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THE
FOLRNA L E

A simple expression for the radial distribution functiRDF) of pure fluids and mixtures is
presented. It satisfies the limiting conditions of zero density and infinite distance imposed by
statistical thermodynamics. The equation contains seven adjustable parameters; they have been
fitted to extensive literature data of RDF's for a Lennard-Jones fluid at different values of
temperature and density. These in turn have been expressed as functions of reduced temperature and
density, thus allowing a complete parametrization with respect to these variables using 21
parameters altogether with fairly good accuracy. The values of the reduced pressure and internal
energy calculated by numerical integration of the completely parametrized equation compare fairly
with literature molecular dynamics simulation results. The capability of the expression to fit to
RDF's of mixtures has been checked against some of the extensive RDF simulation data of binary
mixtures of Lennard-Jones fluids with different diameters available in the literature. Data pertaining
to different molar fractions as well as to differeef / egg ratios have been considered, and the
agreement between calculated and simulation curves has resulted satisfactory. The proposed
expression can be used to calculate by integration related quantities such as compressibility, internal
energy, pressure and, using the Kirkwood—Buff theory, the chemical potentials and partial molar
volumes of the components of mixtures for which RDF data are availabl&é9@€5 American
Institute of Physics.

INTRODUCTION c ¢ .

— 2 4 2

Radial distribution(pair correlationfunctions(RDF) are p=kTp=p /6i=21 121 X% ], (NG (r)4mredr,
the primary linkage between macroscopic thermodynamic (4)
properties and intermolecular interactions of fluids and flui
mixtures. In the canonical ensemble of statistical mechani
where the temperaturé&, the volume)V, and the number of
particles of each component in the systeé\y, are fixed, the
radial (pair) distribution function,g;;(r,p,T), is given by

%hereq&’ is the derivative of the potential function with re-
CSSpect to the distance
Modern theories of fluid and fluid mixtures have ben-
efited a great deal from the concept of radial distribution
function. The RDF theories have been quite successful in
gij(1,p, T)=V2(1- 5, IN;) de_scribilrg the behavior of simple liquids and liquid
mixture;~ " although have been able to provide RDF analytic
expressions only for very simple model fluids such as the
hard spheres and hard rodSMoreover, the validity of Egs.
(3) and(4) is limited to spherically symmetric potentials, and
therefore their application to polar nonspherical fluids is im-
possible. On the other hand, the Kirkwood—Buff théquyo-
vides equations valid for any kind of molecular shapes which
allow the calculation of thermodynamic properties of mix-
tures such as compressibility, partial molar volumes and
chemical potentials only requiring the knowledge of the in-
ZC(T,V,N):J J e *KTdr ---dry--- . (2)  tegrals over the distance of the radiaénter to centerdis-
tribution functions(Kirkwood—Buff integrals,G;;):

Xf e~ *Tdr,y---dry/Z(T,V,N). @

In this equationp is the number densityy; is the Kronecker
delta,N is the set of number of molecule¥;,N,,...,N., ®

is the total potential energy of the systeknjs Boltzmann
constant, r; is the position vector of moleculé, and
Z.(T,V,N) is the configurational integral,

The relations betweegy; and the internal energy and pres- .
surep, assuming pairwise additivity of intermolecular poten- Gij= f [gij(r)—1]4mr2dr. (5)
tial energy function, are the followind: 0

1 c ¢ w0 Although in recent years several studies have been car-
u=uig+§ sz Z xixjf ¢ij(r)gij(r)4wr2dr, (3 ried out to calculate the Kirkwood-Buff integrals of real
=1j=1 0 mixtures from thermodynamic properties by the inverted
equation of the theof§no extensive study is available at our

(a) Correspondingauthor. Email:matteoli@ipcf.cnr.it knowledge to calculate these quantities directly from (g
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and then to use these to obtain thermodynamic propertiesurve to deviate from a strict exponential oscillatory decay.
These calculations are linked to the availability of an analyti-The other terms guarantee continuity of the function=ad.

cal expression that could be used to represent the RDF’s of In order that the RDF equation may be capable to in-
fluids and their mixtures. As we will see later on, due toclude temperature and density dependence, all parameter
different reasons, previous RDF expressions are not apprg;=h, 6, m, g(d), \, «, B, are to be expressed as function of
priate to the general purpose of our research, consisting ithe reduced temperature and density=kT /e, p* =po”>, €

the calculation through the Kirkwood—Buff theory of the being the energy parameter. The following functional forms
chemical potentials and the partial molar volumes of theare proposed:

components of binary mixtures of Lennard-Jones fluids first _ 3

and of more complex substances afterward. In this work we Pi=[du,i* 0z, exp(— e/kT)]exilgs i(po) ], ™
elaborate on the asymptotic conditions required by statisticdior p;= 6, g(d), \, 8, andh’, with h’=1000n—1); and
thermodynamics and on less rigorous geometrical and spatial Pi=[01 i+ 0z, exp(— 6/kT)][(p0'3)2+Q3’i]/(p0'3),

considerations to provide a parametric equation for RDF of ®)
Lennard-Jones fluids and mixtures which can be used to ) )
comply with the first part of our research. for pj=m and a. They have been chosen to satisfy the lim-

iting condition of RDF above outlined.

RDF OF PURE FLUIDS

. . . ) RDF OF BINARY MIXTURES
The radial distribution functiog(r,p,T) of a pure fluid

must satisfy the following asymptotic relations. Equationg6a)and(6b) can be slightly modified so as to
At zero density it must reduce to its ideal gas limit of be applied to binary mixtures. A proper mixture RDF equa-
unity, tion should take into account the variation in the position of
. the peaks and in their separation distance as the composition
lim g(r,p,T)=1.

of the mixture changes. From the observation of the shapes
o . . _ of the RDF'’s obtained by molecular dynamics simulations of
Slmllarly, at Iarge intermolecular distances it must FE'pure Compounds and of binary mixtures, the fo”owing two

p—0

duce to unity, general features as regards position of the peaks and their
lim g(r,p,T)=1. separation distance can be identified for the threg RDF's
r—o Oaas Oggs ap Of @ mixture of two Lennard-Jones fluids,

o and B, with diameterso, and oz."'° These features are
As the temperature goes toward infinity, the RDF mus : Ta @t OB ) i
ased on spatial considerations only; the influence on the

become independent of temperature as is the case with I%F shape due to the energy parameteys, is taken into
] i

_ ; hs.

hard-sphere fluid RDFg™ accounta posterioriby means of the parametrization E§).
lim g(r,p,T)=g"%r,p). (i) The contact distance, where the first peak appears,
Toe is determined by the diameters of the components of the

In addition, the equation representing the RDF must behixture independently of the molar fractions:
continuous over all distances and the first maximum should  g=p(g,+ 0g)/2, (9)
occur at the contact distanag with d=ho, o being the o
distance parameter of the Lennard-Jones potential functio§/nereh (h~1) accounts for deviations of the value of
andh an adjustable variable with value very near to unity. T0m the average molecular diameter. _
Considering the above features regarding the general () Each subsequent maximum is located at a distance
shape of the pure fluid RDF and the above boundary condi"m from the previous one that depends on the composition.
tions, we propose the following dimensionless functional Simulation experiments indicate that the location of the

form for the radial distribution function: second peak is mainly determined by the size of the particles
. which play the major role in filling the space in between the

g(y)=1+y "g(d)=1-N]+[(y—1+M)/y] pair of molecules under observation, and these are the mol-
« fexd — —1)]co —D ecules of that species which is the most concentrated and/or

{exd —a(y=1cod Aly-1)]} the largest in siz&.So, if A and B have similar diameters,

m=1, y=1, (6a) op=o0p, at molar fractionX,=0.9, the space is filled

mainly by A molecules, whereas 4,=0.1 it is theB par-
a(y)=g(d)exd —6(y-1)2], y<1, (6) Y A g

ticles which occupy most of the space, and consequently the
wherey=r/d is the dimensionless intermolecular distance,second peak maximum will be located in the two cases at a
andh=d/o, m, \, &, B, 6, g(d) are adjustable parameters. distance approximately equal i@, and og, respectively,
The termsy™ ™ and exp[- 6(y— 1)?] provide for the decay from the 1st maximum. liz,> o0y, even atX,=0.5, the

of the first peak, while the factor expla(y—1)]cos[B(y  molecules of specieA will occupy most of the space, so that
—1)] has the scope to give an oscillatory-decaying shape tar,,~ o, . All this is independent of the pair of molecules
the function as the RDF must have. Parambtseupports the under observationsi-A, A-B, or B-B. We introduce this
deviation ofd from o, and\ provides some flexibility in the feature in our equation by assuming thst,, is given by a
section in between the first and second peaks, allowing thereighted arithmetic mean af, and oz according to



4674 E. Matteoli and G. Ali Mansoori: Radial distribution functions of fluids

The changes to be introduced in E¢6a) and (6b) for
these to become valid also for mixtures should take into
account the variation of botd and Ary, according to the
mixture composition and to thej couple as expressed in
Egs.(9) and(10), and at the same time preserving continuity
of the function atr=d and as the composition changes
gradually from one pure compound to the mixtures to the
Ly ! other pure compound. This can be accomplished by taking
different functional forms foy according to whethar<d or
r>d:

r<d, vy=r/d; (11
r>d, y=(r—d+Ary)/Ary. (12)

By introducing these conditions and expressionsyfan
Egs.(6a)and(6b), we obtain a RDF expression which can be
used for all thregy;; functions of a binary mixture. Similarly
to pure fluids, the dependence on temperature and pressure is
taken into account by expressing parameters according to
Eqgs.(7) and(8). Moreover, it can be realized that the mixture

g(r)

g(r)

o

0 1 2 3 4 5 equations tend to the pure fluid ones when the concentration
r /o of one component goes to zero; i.eXifg—0 thenXy,—1,
and, looking at Eqs(9) and(10), we haved=Ary=ho,.

FIG. 1. Plot of radial distribution functiorg(r), vs the reduced distance,

r/o. (@), molecular dynamics simulation ddta,( ), best fitting

curves[Egs.(6a),(6b)with parameters of Tablel.lFrom bottom to top, the
figures represent data of the 1st and 5th lines of Table I, respectively. RESULTS AND DISCUSSION

Pure fluids

AF = h(Xya0at Xygora) (10) In order to check the capability of Eg&a) and (6b) to

M VATA T AVBEB/ reproduce the actual behavior of the RDF’s, we have consid-
where Xy, and Xy are the volume molar fractions of the ered the MD simulation data reported by VerieThey are
component®A andB in the mixture, respectively. quite appropriate for this study because extend talues of

TABLE I. Parameters of the RDF equation determined by best-fitting of data of Ré&f. 11.

s.d.-16 h m g(d) \ @ B 0
6.81 1.065 13.42 2.830 0.9310 1.579 6.886 135.9
6.84 1.070 13.51 2.920 0.9818 1.518 6.924 146.7
9.91 1.088 16.31 3.220 1.1010 1.470 7.212 159.5
4.70 1.036 9.369 2.220 0.6795 1.957 6.391 88.52
4,55 1.043 9.680 2.350 0.7879 1.935 6.449 104.3
5.30 1.062 12.01 2.680 0.8696 1.713 6.667 130.4
5.55 1.065 12.02 2.760 0.9184 1.651 6.737 144.5
6.57 1.075 13.30 2.880 0.9438 1.582 6.840 148.4
7.16 1.080 13.83 2.940 1.0320 1.596 6.947 150.1
7.80 1.085 14.75 3.000 1.0420 1.587 7.016 149.0
9.13 1.088 10.06 3.080 1.3950 1.568 7.003 200.9
6.60 1.082 13.29 2.840 0.9534 1.649 6.853 142.4
3.95 1.045 6.601 2.030 0.7118 2.340 6.038 86.19
4.52 1.072 9.370 2.380 0.8082 1.990 6.382 117.8
4.77 1.082 10.49 2.480 0.8289 1.921 6.515 119.1
5.23 1.090 11.63 2.620 0.8930 1.876 6.597 135.5
3.42 1.045 4.537 1.780 0.5984 2.654 5.567 72.79
3.48 1.070 6.030 2.020 0.7146 2.397 5.901 96.46
3.81 1.075 6.436 2.080 0.7474 2.375 5.978 99.78
431 1.095 10.08 2.320 0.6957 2.160 6.288 107.7
4.78 1.102 11.37 2.430 0.6986 2.051 6.480 108.5
4.40 1.102 7.015 1.980 0.5596 2.640 6.006 81.18
2.96 1.070 6.000 1.620 0.3084 2.817 5.186 70.90
4.05 1.097 4.367 1.850 0.6614 3.175 5.597 74.92
4.52 1.105 1.910 1.860 0.8383 3.405 5.531 70.80

3Parameters of Eq¢6a) and(6b). The lines correspond in the order to the 25 RDF curves for a Lennard-Jones fluid of Table IV of Ref. 11. Here s.d. is the
standard deviation of the fit.
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TABLE Il. Coefficients of the parametrization equatichs.

7 T T T 14
A1 a2 ds s.d. EQ. D® t2f

6_ -
h'® 403.5 —371.7 —1.552 1.20 7 o 1o
m 22.79 —17.54 —0.0508 1.10 8
g(d) 1.708 —0.8569 0.8196 0.0370 7 . ° & | o
N 0.5644 —0.3057 0.8579 0.0834 7 7 N a6l
@ 0.2411 0.1387 4.216 0.156 8 4} B
B 5.289 —1.180 0.3996 0.0858 7 A 4r
6 71.44 —46.68 1.100 5.20 7 ol | AL
#Eqgs.(7) and(8) of text applied to data of Table I. ok
PIn this case the parametrization equation produtgs defined as 2 ! L L

0 1 2 3 4 0
h’=1000(h—1). T "

FIG. 3. Comparison between values of reduced internal energy,
5, refer to relatively wide ranges of temperature and densityt* =(u—uig)/Ne, and pressurgy* =pa /e, obtained by numerical integra-

: : - tion of the RDF equatiofEgs. 6(aj)and(b) using parameters of Tablefull
and the number of points for each curve is sufficient to de oints) with those calculated by integration of the fully parametrized RDF

scribe its shape accurately. By means of a nonlinear Ie"7"Sg'quation(solid lines), that is, with parameters expressed as function of the
square routine, parametgysof Eqgs.(6a) and(6b) have been  reduced density* =ps®, and temperaturd* =kT/e, according to Eqs(7)
adjusted to reproduce all 25 RDF curves there reported. A3d(8) and values of Table II.4, 4), p*=0.5; (B,M), p*=0.65; (C,A),
an example, to illustrate the performance of E@a)and * =075, 0.®), p"=085.
(6b), in Fig. 1 a comparison between simulation points and
calculated curves for a couple of cases is shown.

.In .Table | the yalues of the parameters and the standarg(d), the most important parameters of our RDF equation, is
deviation of the fit are reported. We can observe that thgpqwn.
standard deviation of the fit is in most cases less than 5%. I ggme years ago, GoldmHrproposed an expression for

the few instances where less accuracy of fitting is achievedne RDF of pure fluids which was able to reproduce Verlet's
the shape of the simulation curves in the-d section pre-  4at4 somewhat more accurately than the present equation:
sents anomalies such as discontinuities and sharp edges that standard deviation averaged over all 25 RDF curves
our equation, as well as any other function which is continu-younts to 5.3- 10 for our equation and to 3.3-18 for his

ous and has continuous deriyatives, cannot reproduce. Tr}ﬁting_ However, his model equation requires 108 param-
parameters have then been fitted to Hg$.and(8). Due 0 gters, and this makes its use quite difficult; moreover, the

the very small deviations of parameterfrom unity, the  ossibility of its extension to mixtures does not appear

quantityh’=1000(—1) instead oh was adjusted t0 Eq. {riyial. In contrast, the simplicity of our model, which only

(7). The set ofg; values obtained are reported in Table Il requires 21 parameters on the whole, and its validity also for

and in Fig. 2 the reproduction by Eq&’) and(8) of h and  ixtyres, makes it quite affordable for further applications
and studies.

1.11

1.08

d/e

1.05

2.9

2.4

1.9 IL//f/;’i

g(d)

1 1
03 05 07 09 1.1 1.3 1.5 1.7

FIG. 4. Comparison between values of reduced internal energy,
u* =(u—ujg)/Ne, and pressurey* = pa®le, obtained by molecular dynam-
ics simulation experiments in Ref. 4ull points) and those calculated by
FIG. 2. Plot of the reproduction of parametdrs-d/o and g(d) by the numerical integration of the RDF equatiffgs.(6a)and(6b)] with param-
parametrization Eq(7). Points are best-fitting parameter values of Table I, eters expressed as function of the reduced density,ps®, and tempera-
the curves describe the trends lofand g(d) as calculated by Eq.7) at ture, T* =kT/e, according to Egs(7) and(8) and values of Table I{solid
constant reduced densipf, p* =c°p. From top to bottomp*=0.88, 0.85, lines). (A, ¢), p*=0.5; (B,M), p*=0.65; (C,A), p*=0.75, D,@®),
0.824, 0.75, 0.65, 0.5, 0.45. p*=0.85.

e /kT
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TABLE Ill. Parameters of the RDF mixture equation resulting from best-fitting of selected simulation dgaobfLennard-Jones mixturés.

Oij i} Xa P s.d.-16 h m o(d) A a B 0

1 AA 0S5 0.164 6.72 1.070 5.0 2.100 1.38 4.473 5.16 66.9
1 AB 05 0.164 5.93 1.075 5.0 2.340 1.41 3.688 5.32 93.8
1 BB 0.5 0.164 5.55 1.082 10.1 2.370 1.87 3.832 5.32 127
2 AA 05 0.190 9.70 1.095 15.0 3.850 6.72 9.332 5.50 110
2 AB 05 0.190 5.28 1.073 11.0 2.405 3.43 6.302 5.28 112
2 BB 05 0.190 5.78 1.040 10.0 2.380 1.50 3.514 6.17 112
3 AA 0.95 0.171 6.25 1.110 3.95 1.482 0.38 5.121 5.00 45.8
3 AB 0.95 0.171 5.98 1.110 5.24 1.570 —.048 3.672 6.00 56.5

3 BB 0.95 0.171 4.25 1.105 4.00 1.535 —.087 3.299 7.00 76.9

4 AA 0.95 0.274 5.53 1.100 5.94 1.760 0.326 3.696 6.00 66.5
4 AB 0.95 0.274 4.41 1.085 5.60 1.430 —.005 3.323 7.00 60.8

4 BB 0.95 0.274 4.28 1.065 1.88 1.270 0.181 4.080 6.50 53.7

®The g;; simulation data were taken from Ref. 10. For @j's, og/o,=2. The values okgg/exn Were 3, 0.5, 2.0, and 0.5 for theg;’'s #1, 2, 3, and 4,
respectively. For thg;;’s #1 and 3,T* =kT/exp=3.0; for theg;;’s #2 and 4,T* =1.0, and2.0, respectively.

Also Li etal!® proposed an analytical formula for compressibility factor,p/pkT, which at p*=0.85 corre-
RDF'’s of fluids and fluid mixture. Their aim was to provide sponds to an average error of 0.17 ph, explains only a
an expression, derived from the wave motion equationhalf of the difference between simulated values and cal-

which could reproduce the RDF'’s of Lennard-Jones fluidsculated curves. The uncertainty and dispersion in the simu-

and also predict the excess enthalphy of mixtures. As regardated data is also evident if we compar& data with those
the former point, from the comparison they made with fiveobtained in a smaller range @ by Johnson and Gubbitts
curves of Verlet we have calculated an average standard de-

viation by 20-102, against a value of 5.2-18 that we ob-

tain with our equation for the same curves. This very large

deviation is mostly due to the poor reproduction of thed 4 : . .

section and, to a lesser extent, of ther<2d section, and

renders this equation unsuitable for its use in the calculation 3+ i, j=B .

of thermodynamic properties through the Kirkwood—Buff

theory. ol _
To investigate how the fitting uncertainties reflect on cal-

culated thermodynamic properties, we have calculated the -~ (L se

reduced internal energy* =(u—u;q)/Ne, and pressure,

p* =pale, by numerical integration of Eqg3) and (4) 0 | | |

with parameters given by Eqér) and(8). We have carried
out this calculation at several values of the reduced tempera-

L i=A, j=B |
ture T*, T* =kT/e, for each of four different values of the 8 :
reduced densityp*, p*=po>. In Fig. 3 these calculated  —~
. K ~ 2F ]
curves are compared with thg andp* values obtained by =
numerical integration of the RDF function with parameters il
of Table I. We can see that, except for the first and the last o
point atp* =0.85, a fairly good reproduction is obtained, and 0 . . ‘
this supports the validity of our parametrization equations. ' ' '
In another paper, Verl¥t reports the results of simula- i, j=A

tion experiments of thermodynamic properties of Lennard- 3
Jones fluids. The data af andp* there obtained have been
compared in Fig. 4 with the curves calculated as described _r 1
above. The figure suggests that good agreement is found only
limitedly to the trends; if we look at the single values, the Lr e .
simulation data are all lower than their corresponding curves,
and the deviation is larger the higher the temperature. These
discrepancies cannot be due only to inadequacy of our model
equation or to inaccurate fittinggee Fig. 3, it may be pos-
sible that the simulation technique has some inconsistency in
the ways of producing the thermodynamic properties and th&lG. 5. Plot ofg;; (i,j=A,B) vs reduced distance for a mixture afB
RDF curves, and this drawback appears more effective 'trfk Tae=(0atop)/2, ~oel0a=2,  X,=0.5,  egg/€an=0.5,
high T* and leads to negative valuesf at low T*; how- —KTlepn=1, ando” =po an—0.190(g,#2 inTable |1). (@), molec-

i ) ) lar dynamics computer simulation dafh¢ ), present calculations by
ever, the maximum error admitted by Vetfeof 0.2 in the  Egs.(6), (9)—(12) with parameters of Table Iil fog;;#2.

2
r/aij
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in simulation experiments using the more accurate Nichola€ONCLUSIONS

equation of state. It is shown that the simple parametric equation for RDF

of fluids and fluid mixtures here proposed is able to repro-
duce the shape of the simulated RDF of Lennard-Jones fluids

Ely and Hubet® have obtained a large collection of very and mixtures at different values of the reduced temperature
detailed simulation data ofy; of binary mixtures of and density with good accuracy. The expression contains
Lennard-Jones fluids. These data refeotdo,=2 and to a  seven adjustable parameters, each of which can be expanded
variety of molar fractions, ok,a/egg, Of density and tem- in terms of temperature and density by appropriate functional
perature. In order to examine the behavior of H§a),(6b),  forms, each containing three additional parameters. By using
(9)—(12) as to their capability of reproduoirg;j of mixtures, a parametrization obtained from literature simulated RDF
among Ely and Huber's data we have chosen some atata of Lennard-Jones fluids, values of reduced internal en-
X,=0.5 andX,=0.95, and foreach molar fraction two ergy and pressure calculated by integration agree fairly with
different sets corresponding to differests/ e ratios. This  literature data for the same type of fluids. Thanks to its good
choice allows a wide variation in the spectrum of the RDFfitting capability, the expression lends itself to be used as a
shape here examined. To apply Efj0), the volume molar convenient tool for the calculation of relevant thermody-
fractions were calculated through: namic properties once a good reproduction of experimental
or simulated RDF data has been obtained.

Binary mixtures

Xya=Xa0 3/ (Xpos+ Xgos) (13)

which in turn allows calculation ofry, and hence o¥ in ALl Lo
Eqg. (12). This research is supported in part by the NSF Grant No.
Table 11l collects the values of the parameters of Eqs.CTS-9108595.
(6a) and (6b) for all 12 g;;’s considered, obtained by a least
squares routine, as well as the standard deviation. The fairlilT- 'FE- ':/'I"’DStatl'ZtlcaE' M?I_Eh_anlcfr'\]/'CGraV‘;"l‘!""_("\‘ev‘{ \tfork’ 1,9552- istical
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