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A SIMPLE EXAMPLE CONCERNING THE
UPPER BOX-COUNTING DIMENSION OF

A CARTESIAN PRODUCT

Abstract

We give a simple example of two countable sets X and Y of real num-
bers such that their upper box-counting dimension satisfies the strict
inequality dimB(X × Y ) < dimB(X) + dimB(Y ).

1 Introduction

The behaviour of any notion of ‘dimension’ under the action of taking products
is a fundamental property, and it is of particular interest to determine whether
(and when) equality holds in the formula

dim(X × Y ) = dimX + dimY.

In general, additional conditions are required to ensure equality; this is illus-
trated by what is perhaps the primary inequality for the dimension of products:
if A and B are Borel subsets of Euclidean space, then

dimH(A) + dimH(B) ≤ dimH(A×B) ≤ dimH(A) + dimP(B),
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where dimH is the Hausdorff dimension and dimP the packing dimension (see
Falconer [2], for example).

Here we consider this property for the upper box-counting dimension,
which we denote by dimB. It was shown by Tricot [5] that, in general,

dimB(X × Y ) ≤ dimB(X) + dimB(Y ); (1)

here we provide a very simple example of two countable subsets of the real
line, X and Y , such that the inequality in (1) is strict.

Robinson and Sharples [4] gave a significantly more involved example of
two generalised Cantor sets X and Y of real numbers for which the inequality
in (1) is strict. The more complicated construction there allows significantly
more flexibility: one can construct two sets X and Y such that their upper
and lower box-counting dimensions take any values allowed by the chain of
inequalities

dimLB(X) + dimLB(Y ) ≤ dimLB(X × Y )

≤ min(dimLB(X) + dimB(Y ),dimB(X) + dimLB(Y ))

≤ max(dimLB(X) + dimB(Y ),dimB(X) + dimLB(Y ))

≤ dimB(X × Y )

≤ dimB(X) + dimB(Y ).

While the existence of sets X and Y such that strict inequality holds in (1) is
thus a particular case of the result in [4], the example presented here is very
much more straightforward.

We now make some of the terminology used above and below more precise.

Given a metric space X with metric dX , the upper box-counting dimension
of X, dimB(X), is defined by

dimB(X) = lim sup
r→0

logN(X, r)

− log r
,

where N(X, r) denotes the minimum number of balls of radius r required to
cover X, see Falconer [2], Robinson [3], or Tricot [5], for example. (Note that
some authors refer to this as the ‘fractal dimension,’ see [1], for example.)

If Y is another metric space with metric dY , then the metric space X × Y
is the Cartesian product of X and Y , along with a metric dX×Y which we
assume to be equivalent to dX + dY .
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2 The example

For convenience, we use the notation

sll t = sin log log t and cll t = cos log log t.

We show that the two sets

X = { f(n) : n ∈ N and n ≥ 25 } ∪ { 0 }, where f(t) = t−8−sll t,

and

Y = { g(n) : n ∈ N and n ≥ 25 } ∪ { 0 }, where g(t) = t−8+sll t,

satisfy dimB(X × Y ) < dimB(X) + dimB(Y ). Specifically, we will show that

dimB(X) ≥ 1/8, dimB(Y ) ≥ 1/8, and dimB(X × Y ) < 1/4.

We begin with a preliminary lemma that gives upper and lower bounds for
certain coverings of subsets of X and Y .

Lemma 1. Choose r < 5−20 and let t1 be such that r = t−9−sll t11 . If

B = {f(n) : 25 ≤ n < t1},

then t1 − 26 ≤ N(B, r/2) ≤ t1 − 24.

Proof. First note that t1 = r−1/(9+sll t1) >
(
520
)1/(9+sll t1) ≥ 52 = 25. Since

f ′(t) = −t−9−sll t(8 + sll t+ cll t) < 0, (2)

the sequence f(n) is decreasing. So we can bound the distance between points
in B by considering |f(n+ 1)− f(n)|. To bound this, we write

|f(n+ 1)− f(n)| = |f ′(n) + 1
2f
′′(ξ)|

for some ξ ∈ (n, n+ 1), using Taylor’s Theorem. Since ξ > n ≥ 25, certainly

f ′′(ξ) = ξ−10−sll ξ
{

(9 + sll ξ + cll ξ)(8 + sll ξ + cll ξ)− cll ξ − sll ξ

log ξ

}
≤ 112 ξ−10−sll ξ

≤ 5ξ−9−sll ξ ≤ 5n−9−slln,
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since ξ 7→ ξ−9−sll ξ is a decreasing function (see (2)) and f ′′(ξ) ≥ 40 ξ−10−sll ξ >
0. We therefore obtain the upper bound

|f(n+ 1)− f(n)| = |f ′(n) + 1
2f
′′(ξ)| ≤ 13n−9−slln.

Since f ′(n) < −6n−9−slln by (2), we also obtain the lower bound

|f ′(n) + 1
2f
′′(ξ)| ≥ |f ′(n)| − 1

2f
′′(ξ) ≥ 6n−9−slln − 5n−9−slln = n−9−slln.

It follows that exactly one r/2-ball is required to cover each of the points
in B. Therefore,

N(B, r/2) = card{n ∈ N : 25 ≤ n < t1 }

and the lemma follows.

The slow fluctuation in these upper and lower bounds allows us to prove
our main result.

Theorem 2. dimB(X) ≥ 1/8, dimB(Y ) ≥ 1/8, and dimB(X × Y ) < 1/4 ≤
dimB(X) + dimB(Y ).

Proof. First we bound the dimension of X; the bound for Y follows similarly.
Let r < 5−20 and let t1 be such that r = t−9−sll t11 . Let

B = { f(n) : 25 ≤ n < t1} and C = { f(n) : n ≥ t1 },

so that X = B ∪ C. Taking r → 0 along a sequence such that sll t1 = −1, we
can use the result of the lemma to obtain the lower bound

N(X, r/2) ≥ N(B, r/2) ≥ t1 − 26 ≥ r−1/(9+sll t1) − 26 ≥ r−1/8 − 26,

and therefore, dimB(X) ≥ 1/8. The lower bound on dimB(Y ) follows similarly.
To deal with the product set X × Y , notice that since C ⊆ [0, f(t1)], it

follows that

N(C, r/2) ≤ f(t1)

r/2
= 2t1 = 2r−1/(9+sll t1).

Lemma 1 provides an estimate on N(B, r/2) from above, so we obtain

N(X, r/2) ≤ N(B, r/2) +N(C, r/2) ≤ K1r
−1/(9+sll t1).

Defining t2 so that r = t−9+sll t2
2 , a similar argument guarantees that

N(Y, r/2) ≤ K2r
−1/(9−sll t2).
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Therefore,

N(X × Y, r/2) ≤ N(Y, r/2)N(X, r/2) ≤ K1K2

(1

r

) 1
9−sll t1 + 1

9+sll t2 .

Now, since t9+sll t1
1 = t9−sll t22 , taking logarithms once yields

log t1
log t2

=
9− sll t2
9 + sll t1

≤ 5/4,

and taking logarithms again shows that | log log t1 − log log t2| ≤ log(5/4). It
follows that N(X × Y, r/2) ≤ K1K2 (2/r)c, where

c = max
{ 1

9− sin θ1
+

1

9 + sin θ2
: |θ1 − θ2| ≤ log(5/4)

}
< 1/4 :

clearly c ≤ 2 × 1/8 = 1/4, and equality cannot hold since this would require
sin θ1 = 1 and sin θ2 = −1, which is impossible since |θ1 − θ2| < π. It follows
that

dimB(X × Y ) ≤ c < 1/4 ≤ dimB(X) + dimB(Y ),

which finishes the proof.
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