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A simple expression for radial distribution functions of pure fluids
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A simple expression for the radial distribution function~RDF! of pure fluids and mixtures is
presented. It satisfies the limiting conditions of zero density and infinite distance imposed by
statistical thermodynamics. The equation contains seven adjustable parameters; they have be
fitted to extensive literature data of RDF’s for a Lennard-Jones fluid at different values of
temperature and density. These in turn have been expressed as functions of reduced temperature
density, thus allowing a complete parametrization with respect to these variables using 21
parameters altogether with fairly good accuracy. The values of the reduced pressure and intern
energy calculated by numerical integration of the completely parametrized equation compare fairly
with literature molecular dynamics simulation results. The capability of the expression to fit to
RDF’s of mixtures has been checked against some of the extensive RDF simulation data of binar
mixtures of Lennard-Jones fluids with different diameters available in the literature. Data pertaining
to different molar fractions as well as to differenteAA/eBB ratios have been considered, and the
agreement between calculated and simulation curves has resulted satisfactory. The propos
expression can be used to calculate by integration related quantities such as compressibility, intern
energy, pressure and, using the Kirkwood–Buff theory, the chemical potentials and partial mola
volumes of the components of mixtures for which RDF data are available. ©1995 American
Institute of Physics.
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INTRODUCTION

Radial distribution~pair correlation!functions~RDF!are
the primary linkage between macroscopic thermodynam
properties and intermolecular interactions of fluids and flu
mixtures. In the canonical ensemble of statistical mechan
where the temperature,T, the volume,V, and the number of
particles of each component in the system,Ni , are fixed, the
radial ~pair! distribution function,gi j (r ,r,T), is given by

gi j ~r ,r,T!5V2~12d i j /Nj !

3E e2F/kTdr3 •••drN /Zc~T,V,N!. ~1!

In this equation,r is the number density,d i j is the Kronecker
delta,N is the set of number of molecules,N1 ,N2 ,...,Nc , F
is the total potential energy of the system,k is Boltzmann
constant, r i is the position vector of moleculei , and
Zc(T,V,N! is the configurational integral,

Zc~T,V,N!5E •••E e2F/kTdr1 •••drN ••• . ~2!

The relations betweengi j and the internal energyu and pres-
surep, assuming pairwise additivity of intermolecular pote
tial energy function, are the following:1
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f i j ~r !gi j ~r !4pr 2dr, ~3!

(a) Corresponding author. Email: matteoli@ipcf.cnr.it 
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~4!

wheref8 is the derivative of the potential function with re
spect to the distancer .

Modern theories of fluid and fluid mixtures have ben
efited a great deal from the concept of radial distributio
function. The RDF theories have been quite successful
describing the behavior of simple liquids and liqui
mixture,1–7 although have been able to provide RDF analyt
expressions only for very simple model fluids such as t
hard spheres and hard rods.7,8 Moreover, the validity of Eqs.
~3! and~4! is limited to spherically symmetric potentials, an
therefore their application to polar nonspherical fluids is im
possible. On the other hand, the Kirkwood–Buff theory9 pro-
vides equations valid for any kind of molecular shapes whi
allow the calculation of thermodynamic properties of mix
tures such as compressibility, partial molar volumes a
chemical potentials only requiring the knowledge of the in
tegrals over the distance of the radial~center to center! dis-
tribution functions~Kirkwood–Buff integrals,Gi j !:

Gi j5E
0

`

@gi j ~r !21#4pr 2dr. ~5!

Although in recent years several studies have been c
ried out to calculate the Kirkwood–Buff integrals of rea
mixtures from thermodynamic properties by the inverte
equation of the theory,6 no extensive study is available at ou
knowledge to calculate these quantities directly from Eq.~5!,
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and then to use these to obtain thermodynamic proper
These calculations are linked to the availability of an anal
cal expression that could be used to represent the RDF
fluids and their mixtures. As we will see later on, due
different reasons, previous RDF expressions are not ap
priate to the general purpose of our research, consistin
the calculation through the Kirkwood–Buff theory of th
chemical potentials and the partial molar volumes of
components of binary mixtures of Lennard-Jones fluids fi
and of more complex substances afterward. In this work
elaborate on the asymptotic conditions required by statist
thermodynamics and on less rigorous geometrical and sp
considerations to provide a parametric equation for RDF
Lennard-Jones fluids and mixtures which can be used
comply with the first part of our research.

RDF OF PURE FLUIDS

The radial distribution functiong(r ,r,T) of a pure fluid
must satisfy the following asymptotic relations.

At zero density it must reduce to its ideal gas limit
unity,

lim
r→0

g~r ,r,T!51.

Similarly, at large intermolecular distances it must r
duce to unity,

lim
r→`

g~r ,r,T!51.

As the temperature goes toward infinity, the RDF m
become independent of temperature as is the case with
hard-sphere fluid RDF,ghs:

lim
T→`

g~r ,r,T!5ghs~r,r!.

In addition, the equation representing the RDF must
continuous over all distances and the first maximum sho
occur at the contact distanced, with d5hs, s being the
distance parameter of the Lennard-Jones potential func
andh an adjustable variable with value very near to unity

Considering the above features regarding the gen
shape of the pure fluid RDF and the above boundary co
tions, we propose the following dimensionless function
form for the radial distribution function:

g~y!511y2m@g~d!212l#1@~y211l!/y#

3$exp@2a~y21!#cos@b~y21!#%,

m>1, y>1, ~6a!

g~y!5g~d!exp@2u~y21!2#, y,1, ~6b!

wherey5r /d is the dimensionless intermolecular distanc
andh5d/s, m, l, a, b, u, g(d) are adjustable parameter
The termsy2m and exp[2u(y21)2] provide for the decay
of the first peak, while the factor exp[2a(y21)]cos[b(y
21)] has the scope to give an oscillatory-decaying shap
the function as the RDF must have. Parameterh supports the
deviation ofd from s, andl provides some flexibility in the
section in between the first and second peaks, allowing
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curve to deviate from a strict exponential oscillatory decay
The other terms guarantee continuity of the function atr5d.

In order that the RDF equation may be capable to in
clude temperature and density dependence, all parame
pi5h, u,m, g(d), l, a, b, are to be expressed as function o
the reduced temperature and density,T*5kT/e, r*5rs3, e
being the energy parameter. The following functional form
are proposed:

pi5@q1, i1q2, i exp~2e/kT!#exp@q3, i~rs3!#, ~7!

for pi5u, g(d), l, b, andh8, with h851000(h21); and

pi5@q1, i1q2, i exp~2e/kT!#@~rs3!21q3, i#/~rs3!,
~8!

for pi5m anda. They have been chosen to satisfy the lim
iting condition of RDF above outlined.

RDF OF BINARY MIXTURES

Equations~6a!and~6b! can be slightly modified so as to
be applied to binary mixtures. A proper mixture RDF equa
tion should take into account the variation in the position o
the peaks and in their separation distance as the composit
of the mixture changes. From the observation of the shap
of the RDF’s obtained by molecular dynamics simulations o
pure compounds and of binary mixtures, the following two
general features as regards position of the peaks and th
separation distance can be identified for the three RDF
gAA , gBB , gAB of a mixture of two Lennard-Jones fluids,A
and B, with diameterssA and sB .

7,10 These features are
based on spatial considerations only; the influence on th
RDF shape due to the energy parameters,e i j , is taken into
accounta posterioriby means of the parametrization Eq.~8!.

~i! The contact distanced, where the first peak appears,
is determined by the diameters of the components of th
mixture independently of the molar fractions:

d5h~sA1sB!/2, ~9!

whereh (h'1) accounts for deviations of the value ofd
from the average molecular diameter.

~ii! Each subsequent maximum is located at a distan
Dr M from the previous one that depends on the compositio

Simulation experiments indicate that the location of th
second peak is mainly determined by the size of the particl
which play the major role in filling the space in between the
pair of molecules under observation, and these are the m
ecules of that species which is the most concentrated and
the largest in size.7 So, if A andB have similar diameters,
sA>sB , at molar fractionXA50.9, the space is filled
mainly byA molecules, whereas atXA50.1 it is theB par-
ticles which occupy most of the space, and consequently t
second peak maximum will be located in the two cases at
distance approximately equal tosA and sB , respectively,
from the 1st maximum. IfsA@sB , even atXA50.5, the
molecules of speciesA will occupy most of the space, so that
Dr M'sA . All this is independent of the pair of molecules
under observations,A-A, A-B, or B-B. We introduce this
feature in our equation by assuming thatDr M is given by a
weighted arithmetic mean ofsA andsB according to
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Dr M5h~XVAsA1XVBsB!, ~10!

whereXVA andXVB are the volume molar fractions of the
componentsA andB in the mixture, respectively.

FIG. 1. Plot of radial distribution function,g(r ), vs the reduced distance
r /s. ~d!, molecular dynamics simulation data,11 ~———!, best fitting
curves@Eqs.~6a!,~6b!with parameters of Table I#. From bottom to top, the
figures represent data of the 1st and 5th lines of Table I, respectively.
 J. Chem. Phys. 103(11
The changes to be introduced in Eqs.~6a! and ~6b! for
these to become valid also for mixtures should take in
account the variation of bothd andDr M according to the
mixture composition and to thei - j couple as expressed in
Eqs.~9! and~10!, and at the same time preserving continu
of the function atr5d and as the composition change
gradually from one pure compound to the mixtures to t
other pure compound. This can be accomplished by tak
different functional forms fory according to whetherr,d or
r.d:

r,d, y5r /d; ~11!

r.d, y5~r2d1Dr M !/Dr M . ~12!

By introducing these conditions and expressions fory in
Eqs.~6a!and~6b!, we obtain a RDF expression which can b
used for all threegi j functions of a binary mixture. Similarly
to pure fluids, the dependence on temperature and pressu
taken into account by expressing parameters according
Eqs.~7! and~8!. Moreover, it can be realized that the mixtu
equations tend to the pure fluid ones when the concentra
of one component goes to zero; i.e., ifXVB→0 thenXVA→1,
and, looking at Eqs.~9! and ~10!, we haved5Dr M5hsA .

RESULTS AND DISCUSSION

Pure fluids

In order to check the capability of Eqs.~6a!and ~6b! to
reproduce the actual behavior of the RDF’s, we have con
ered the MD simulation data reported by Verlet.11 They are
quite appropriate for this study because extend tor values of
is the
TABLE I. Parameters of the RDF equation determined by best-fitting of data of Ref. 11.a

s.d.•102 h m g(d) l a b u

6.81 1.065 13.42 2.830 0.9310 1.579 6.886 135.9
6.84 1.070 13.51 2.920 0.9818 1.518 6.924 146.7
9.91 1.088 16.31 3.220 1.1010 1.470 7.212 159.5
4.70 1.036 9.369 2.220 0.6795 1.957 6.391 88.52
4.55 1.043 9.680 2.350 0.7879 1.935 6.449 104.3
5.30 1.062 12.01 2.680 0.8696 1.713 6.667 130.4
5.55 1.065 12.02 2.760 0.9184 1.651 6.737 144.5
6.57 1.075 13.30 2.880 0.9438 1.582 6.840 148.4
7.16 1.080 13.83 2.940 1.0320 1.596 6.947 150.1
7.80 1.085 14.75 3.000 1.0420 1.587 7.016 149.0
9.13 1.088 10.06 3.080 1.3950 1.568 7.003 200.9
6.60 1.082 13.29 2.840 0.9534 1.649 6.853 142.4
3.95 1.045 6.601 2.030 0.7118 2.340 6.038 86.19
4.52 1.072 9.370 2.380 0.8082 1.990 6.382 117.8
4.77 1.082 10.49 2.480 0.8289 1.921 6.515 119.1
5.23 1.090 11.63 2.620 0.8930 1.876 6.597 135.5
3.42 1.045 4.537 1.780 0.5984 2.654 5.567 72.79
3.48 1.070 6.030 2.020 0.7146 2.397 5.901 96.46
3.81 1.075 6.436 2.080 0.7474 2.375 5.978 99.78
4.31 1.095 10.08 2.320 0.6957 2.160 6.288 107.7
4.78 1.102 11.37 2.430 0.6986 2.051 6.480 108.5
4.40 1.102 7.015 1.980 0.5596 2.640 6.006 81.18
2.96 1.070 6.000 1.620 0.3084 2.817 5.186 70.90
4.05 1.097 4.367 1.850 0.6614 3.175 5.597 74.92
4.52 1.105 1.910 1.860 0.8383 3.405 5.531 70.80

aParameters of Eqs.~6a!and~6b!. The lines correspond in the order to the 25 RDF curves for a Lennard-Jones fluid of Table IV of Ref. 11. Here s.d.
standard deviation of the fit.
): 4672-4677, 1995
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5, refer to relatively wide ranges of temperature and dens
and the number of points for each curve is sufficient to d
scribe its shape accurately. By means of a nonlinear le
square routine, parameterspi of Eqs.~6a!and~6b!have been
adjusted to reproduce all 25 RDF curves there reported.
an example, to illustrate the performance of Eqs.~6a! and
~6b!, in Fig. 1 a comparison between simulation points a
calculated curves for a couple of cases is shown.

In Table I the values of the parameters and the stand
deviation of the fit are reported. We can observe that
standard deviation of the fit is in most cases less than 5%
the few instances where less accuracy of fitting is achiev
the shape of the simulation curves in ther.d section pre-
sents anomalies such as discontinuities and sharp edges
our equation, as well as any other function which is contin
ous and has continuous derivatives, cannot reproduce.
parameters have then been fitted to Eqs.~7! and ~8!. Due to
the very small deviations of parameterh from unity, the
quantityh851000(h21) instead ofh was adjusted to Eq.
~7!. The set ofqi values obtained are reported in Table I
and in Fig. 2 the reproduction by Eqs.~7! and ~8! of h and

FIG. 2. Plot of the reproduction of parametersh5d/s and g(d) by the
parametrization Eq.~7!. Points are best-fitting parameter values of Table
the curves describe the trends ofh and g(d) as calculated by Eq.~7! at
constant reduced densityr* , r*5s3r. From top to bottom,r*50.88, 0.85,
0.824, 0.75, 0.65, 0.5, 0.45.

TABLE II. Coefficients of the parametrization equations.a

q1 q2 q3 s.d. EQ.

h8b 403.5 2371.7 21.552 1.20 7
m 22.79 217.54 20.0508 1.10 8
g(d) 1.708 20.8569 0.8196 0.0370 7
l 0.5644 20.3057 0.8579 0.0834 7
a 0.2411 0.1387 4.216 0.156 8
b 5.289 21.180 0.3996 0.0858 7
u 71.44 246.68 1.100 5.20 7

aEqs.~7! and ~8! of text applied to data of Table I.
bIn this case the parametrization equation producesh8, defined as
h851000(h21).
 J. Chem. Phys. 103(11
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g(d), the most important parameters of our RDF equation,
shown.

Some years ago, Goldman12 proposed an expression for
the RDF of pure fluids which was able to reproduce Verlet
data somewhat more accurately than the present equat
the standard deviation averaged over all 25 RDF curv
amounts to 5.3•1022 for our equation and to 3.3•1022 for his
fitting. However, his model equation requires 108 param
eters, and this makes its use quite difficult; moreover, th
possibility of its extension to mixtures does not appea
trivial. In contrast, the simplicity of our model, which only
requires 21 parameters on the whole, and its validity also f
mixtures, makes it quite affordable for further application
and studies.

I,

FIG. 3. Comparison between values of reduced internal energ
u*5(u2uig)/Ne, and pressure,p*5ps3/e, obtained by numerical integra-
tion of the RDF equation@Eqs. 6~a!and~b! using parameters of Table I~full
points!with those calculated by integration of the fully parametrized RD
equation~solid lines!, that is, with parameters expressed as function of t
reduced density,r*5rs3, and temperature,T*5kT/e, according to Eqs.~7!
and ~8! and values of Table II. (A,l), r*50.5; (B,j), r*50.65; (C,m),
r*50.75; (D,d), r*50.85.

FIG. 4. Comparison between values of reduced internal energ
u*5(u2uig)/Ne, and pressure,p*5ps3/e, obtained by molecular dynam-
ics simulation experiments in Ref. 14~full points! and those calculated by
numerical integration of the RDF equation@Eqs.~6a!and~6b!#with param-
eters expressed as function of the reduced density,r*5rs3, and tempera-
ture,T*5kT/e, according to Eqs.~7! and ~8! and values of Table II~solid
lines!. (A,l), r*50.5; (B,j), r*50.65; (C,m), r*50.75; (D,d),
r*50.85.
): 4672-4677, 1995
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TABLE III. Parameters of the RDF mixture equation resulting from best-fitting of selected simulation data ofgi j of Lennard-Jones mixtures.
a

gi j i j x A r* s.d.•102 h m g(d) l a b u

1 AA 0.5 0.164 6.72 1.070 5.0 2.100 1.38 4.473 5.16 66.9
1 AB 0.5 0.164 5.93 1.075 5.0 2.340 1.41 3.688 5.32 93.8
1 BB 0.5 0.164 5.55 1.082 10.1 2.370 1.87 3.832 5.32 127
2 AA 0.5 0.190 9.70 1.095 15.0 3.850 6.72 9.332 5.50 110
2 AB 0.5 0.190 5.28 1.073 11.0 2.405 3.43 6.302 5.28 112
2 BB 0.5 0.190 5.78 1.040 10.0 2.380 1.50 3.514 6.17 112
3 AA 0.95 0.171 6.25 1.110 3.95 1.482 0.38 5.121 5.00 45.8
3 AB 0.95 0.171 5.98 1.110 5.24 1.570 2.048 3.672 6.00 56.5
3 BB 0.95 0.171 4.25 1.105 4.00 1.535 2.087 3.299 7.00 76.9
4 AA 0.95 0.274 5.53 1.100 5.94 1.760 0.326 3.696 6.00 66.5
4 AB 0.95 0.274 4.41 1.085 5.60 1.430 2.005 3.323 7.00 60.8
4 BB 0.95 0.274 4.28 1.065 1.88 1.270 0.181 4.080 6.50 53.7

aThe gi j simulation data were taken from Ref. 10. For allgi j ’s, sB/sA52. The values ofeBB/eAA were 3, 0.5, 2.0, and 0.5 for thegi j ’s #1, 2, 3, and 4,
respectively. For thegi j ’s #1 and 3,T*5kT/eAA53.0; for thegi j ’s #2 and 4,T*51.0, and2.0, respectively.
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Also Li et al.13 proposed an analytical formula fo
RDF’s of fluids and fluid mixture. Their aim was to provid
an expression, derived from the wave motion equati
which could reproduce the RDF’s of Lennard-Jones flui
and also predict the excess enthalphy of mixtures. As reg
the former point, from the comparison they made with fi
curves of Verlet we have calculated an average standard
viation by 20•1022, against a value of 5.2•1022 that we ob-
tain with our equation for the same curves. This very la
deviation is mostly due to the poor reproduction of ther,d
section and, to a lesser extent, of thed,r,2d section, and
renders this equation unsuitable for its use in the calcula
of thermodynamic properties through the Kirkwood–Bu
theory.

To investigate how the fitting uncertainties reflect on c
culated thermodynamic properties, we have calculated
reduced internal energy,u*5(u2uig)/Ne, and pressure
p*5ps3/e, by numerical integration of Eqs.~3! and ~4!
with parameters given by Eqs.~7! and ~8!. We have carried
out this calculation at several values of the reduced temp
ture T* , T*5kT/e, for each of four different values of th
reduced densityr* , r*5rs3. In Fig. 3 these calculated
curves are compared with theu* andp* values obtained by
numerical integration of the RDF function with paramete
of Table I. We can see that, except for the first and the
point atr*50.85, a fairly good reproduction is obtained, a
this supports the validity of our parametrization equation

In another paper, Verlet14 reports the results of simula
tion experiments of thermodynamic properties of Lenna
Jones fluids. The data ofu* andp* there obtained have bee
compared in Fig. 4 with the curves calculated as descri
above. The figure suggests that good agreement is found
limitedly to the trends; if we look at the single values, t
simulation data are all lower than their corresponding curv
and the deviation is larger the higher the temperature. Th
discrepancies cannot be due only to inadequacy of our m
equation or to inaccurate fitting~see Fig. 3!; it may be pos-
sible that the simulation technique has some inconsistenc
the ways of producing the thermodynamic properties and
RDF curves, and this drawback appears more effective
high T* and leads to negative values ofp* at low T* ; how-
ever, the maximum error admitted by Verlet11 of 0.2 in the
 J. Chem. Phys. 103(11
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compressibility factor,p/rkT, which at r*50.85 corre-
sponds to an average error of 0.17 onp* , explains only a
half of the difference between simulatedp* values and cal-
culated curves. The uncertainty and dispersion in the sim
lated data is also evident if we comparep* data with those
obtained in a smaller range ofT* by Johnson and Gubbins15

FIG. 5. Plot ofgi j ( i , j5A,B) vs reduced distance for a mixture ofA1B
with: sAB5(sA1sB)/2, sB/sA52, XA50.5, eBB/eAA50.5,
T*5kT/eAA51, andr*5rs3

AA50.190~gi j#2 in Table III!. ~d!, molecu-
lar dynamics computer simulation data;10 ~———!, present calculations by
Eqs.~6!, ~9!–~12! with parameters of Table III forgi j#2.
): 4672-4677, 1995
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in simulation experiments using the more accurate Nicho
equation of state.

Binary mixtures

Ely and Huber10 have obtained a large collection of ver
detailed simulation data ofgi j of binary mixtures of
Lennard-Jones fluids. These data refer tosB/sA52 and to a
variety of molar fractions, ofeAA/eBB , of density and tem-
perature. In order to examine the behavior of Eqs.~6a!,~6b!,
~9!–~12!as to their capability of reproducinggi j of mixtures,
among Ely and Huber’s data we have chosen some
XA50.5 andXA50.95, and foreach molar fraction two
different sets corresponding to differenteAA/eBB ratios. This
choice allows a wide variation in the spectrum of the RD
shape here examined. To apply Eq.~10!, the volume molar
fractions were calculated through:

XVA>XAsA
3/~XAsA

31XBsB
3 ! ~13!

which in turn allows calculation ofDr M and hence ofy in
Eq. ~12!.

Table III collects the values of the parameters of Eq
~6a!and ~6b! for all 12 gi j ’s considered, obtained by a leas
squares routine, as well as the standard deviation. The fa
good reproduction of the simulation data is evident fro
inspection of Fig. 5. Worth mentioning is also the fact th
the b values of Table III are not very different from 2p,
which is the expected value if Eq.~10!were strictly obeyed.

The flexibility of Eqs.~6a!,~6b!, ~9!–~12! guaranteed by
the adjustable parameters should also allow their applica
to multicomponent mixtures, as long as appropriate con
tions similar to Eqs.~9!–~12! are introduced. Extension o
this treatment to all Ely and Huber’s data is in progress,
order to get a full parametrization of the mixture RDF equ
tion, and to determine possible relationships between th
parameters and those of the single components. This sub
will be covered in a future paper, together with an extens
calculation via Eq.~5! of the Kirkwood–Buff integrals of
Lennard-Jones fluid mixtures, and from these, by means
the Kirkwood–Buff theory, of the chemical potential an
partial molar volume, to be compared with those of real m
tures of apolar and polar compounds.
 J. Chem. Phys. 103(11
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CONCLUSIONS

It is shown that the simple parametric equation for RDF
of fluids and fluid mixtures here proposed is able to repro
duce the shape of the simulated RDF of Lennard-Jones fluid
and mixtures at different values of the reduced temperatu
and density with good accuracy. The expression contain
seven adjustable parameters, each of which can be expand
in terms of temperature and density by appropriate functiona
forms, each containing three additional parameters. By usin
a parametrization obtained from literature simulated RDF
data of Lennard-Jones fluids, values of reduced internal e
ergy and pressure calculated by integration agree fairly wit
literature data for the same type of fluids. Thanks to its goo
fitting capability, the expression lends itself to be used as
convenient tool for the calculation of relevant thermody-
namic properties once a good reproduction of experiment
or simulated RDF data has been obtained.
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