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Abstract—In this paper, an finite-difference time-domain

(FDTD) algorithm for simulating propagation of EM waves in
anisotropic material is presented. The algorithm is based on

the auxiliary differential equation and the general polarization

formulation. In anisotropic materials, electric fields are coupled
and elements in the permittivity tensor are, in general, multiterm

dispersive. The presented algorithm resolves the field coupling

using a formulation based on electric polarizations. It also offers
a simple procedure for the treatment of multiterm dispersion

in the FDTD scheme. The algorithm is tested by simulating

wave propagation in 1-D magnetized plasma showing excellent
agreement with analytical solutions. Extension of the algorithm

to multidimensional structures is straightforward. The presented

algorithm is efficient and simple compared to other algorithms
found in the literature.

Index Terms—Auxiliary differential equation finite-difference

time domain (ADE FDTD), anisotropic, dispersive, gyrotropic.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method is a

leading numerical tool for modeling electromagnetic

(EM) propagation in various materials ranging from ionosh-

peric plasmas [1] to gallium-nitrogen (GaN) nanowires [2].

When applied to deal with anisotropic materials with tensorial

permittivities, the simulation, however, is quite challenging

because the electric fields are generally coupled. In particular,

the simulation of anisotropic materials is challenging because

the electric fields are generally coupled. The difficulty increases

if the elements of the tensor are multiterm dispersive. Several

researchers have proposed algorithms that deal efficiently with

this kind of material. The first algorithm was proposed in 1992

by Hunsberger et al. which was based on the reclusive con-

volution (RC) approach [3]. The algorithm was valid for 1-D

problems only. Later in 1993, Schneider pointed out potential

inconsistencies in the Yee’s mesh for anisotropic materials [4].
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He proposed a different arrangement of the fields to overcome

this inconsistency. The algorithm presented by Hunsberger

et al. was later used to study the propagation in rectangular

waveguides filled with magnetized plasma [5], [6]. The first

3-D algorithm for anisotropic material was developed in 1999

[7]. This algorithm is a little bit complicated since it contains

matrix multiplication in the FDTD loop and it is specifically

built for magnetized plasma. Based on the JE convolution

method (JEC), an algorithm is proposed and used to simulate

propagation in magnetized plasma. The same validation ex-

ample used by Hunsberger is used again [8]. The (JEC) was

used for 2-D and 3-D study cases as found in [9] and [10].

The z-transform method was also used to develop an algorithm

for anisotropic propagation and showed better accuracy over

the RC method [11]. Consequently, the piecewise-linear RC

method was introduced to improve the performance of the orig-

inal RC algorithm [12]. Other methods were proposed to tackle

the anisotropic propagation, including the shift operator FDTD

[13], the Runge–Kutta exponential time differencing formula-

tion (RKETD-FDTD) [14], EJ collocated method [15], and the

exponential time differencing (ETD), FDTD method [16].

In this paper, a relatively simple multidimensional FDTD al-

gorithm for the efficient and accurate simulation of anisotropic

materials is proposed and tested. The algorithm is based on the

auxiliary differential equation (ADE) approach where a general

formulation of the electric polarization is used. In the following

section, the formulations of the algorithm and the implementa-

tion procedure are introduced. In Section III, necessary verifi-

cations of the algorithm in a 1-D situation are provided. The ex-

tension of the algorithm to a 2-D example is given in Section IV.

II. DERIVATION AND IMPLEMENTATION

The electric flux density vector for a general anisotropic ma-

terial can be written as

(1)

For a nondispersive anisotropy, the discrete time equivalent of

(1) is

(2)

(3)

(4)

0018-926X/$31.00 © 2012 IEEE



1322 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 3, MARCH 2013

Using field placements according to the Yee’s mesh, one can

identify two problems. First, solving several dependent vari-

ables at the same instant of time is required. Second, locations

of the electric-field components and flux density components

are not consistent. These problems can be addressed by ex-

tending the general polarization algorithm reported recently in

[17], which is based on theADE approach introduced by Taflove

[18]. Using this general algorithm, it is possible to decouple the

fields in time efficiently. Themain idea is to solve for these fields

in two steps. First, polarization variables are appropriately intro-

duced. Equation (2), for example, can be written as

(5)

Second, polarizations are independently calculated using a

linear combination of available polarization and field samples

each with a weighting constant. For example (see derivation

thereafter), a possible expression for can be

(6)

Similar equations are written for and . It is to be noted

that only previous time samples are needed. The constants

to are calculated from the material dispersion relation. For

the sake of demonstrating the applicability of the general algo-

rithm and without loss of generality, the anisotropy associated

with magnetized plasma is considered. Magnetized plasma is

well studied in the literature and analytical expressions for re-

flection and transmission coefficients involving this material are

available. The permittivity tensor for a magnetized plasma in the

z-direction is given by

(7)

where the elements are defined as

(8)

(9)

(10)

In the above equations, is the plasma frequency measured in

radians per second, is the electron collision rate in Hertz, and

is the cyclotron frequency, which is related to the applied

magnetic field. Now , for example, can be written as

(11)

The second and the third terms can be replaced with the auxil-

iary variables and , as

(12)

Taking the Fourier transform and then discretizing in time, (12)

can be written in the format given by (5) as

(13)

The evaluation of and will be discussed shortly. The

update equation for the electric field is then given by

(14)

At the onset of calculations, all flux densities are evaluated

from Maxwell’s curl equation using present values of the

magnetic-field intensity H. Because the dispersion relations

representing the polarization variables and are not in

the standard Lorentzian form [see (11)], a novel procedure will

be devised. There are two ways of deriving the algorithm: the

integral method and the derivative method.

A. Integral Method

For the integral method, we take the general dispersion rela-

tion form in (11) as

(15)

where , , , , and are just numerical coefficients

and their subscripts refer to the power of . These coeffi-

cients determine the material behavior. By setting some of them

to zero, it is possible to produce other dispersion forms. Multi-

plying (15) by the denominator and applying Fourier transform

gives

(16)

Discretizing and approximating derivatives in the time domain

around the time step , one obtains

(17)
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The update equation for the polarization variable is

(18)

B. Derivative Method

For the derivative method, the dispersion function in (11) is

rewritten as

(19)

to eliminate the integrals. The third and fourth terms are not

standard Lorentzians, and so they are treated as follows. The

polarization in this case is written as

(20)

Using a similar procedure as in the integral method, one obtains

(21)

Discretizing the equation around , we obtain

(22)

Finally, the update equation reads

(23)

It should be remarked that at (22), the first and second deriva-

tives are centered around the time step while the third

derivative is not. Therefore, this method is expected to give less

accuracy than the integral method. With these derivations, we

have solved the problem of time coupling. For field component

placement, it has been found that instead of the corrections to

Yee’s mesh proposed in [4], averaging the electric fields in space

around the point of calculation can solve the problem of incon-

sistency. The electric fields in (18) and (23) need to be corrected

by using averages calculated from neighboring spatial points as

(24)

for a 1-D case, where represents the space index.

III. VERIFICATIONS

For verification, the standard 1-D reflection/transmission test

is considered [3]. Propagation is taken in the z-direction and all

and are removed. Therefore, the simulated fields are

, , , and . Half of the space is air and the other half

is made of magnetized plasma. A Gaussian pulse is launched in

air with a waist of 1 ps. Only and are excited in the air re-

gion. However, once the wave reaches the interface, and

inside the magnetized plasma will start to evolve because of the

anisotropy. The reflected and transmitted fields are recorded in

time. The frequency spectrum is calculated using Fourier trans-

form and then normalized to the excited pulse. The right cir-

cularly polarized (RCP) and left circularly polarized (LCP) re-

flection and transmission coefficients are calculated using the

following equations [3]:

(25)

(26)

The fields and refer to the reflected and trans-

mitted in the frequency domain after normalization. The an-

alytical values of the coefficients are calculated using the rela-

tions

(27)

(28)

The effective permittivity for RCP and LCP is given as

(29)

which can be written as

(30)

The parameters of the magnetized plasma are taken as

, , and

. For the simulated transmission coefficient, the fields

are recorded at a distance from the interface in the plasma

region. Therefore, the simulated transmission coefficient given

by (26) is modified as

(31)

where is the phase constant. The integral

method is used with a discretization distance of 75 m.

Reflection and transmission coefficients from the simulation

are shown in Fig. 1, where excellent agreement with analytical

results is achieved. The resonance and cutoff frequencies are

defined as the frequencies that make equal to infinity and

zero, respectively. Referring back to (30), resonance is easily

found at . Similarly, the cutoff can be found by

solving for . For LCP, the resonance and cutoff frequencies

are 47.9 and 79.3 GHz, respectively. For RCP, the cutoff

frequency is 31.5 GHz.
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Fig. 1. Simulated and analytical reflection and transmission coefficients at
normal incidence of a plane wave hitting the air-magnetized plasma interface:
(a) reflection coefficient and (b) transmission coefficient.

The problem of the magnetized plasma slab presented in [3]

is also considered. A plane wave impinges on a 9-mm slab of

magnetized plasma having the same parameters as in the pre-

vious example. We use a discretization distance of of 75 m

and a total simulation time enough for the fields to settle down

to zero. PML is applied to truncate the simulation space. The

analytical expressions for the reflection and transmission coef-

ficients are calculated as in [19] using the effective permittivity

(32)

(33)

Here, is the thickness of the slab. Again, for the simulated

transmission coefficient, a correction factor similar to the one

in (31) is used. Figs. 2 and 3 show excellent agreement between

simulated and analytical coefficients with an average absolute

error 0.006.

The main advantages of this new algorithm are summarized

in the following text. It is obvious from (2)–(4) that the field

components are coupled. The efficiency of this algorithm lies

in the fact that all polarizations are decoupled and can be in-

dependently calculated outright for the whole domain. Subse-

quently, such calculations can be pulled out of the main field

loops. Also, the number of operations in each time step is sub-

stantially less than the reported algorithms, especially for 3-D

simulations. The algorithm is robust in the sense that any fre-

quency-dependent dispersion relation and any arrangements of

the permittivity tensor elements can be handled within the main-

frame described earlier with the problem reduced to the evalu-

ation of four constants.

Fig. 2. Simulated and analytical reflection coefficients at normal incidence of
a plane wave hitting a 9-mm slab of magnetized plasma: (a) RCP and (b) LCP
reflection coefficients.

Fig. 3. Simulated and analytical transmission coefficients at normal incidence
of a plane wave hitting a 9-mm slab of magnetized plasma: (a) LCP and (b) RCP
transmission coefficients.

IV. 2-D SIMULATION

The algorithm is extended and tested on a 2-D problem. Be-

cause the algorithm decouples the fields very easily, the exten-

sion from 1-D to 2-D is straightforward. To test its applicability,

the propagation of a TE-polarized plane wave is examined. A

-polarized incident field propagates in the -direction, and im-

pinges on a circular disk of plasma with a diameter of 10 mm.

The whole calculation space is 20 20 mm in size with

100 m. PML-absorbing boundaries are applied at the
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Fig. 4. Plane wave impinging on a circular disk of plasma. (a) Snapshot of
Hertz (in decibels) in isotropic plasma. (b) Snapshot of Hertz (in decibels) in
magnetized plasma.

borders to truncate the simulation domain. In the first simula-

tion, isotropic plasma is used where all diagonal elements have

the same form of as given in (10) with numerical values

used in the verification section. A snapshot of the simulation is

shown in Fig. 4(a), where the Hertz field, which is perpendicular

to the page, is plotted. As expected, the propagation is typical of

propagation in isotropicmediawhere the symmetry of the propa-

gation of the incident wave within the disk is preserved, noting

that the excitation source profile and the material structure are

both spatially symmetric. In the second simulation, a magnetic

field is applied to the plasma converting the permittivity tensor to

the gyrotropic tensorwith the same numerical values given in the

verification section. The Hertz field is plotted again at the same

instant of time. As shown in Fig. 4(b), the propagation behavior

is different due to material anisotropy, where the existence of a

preferred propagationdirection is clearly demonstrated. The pur-

pose of this example is just to show that the presented algorithm

is extendable from 1-D to 2-D without extra derivation.

V. CONCLUSION

A simple FDTD algorithm for the simulation of general dis-

persive anisotropic media is derived and tested. It is based on

the ADE approach and the generalized polarization formulation.

The algorithm can be easily extended to 3-D structures. Com-

pared to previously reported schemes, this algorithm is efficient

and robust. The utilization of this algorithm in the simulation of

ferrite material is straightforward.
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