are 
scalars. Then, 

T T 

E|T-P o k -k*1L)B +) =1 P /2)E E (7-k+112(k )F LN ) E -E~1 l(L),7t-1) = T-(P )E ( t-j)Fm*j(L)qt-j) 
t=1 t=1 

T 

t=l 

t=1 

Tr 22]1/2 
? T -(P -k+ 1/2) E [E(T -k+112(tk-1 

~~~~~~~t - 1 
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where the last line follows from T-ET=4[E(Tfk+l/2 )2]l/2 J1{E(Wk(s)2)}l/2ds<00; from 
F,m*(L) being absolutely summable (because Fmi(L) is 1-summable by Condition 1'); and from 
k <p -1. Q.E.D. 

To apply Lemma A.2 in the proofs below, it must be shown that the canonical regressors have the 
representation zt = G(L)vt, where G(L) and vt satisfy Condition 1'. (G(L) here corresponds to 
F(L) in Lemma A.2, and so it must be shown that Gm,j(L) is 1-summable for all m, j.) Condition 
1'(i) follows from Assumptions A(i) and C(i). To show that Condition 1'(ii) holds, it suffices to show 
that G(L) can always be chosen so that Gmi(L) is 1-summable and Gmj(L) = Gmj for j > 2 and all 
m. This result is straightforward for the canonical regressors dominated by deterministic terms. For 
the canonical regressors dominated by stochastic components (zr', m = 1, 3,..., 21 - 1), it suffices to 
show this for the canonical regressor with the highest possible order of integration. That regressor 
has the representation z21-1 = M -Adyt for some matrix M+. To simplify the expressions we 
omit initial conditions and deterministic terms. Then, from (3.1), zt11 can be written 

t Sd-I 

(A.2) Z21-1 = E M+F(L)Esd 
Sl=1 Sd= l 

= M+F(1)-' + M+F* (1)(1-2 + +M+F*'(L)Et 

= G21-1,21-1Ct 
1 + G21-1,21-3ftl 

-2 + +G21_1,1(L)Et 

where F*l(L) has coefficients F,*'= -E +1Fj*ll, defined recursively with F*O(L) F(L), and 
where G21-1,211 =M F(1), G21-1,21-3=M+F*1(1),...,G21_1 1(L)=M+F*l(L). It is readily 
shown that the k-summability of F(L) (Assumption A(ii)) implies that F*l(L) is (k - )-summable. 
By assumption C(ii), F(L) is (d + 2) summable. Because 1 < d + 1, F*l(L) and G21 -,1(L) are (at 
least) 1-summable for all 1. Thus Assumptions A and C imply that zt = G(L)vt can always be 
chosen so that Condition 1' applies. In this construction all elements of G(L) except G1l(L) are 
one-sided. G l(L) will be two-sided because zJ contains finitely many leads of u J, j < 1. 

The following two lemmas are used in the proofs of the theorems. 

LEMMA A.3: 

T-1 /2Z3 T 3/2Z5 T-1 + 3/2Z 21 -1, T- l/2 i (1)C (1)Et 
t== 

[r3w1(.),r5w12( ). 21-_vW(1-1)/2 W2( ) 

where W(s) = (W1(sYW2(s)')' is standard n-dimensional Brownian motion and Tm = Gmm(1)M', where 
M is a (n-kl)xn matrix with rows that span the null space of the rows of 0(1)cj(l) and 
MM' = In -k 

PROOF OF LEMMA A.3: Let B(s) be defined as the limiting process T-1/2E[T1 =] B(-); because 
s is a martingale difference sequence and E(6E E) = In, B(s) is a n-dimensional standard Brownian 
motion. Define M to be a fixed (n - kl) x n matrix with rows that span the null space of the rows of 
N1)c1(1) and MM' = In-k,. Also define W1(s) = MB(s), W2(s) = (1)cj(1)B(s), and W(s) = 

(W1(sY,W2(sYY. Because MM'=In-kl'Mc1(1)P(1)' = 0, and N(1)c1(1)cj(1)'N(1)'=Ik1, W(s) is a 
standard Brownian motion. 

From the discussion following the proof of Lemma A.2, the mth canonical regressor can be 
represented as 

ztm = Gmi(L)(t? + Gm2 + Gm3ftj + * * + Gmm t /2(m- 1) m = 3, 5,..., 21-1, 

so that Gmj(1) = Gmj for 1 >2. Note that T-(m-2)/2 (.mj- 1)/2 B(m-1)/2(.), where B1(s) = B(s) 
and Bj(s) = Jrs=oBj- l(r) dr, for m = 3,5,..., 21 - 1. Because Gml(L) is at least 1-summable (this 
follows from Assumption A as discussed following the proof of Lemma A.2), T-(m-2)/2z m.1 

Gmm(1)B(m-1)/2(.). Because Ezt+kV' = 0 for all t and k, the cross spectrum of vl and zt is 0 at 
frequency 0 so that Gmm(1)cj(1Y'(1)' = 0, m = 3,5,...,21 - 1. Thus Gmm(1) can be written 
Gmm(l) =FmM, SO T-(m2 T2z(. =* Gmm(l)B(m-1)2( =FmMB(m1)/2() = FmWlm-1)/2(.). The 

gm x (n - k1) matrix Em can be obtained (given M) as Fm = Gmm(1)M', m = 3,5,...,21 - 1. Q.E.D. 
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LEMMA A.4 (Beveridge-Nelson (1981) decomposition for two-sided filters): Suppose ;(L) = 

E. jLJ ism-summable. Then (L) = ;(1) + ;*(L)(1 - L), where ;*(L) is (m - 1)-summable and 

vi* = 7_ -=+ 1 ij i > 0 and Vj* = EL _-oovj,iX < O. 

PROOF OF LEMMA A.4: Write 
-1 -1 

;(L) = , ,Li + E ;,Li = ;(1) + , j(Li - 1) + ,: Vj(Li - 1). 
j= -r j=0 j= -r j=0 

The results obtain by using Li - 1 = (L - 1)EdL-oL', j > 1, and collecting terms. Q.E.D. 

PROOF OF THEOREM 1: First consider the infeasible GLS estimator gGLS constructed using '1(L) 
rather than Oi(L). Note that (T T?I)(G5 S- ') = QT1"T, where QT= (Tj1 ?I)EttZ(f'T 1I) 
and 4T= (Tf' ? I)EtEtP(L)v 1, with Z = [1(LXz't ? I)]'. (Identity matrices have dimension k, x k, 
unless otherwise stated.) The convergence of Q11T to Q11 follows from a standard application of 
the weak law of large numbers. For QijT with i or j> 2, we use Lemma A.2. Note that Z = 

-(T ?I) [m=Oh= h=O'h](7T 

yq =K (N')t'mN=) ) =so 

q q 

QijT T ~~t m = OZ he =' O 

) Ei E) (()'() = -i >, "ph) 1T 

where the last two lines follow from Lemma A.2 and h(1)'P(1) = OmI,1. 
For piT, i > 2, let q(L)c1(L) = 0(L) and use the two-sided Beveridge-Nelson decomposition 

(Lemma A.4) to write P?(L)vt = ;(L)c1 = ;(1)c1 + ;* (L) Ac1, where ;* (L) is defined in Lemma 
A.4. Because c1(L) = d1(L)H(L), where d1(L) is the lth block of rows of D(L), because H(L) is 
2-summable (by Assumption C(ii)), and because d1(L) has finite order (Assumption B), c1(L) is 
2-summable. Because 4i(L) has finite order by assumption, ;(L) is 2-summable, so by Lemma A.4, 
;*(L) is 1-summable. Thus write PIT = PilT + 412Tx where 

q q 

IT (iT 1 0 ) E (Z-jm >) 'o) (T-(&l)+oP(1)6 
t m =O0h 

V. (Oi G 
I) 
0 (0Z- ) =) Vi 

(L 
DUt 

First consider T. The limit of wliT follows from Lemmas A.2 and A.3: 

f JI( G i 2)s(l-L)/c = (iL)') dW (s) i = 2, 4,B6,d . .c.,21, 

(LemmaA4 to wre (L)vl = = )t dW2(L) iw = 3, 5,L7 . . in 21-1. 

Next consider 42T. By telescoping arguments, 
t1-1 [ q 

(A.3) B u c(LT = I) H hre ( AZ iom ?) m) b (s)e L 

q 

+(Ti_ 1 eI) , i {(t- 0 )?M) *(1)CGEtl-Zim)m)*L6o 

m =O 

where the limits of the summation over t reflect a fixed number of initial and terminal observations 
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used as initial and terminal conditions. The second term in this expression A 0 by the Cauchy- 
Schwartz inequality. To show that the first term A 0, first consider the case with i = 3. Then 
AZ3 _m+1 = y(L)c1, where y(L) = (G33 + AG31(L))Lm from (A.2). Because G31(L) is 1-summable, 
y(L) is 1-summable; also T-Tl = T-1 and ;*(L) is 1-summable. Thus, the first term in (A.3) is a 
linear combination of finitely many terms of the form T-1E(y(L)EtX)*(L)Et). The absolute 
summability of y(L) and ;*(L), together with the assumed fourth moments of Et, imply that 
T-1E(y(L)EtX)*(L)Et) A K, where K is a constant. But E4=3T E T + E43T; because E43T = 0 

and E4)3T 0, K = O, SO 3T - 0. 
For i = 5, 7,..., 21 - 1, the first term in (A.3) is a linear combination of finitely many terms of the 

form T-l/i-1)Tt1-1 Az,t-k(;i(L)st)', for fixed k, where i-k iS the rth element of Z' -k and 
vh*(L) is the hth row of ;*(L). These terms are readily shown to converge to zero in probability 
using the Cauchy-Schwartz inequality and SSW Lemma 1(h) (modified in Lemma A.2) because Et 
has finite fourth moments and ;*(L) is 1-summable. 

For i = 2,4,...,21, the result follows from SSW Lemma (g) (modified above). Thus 'i O for 
i= 1,2,...,21. 

The joint convergence (QT, PT) W(Q, ) follows from SSW Lemmas 1 and 2. 
To prove that the feasible GLS estimator has the same limit, let 

QT ( T ) E [: ( t-M 'm) Zt [ -h (&h) 
t _m=0 _h=0 

q 

( T1 ( r&I ) E (Z t-m (9 OM ) ( L )vtlX 
t _m=0 

so (TT ?' IXGLS-GLS) =QT 1(4 XT-T) + (QT1 -Qil )T. Because 4?(L) has known finite 
order q by assumption, Pj A 'Pj for 1, . q, QT - Q -O and XT - XT A O. Finally, since Q is 
a.s. invertible, (Tf 1 IXSG L - GLS) 0. QE.D. 

PROOF OF THEOREM 2: (a) Write (TT ? -cOLS-) = VT 'Wi-, where VT = [T ? I 
[(Et 

zt z) ? 
IX[T- 

1 ? I] and 0T = [T- 1 ? I][Et(zt ? I)v]. The proof that VT=* V follows from SSW Lemma 1. 
The proof that Wj iT()Wi, i 2 2 parallels the proof in Theorem 1: apply the 2-sided Beveridge- 
Nelson decomposition to vi = cl(L)Et, apply SSW Lemma 1 to the term involving cl(l)Et, and use 
the absolute summability of cl(L) to show that the term involving Ac*(L)E converges to 0 in 
probability. For i = 1, the result is a consequence of the central limit theorem for summable 
processes. 

(b) Theorems 1 and 2 imply that Tj-1E1 zlz*4'TT*1A 0. First consider the infeasible GLS 
estimator gGLS, defined in the proof of Theorem 1. It is a consequence of the proof of Theorem 1 
that 

(r*Ts I)(g* GLS- *) = B* T(T * I) E (4 Z' (1)')'(1)c0(1)ct + op(l) 

where B* T = (T7 ? IXEt(zt* ? '(1))'Xz*' ? 0())](T4 T I). Now 

B* T (T*T I)( 
(g-g1)k1 

? 
P(1)YP(1)) [ E (z*Z'?I) (T '( I) 

so 

B-1= r,T.-10IZ(*0)(z'0 
(- i0-- [Io 
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Also, 

MTO T 0 ('* OI,S-8*GLS) = B* T(tT1 o I ) 

x E(z* (8 4P(lY4P(l))cj(L)E,tz 

- E (Zt ? P(1)'P(1))ci(1)ct} + op(l) 

= B* -K*T + op(l) 

where K* T= (r*T IEt(z* 0 0(1)'(1)) Ac (L)Et) and where the final line uses the two-sided 
Beveridge-Nelson decomposition, cl(L)Et = [cl(l) + Ac*(L)]Et. The lag polynomial cl(L) is 1-sum- 
mable (since cl(L) is 2-summable). Telescoping arguments were used in the proof of Theorem 1 to 
show that (T;T* @ I){Et(z* 0 (l)'N P(l)) Aj*(L)Et) A 0, and those arguments applied here show 
that K* T * 0. The result (T* T 0 IX(?OL - OLS GLS) - 0 follows from 

QijT 
=* Q,j (from Theorem 

1). Q.E.D. 

PROOF OF THEOREM 3: The result follows from Theorem 1, which provides a limiting representa- 
tion for the estimated coefficients; Theorem 2 of SSW, which provides a limiting representation for 
the Wald test statistic when the restrictions are on coefficients whose estimators converge at 
different rates; and Johansen (1988a) or alternatively Phillips (1991a), who show that the resulting 
limiting distributions are X Q.E.D. 

PROOF OF THEOREM 4: This follows from Theorem 3 and the proof of Theorem 2. Q.E.D. 

APPENDIX B 

Data Sources 

Money Supply (M1): The monthly Citibase Ml series (FM1) was used for 1959-1989; monthly 
data for 1947-1958 were formed by splicing the Ml series reported in Banking and Monetary 
Statistics, 1941-1970 (Board of Governors of the Federal Reserve System), to the Citibase data in 
January 1959. The monthly data were averaged to obtain annual observations. Data prior to 1947 
are those used by Lucas (1988); from 1900-1914 the data are from Historical Statistics, series X267 
and from 1915-1946 they are from Friedman and Schwartz (1970, pp. 704-718, column 7). 

Real Output: The annual data are U.S. Net National Product. For 1947-1989, they are the 
Citibase series GNNP82. Prior to 1947, we used Lucas' (1988) data (Friedman and Schwartz real net 
national product (1982, Table 4.8)). The Friedman and Schwartz series was linked to the annual 
Citibase series in 1947. For the monthly data analyzed in Section 7B, we used real personal income 
(Citibase Series GMPY82). 

Prices: The annual data are the price deflator for U.S. Net National Product. For 1947-1989, 
they are the Citibase Series GDNNP. Prior to 1947, we used Lucas' (1988) data (Friedman and 
Schwartz (1982, Table 4.8)). The Friedman and Schwartz series was linked to the annual Citibase 
Series in 1947. For the monthly data analyzed in Section 7B, we used the price deflator for real 
personal income, formed as the ratio of the Citibase series GMPY to GMPY82. 

Interest rates: The annual data are the rate on commercial paper. For 1947-1989, we used the 
6-month commercial paper rate (Citibase Series FYCP). The monthly data were averaged to obtain 
annual observations. Prior to 1947, we used Lucas' (1988) data (Friedman and Schwartz (1982, Table 
4.8, column 6)). For our analysis of the postwar monthly data, we also used the 90-day U.S. Treasury 
bill rate (Citibase Series FYGM3) and the 10-year U.S. Treasury bond rate (Citibase series 
FYGT10). 
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Summary of Results from Unit Root and Cointegration Tests 

Univariate Dickey-Fuller (1979) $, and $r' statistics, computed with 2 and 4 lags on the full data 
set, fail to reject a single unit root in each of m, p, r, m - p, and the logarithm of velocity at the 10% 
level; the unit root hypothesis is not rejected for y with 4 lags, but is rejected at the 10% (but not 
5%) level with 2 lags. A unit root in Ay and Ar are each rejected at the 1% level, and a unit root in 
Am - Ap is rejected at the 10% level. Similar inferences obtain for the 1900-1945 and 1946-1989 
subsamples. Whether m and p have two unit roots is less clear: for m, two unit roots are rejected in 
favor of one at the 10% level for the second but not the first subsample; for p, two unit roots are 
rejected for neither subsample, but this null is rejected at the 10% level for the full sample. For 
r - zip (zp in percentages), one unit root is rejected (vs. zero) for the full sample at the 10% level, 
but not in either subsample using the $r' statistic; however, P rejects at 10% in both subsamples and 
the full sample. 

Turning to the evidence on cointegration, Johansen's (1991) JT(O) test of the null of at most zero 
cointegrating vectors, against one or more cointegrating vector in the (m - p, y, r) system, rejects at 
the 10% level using 1 or 2 lags over the full sample. Using the Stock-Watson (1988) qf(3, 2) test for 
3 vs. 2 unit roots (with 2 lags), the evidence is less strong: the p-value is .43. However, the 
Engle-Granger (1987) augmented detrended Dickey Fuller test (one lagged first difference) based 
on the residual from regressing m - p on y and r rejects noncointegration at the 5% level over the 
full sample. Finally, demeaned ADF tests of the residual from the regression of the logarithm of 
velocity on r reject noncointegration at the 10% level (with one or two lagged first differences) over 
the full sample. 

Details of these results are available from the authors on request. 
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