Eric J. Olson, ${ }^{*}$ Department of Mathematics and Statistics, University of Nevada, Reno, NV 89557, USA. email: ejolson@unr.edu
James C. Robinson, ${ }^{\dagger}$ Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK. email: j.c.robinson@warwick.ac.uk

A SIMPLE EXAMPLE CONCERNING THE UPPER BOX-COUNTING DIMENSION OF A CARTESIAN PRODUCT

Abstract

We give a simple example of two countable sets X and Y of real numbers such that their upper box-counting dimension satisfies the strict inequality $\operatorname{dim}_{\mathrm{B}}(X \times Y)<\operatorname{dim}_{\mathrm{B}}(X)+\operatorname{dim}_{\mathrm{B}}(Y)$.

1 Introduction

The behaviour of any notion of 'dimension' under the action of taking products is a fundamental property, and it is of particular interest to determine whether (and when) equality holds in the formula

$$
\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y
$$

In general, additional conditions are required to ensure equality; this is illustrated by what is perhaps the primary inequality for the dimension of products: if A and B are Borel subsets of Euclidean space, then

$$
\operatorname{dim}_{\mathrm{H}}(A)+\operatorname{dim}_{\mathrm{H}}(B) \leq \operatorname{dim}_{\mathrm{H}}(A \times B) \leq \operatorname{dim}_{\mathrm{H}}(A)+\operatorname{dim}_{\mathrm{P}}(B)
$$

[^0]where dim_{H} is the Hausdorff dimension and dim_{P} the packing dimension (see Falconer [2], for example).

Here we consider this property for the upper box-counting dimension, which we denote by dim_{B}. It was shown by Tricot [5] that, in general,

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{B}}(X \times Y) \leq \operatorname{dim}_{\mathrm{B}}(X)+\operatorname{dim}_{\mathrm{B}}(Y) \tag{1}
\end{equation*}
$$

here we provide a very simple example of two countable subsets of the real line, X and Y, such that the inequality in (1) is strict.

Robinson and Sharples [4] gave a significantly more involved example of two generalised Cantor sets X and Y of real numbers for which the inequality in (1) is strict. The more complicated construction there allows significantly more flexibility: one can construct two sets X and Y such that their upper and lower box-counting dimensions take any values allowed by the chain of inequalities

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{LB}}(X)+\operatorname{dim}_{\mathrm{LB}}(Y) & \leq \operatorname{dim}_{\mathrm{LB}}(X \times Y) \\
& \leq \min \left(\operatorname{dim}_{\mathrm{LB}}(X)+\operatorname{dim}_{\mathrm{B}}(Y), \operatorname{dim}_{\mathrm{B}}(X)+\operatorname{dim}_{\mathrm{LB}}(Y)\right) \\
& \leq \max \left(\operatorname{dim}_{\mathrm{LB}}(X)+\operatorname{dim}_{\mathrm{B}}(Y), \operatorname{dim}_{\mathrm{B}}(X)+\operatorname{dim}_{\mathrm{LB}}(Y)\right) \\
& \leq \operatorname{dim}_{\mathrm{B}}(X \times Y) \\
& \leq \operatorname{dim}_{\mathrm{B}}(X)+\operatorname{dim}_{\mathrm{B}}(Y)
\end{aligned}
$$

While the existence of sets X and Y such that strict inequality holds in (1) is thus a particular case of the result in [4], the example presented here is very much more straightforward.

We now make some of the terminology used above and below more precise.
Given a metric space X with metric d_{X}, the upper box-counting dimension of $X, \operatorname{dim}_{\mathrm{B}}(X)$, is defined by

$$
\operatorname{dim}_{\mathrm{B}}(X)=\limsup _{r \rightarrow 0} \frac{\log N(X, r)}{-\log r}
$$

where $N(X, r)$ denotes the minimum number of balls of radius r required to cover X, see Falconer [2], Robinson [3], or Tricot [5], for example. (Note that some authors refer to this as the 'fractal dimension,' see [1], for example.)

If Y is another metric space with metric d_{Y}, then the metric space $X \times Y$ is the Cartesian product of X and Y, along with a metric $d_{X \times Y}$ which we assume to be equivalent to $d_{X}+d_{Y}$.

2 The example

For convenience, we use the notation

$$
\operatorname{sll} t=\sin \log \log t \quad \text { and } \quad \operatorname{cll} t=\cos \log \log t
$$

We show that the two sets

$$
X=\{f(n): n \in \mathbb{N} \text { and } n \geq 25\} \cup\{0\}, \quad \text { where } \quad f(t)=t^{-8-\text { sll } t}
$$

and

$$
Y=\{g(n): n \in \mathbb{N} \text { and } n \geq 25\} \cup\{0\}, \quad \text { where } \quad g(t)=t^{-8+\text { sll } t}
$$

satisfy $\operatorname{dim}_{\mathrm{B}}(X \times Y)<\operatorname{dim}_{\mathrm{B}}(X)+\operatorname{dim}_{\mathrm{B}}(Y)$. Specifically, we will show that

$$
\operatorname{dim}_{\mathrm{B}}(X) \geq 1 / 8, \quad \operatorname{dim}_{\mathrm{B}}(Y) \geq 1 / 8, \quad \text { and } \quad \operatorname{dim}_{\mathrm{B}}(X \times Y)<1 / 4
$$

We begin with a preliminary lemma that gives upper and lower bounds for certain coverings of subsets of X and Y.

Lemma 1. Choose $r<5^{-20}$ and let t_{1} be such that $r=t_{1}^{-9-s l l} t_{1}$. If

$$
B=\left\{f(n): 25 \leq n<t_{1}\right\}
$$

then $t_{1}-26 \leq N(B, r / 2) \leq t_{1}-24$.
Proof. First note that $t_{1}=r^{-1 /\left(9+\operatorname{sll} t_{1}\right)}>\left(5^{20}\right)^{1 /\left(9+\operatorname{sll} t_{1}\right)} \geq 5^{2}=25$. Since

$$
\begin{equation*}
f^{\prime}(t)=-t^{-9-\operatorname{sll} t}(8+\operatorname{sll} t+\operatorname{cll} t)<0 \tag{2}
\end{equation*}
$$

the sequence $f(n)$ is decreasing. So we can bound the distance between points in B by considering $|f(n+1)-f(n)|$. To bound this, we write

$$
|f(n+1)-f(n)|=\left|f^{\prime}(n)+\frac{1}{2} f^{\prime \prime}(\xi)\right|
$$

for some $\xi \in(n, n+1)$, using Taylor's Theorem. Since $\xi>n \geq 25$, certainly

$$
\begin{aligned}
f^{\prime \prime}(\xi) & =\xi^{-10-\operatorname{sll} \xi}\left\{(9+\operatorname{sll} \xi+\operatorname{cll} \xi)(8+\operatorname{sll} \xi+\operatorname{cll} \xi)-\frac{\operatorname{cll} \xi-\operatorname{sll} \xi}{\log \xi}\right\} \\
& \leq 112 \xi^{-10-\operatorname{sll} \xi} \\
& \leq 5 \xi^{-9-\operatorname{sll} \xi} \leq 5 n^{-9-\operatorname{sll} n}
\end{aligned}
$$

since $\xi \mapsto \xi^{-9-\text { sll } \xi}$ is a decreasing function (see (2)) and $f^{\prime \prime}(\xi) \geq 40 \xi^{-10-\text { sll } \xi}>$ 0 . We therefore obtain the upper bound

$$
|f(n+1)-f(n)|=\left|f^{\prime}(n)+\frac{1}{2} f^{\prime \prime}(\xi)\right| \leq 13 n^{-9-\operatorname{sll} n}
$$

Since $f^{\prime}(n)<-6 n^{-9-\text { sll } n}$ by (2), we also obtain the lower bound

$$
\left|f^{\prime}(n)+\frac{1}{2} f^{\prime \prime}(\xi)\right| \geq\left|f^{\prime}(n)\right|-\frac{1}{2} f^{\prime \prime}(\xi) \geq 6 n^{-9-\operatorname{sll} n}-5 n^{-9-\operatorname{sll} n}=n^{-9-\operatorname{sll} n}
$$

It follows that exactly one $r / 2$-ball is required to cover each of the points in B. Therefore,

$$
N(B, r / 2)=\operatorname{card}\left\{n \in \mathbb{N}: 25 \leq n<t_{1}\right\}
$$

and the lemma follows.
The slow fluctuation in these upper and lower bounds allows us to prove our main result.

Theorem 2. $\operatorname{dim}_{\mathrm{B}}(X) \geq 1 / 8, \operatorname{dim}_{\mathrm{B}}(Y) \geq 1 / 8$, and $\operatorname{dim}_{\mathrm{B}}(X \times Y)<1 / 4 \leq$ $\operatorname{dim}_{\mathrm{B}}(X)+\operatorname{dim}_{\mathrm{B}}(Y)$.

Proof. First we bound the dimension of X; the bound for Y follows similarly. Let $r<5^{-20}$ and let t_{1} be such that $r=t_{1}^{-9-s l l} t_{1}$. Let

$$
B=\left\{f(n): 25 \leq n<t_{1}\right\} \quad \text { and } \quad C=\left\{f(n): n \geq t_{1}\right\}
$$

so that $X=B \cup C$. Taking $r \rightarrow 0$ along a sequence such that sll $t_{1}=-1$, we can use the result of the lemma to obtain the lower bound

$$
N(X, r / 2) \geq N(B, r / 2) \geq t_{1}-26 \geq r^{-1 /\left(9+\operatorname{sll} t_{1}\right)}-26 \geq r^{-1 / 8}-26
$$

and therefore, $\operatorname{dim}_{\mathrm{B}}(X) \geq 1 / 8$. The lower bound on $\operatorname{dim}_{\mathrm{B}}(Y)$ follows similarly.
To deal with the product set $X \times Y$, notice that since $C \subseteq\left[0, f\left(t_{1}\right)\right]$, it follows that

$$
N(C, r / 2) \leq \frac{f\left(t_{1}\right)}{r / 2}=2 t_{1}=2 r^{-1 /\left(9+\operatorname{sll} t_{1}\right)}
$$

Lemma 1 provides an estimate on $N(B, r / 2)$ from above, so we obtain

$$
N(X, r / 2) \leq N(B, r / 2)+N(C, r / 2) \leq K_{1} r^{-1 /\left(9+\operatorname{sll} t_{1}\right)}
$$

Defining t_{2} so that $r=t_{2}^{-9+\text { sll } t_{2}}$, a similar argument guarantees that

$$
N(Y, r / 2) \leq K_{2} r^{-1 /\left(9-\operatorname{sll} t_{2}\right)}
$$

Therefore,

$$
N(X \times Y, r / 2) \leq N(Y, r / 2) N(X, r / 2) \leq K_{1} K_{2}\left(\frac{1}{r}\right)^{\frac{1}{9-\text { sll } t_{1}}+\frac{1}{9+\text { sll } t_{2}}}
$$

Now, since $t_{1}^{9+\text { sll } t_{1}}=t_{2}^{9-\text { sll } t_{2}}$, taking logarithms once yields

$$
\frac{\log t_{1}}{\log t_{2}}=\frac{9-\operatorname{sll} t_{2}}{9+\operatorname{sll} t_{1}} \leq 5 / 4
$$

and taking $\operatorname{logarithms~again~shows~that~}\left|\log \log t_{1}-\log \log t_{2}\right| \leq \log (5 / 4)$. It follows that $N(X \times Y, r / 2) \leq K_{1} K_{2}(2 / r)^{c}$, where

$$
c=\max \left\{\frac{1}{9-\sin \theta_{1}}+\frac{1}{9+\sin \theta_{2}}:\left|\theta_{1}-\theta_{2}\right| \leq \log (5 / 4)\right\}<1 / 4:
$$

clearly $c \leq 2 \times 1 / 8=1 / 4$, and equality cannot hold since this would require $\sin \theta_{1}=1$ and $\sin \theta_{2}=-1$, which is impossible since $\left|\theta_{1}-\theta_{2}\right|<\pi$. It follows that

$$
\operatorname{dim}_{\mathrm{B}}(X \times Y) \leq c<1 / 4 \leq \operatorname{dim}_{\mathrm{B}}(X)+\operatorname{dim}_{\mathrm{B}}(Y)
$$

which finishes the proof.
Acknowledgment. We would like to thank Nicholas Sharples for interesting discussions of a preliminary version of this paper, and the two referees for their careful reading of the paper and helpful comments.

References

[1] P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math., 38 (1985), 1-27.
[2] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985.
[3] J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge Univ. Press, Cambridge, 2011.
[4] J. C. Robinson and N. Sharples, Strict inequality in the box-counting dimension product formulas, Real Anal. Exchange, 38 (2013), 95-119.
[5] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982), 57-74.
E. J. Olson and J. C. Robinson

[^0]: Mathematical Reviews subject classification: Primary: 28A75; Secondary: 28A80
 Key words: Box-counting dimension, Fractal Dimension, cartesian products
 Received by the editors March 24, 2014
 Communicated by: Zoltán Buczolich

 * This paper was written while EJO was visiting Warwick during his sabbatical leave from the University of Reno, partially funded by the EPSRC Grant EP/G007470/1.
 \dagger JCR is supported by an EPSRC Leadership Fellowship, Grant EP/G007470/1.

