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Abstract 
 

The deep submicron (DSM) semiconductor 
technologies will make the worst-case design 
impossible, since they can not provide design margins 
that it requires. Research directions should go to 
typical-case design methodologies, where designers 
are focusing on typical cases rather than worrying 
about very rare worst cases. In this paper, canary logic 
is proposed as a promising technique that enables the 
typical-case design. It is easier to design than the 
previously proposed Razor logic by eliminating 
delayed clock. Estimates based on gate-level 
simulations show that the canary logic achieves 
average power reduction of 30% by exploiting dynamic 
variations in circuit delay. 
 
1. Introduction 
 

As the complexity of the semiconductor 
manufacturing process increases, it is likely that 
process variations will be more difficult to control [1, 2, 
3]. The demand for low power leads supply voltage 
reduction and hence makes voltage variations a serious 
problem. Higher and higher clock frequency increases 
temperature variations in a chip. Under these situations, 
the deep submicron (DSM) semiconductor 
technologies will make the worst-case design 
impossible, since they can not provide design margins 
that it requires. In order to realize robust designs, 
designers have to be aware of design for manufacturing 
(DFM). 

One of the promising solutions is typical-case 
design methodology, where LSIs should be designed 
with typical case considerations rather than with worst 
case considerations. Recently, several typical-case 
designs are investigated, such as Razor [4, 5], 
approximation circuits [6, 7], algorithmic noise 
tolerance (ANT) [8], TEAtime [9], and constructive 
timing violation (CTV) [10]. This paper focuses on the 
Razor logic and modifies it into canary logic in order to 
simplify clock design. 

This paper is organized as follows. Section 2 
introduces a typical-case design methodology. The 
Razor logic and the canary logic are described. Section 
3 presents experimental results. Finally, Section 4 
concludes. 
 
2. Typical-Case Design Methodology 
 

The DSM technologies increase variations, and 
hence design margins that the traditional worst-case 
design methodology requires, are reduced. The 
conservative approach will not work. Considering this 
situation, design methodology should be reconsidered 
for DFM. Typical-case design methodology is one of 
the promising ones. It exploits an observation that 
worst cases are rare. Designers should focus on typical 
cases rather than worst cases. Since they do not have to 
consider worst cases, design constraints are relieved, 
resulting in easy designs. 

In the typical-case design methodology, designers 
adopt two methods to a circuit design at a time. One is 
performance-oriented design, where only typical cases 
are under consideration. Since worst cases are not 
considered, design constraints are relaxed, resulting in 
easy designs. The other is function-guaranteed design. 
While worst cases are considered, designers don’t have 
to consider performance. They only have to guarantee 
functions, and thus design must be simple, resulting in 
easy verifications. 

The concept of a typical-case design methodology is 
as follows. Every critical function in an LSI chip is 
designed by two methods. The design consists of two 
components as shown in Figure 1. One is called main 
part, and the other is called checker part. While two 
parts shares the single function, their roles and 
implementations are mutually different. On designing 
the main part, performance is optimized to increase, but 
correct function is ignored to guarantee. The main part 
might cause errors. That is, it is implemented by the 
performance-oriented design. The checker part is 
provided as a safety net for the unreliable main part. It 
detects errors that occur in the main part, and thus it 
has to satisfy all design constrains in the chip. However, 



on the checker part design, while designers have to 
guarantee the function, they do not have to optimize 
neither of performance and power. That is, it is 
implemented by the function-guaranteed design. If an 
error is detected by the checker part, the circuit state 
has to be recovered to a safe point where the error is 
detected by any means. 
 

 
 

Figure 1: Typical-Case Design 
 

Examples of the typical-case designs include Razor 
[4, 5], approximation circuits [6, 7], ANT [8], TEAtime 
[9], and CTV [10]. This paper focuses on Razor and the 
following section describes its details. 
 
2.1. Razor Logic 
 

Razor [4, 5] permits to violate timing constraints to 
improve energy efficiency. Razor works at higher clock 
frequency than that determined by the critical path 
delay. In order to detect timing errors, Razor flip-flop 
(FF) shown in Figure 2 is proposed. Each timing-
critical FF (main FF) has its shadow FF, where a 
delayed clock is delivered to meet timing constrains. In 
other words, the shadow FFs are expected to always 
hold correct values. If the values latched in the main 
and shadow FFs do not match, a timing error is 
detected. When the timing error is detected in 
microprocessor pipelines, the processor state is 
recovered to a safe point with the help of a mechanism 
based on counterflow pipelining. 

Razor removes voltage margin for power reduction. 
The voltage control adapts the supply voltage based on 
timing error rates. Figure 3 shows the Razor's dynamic 
voltage scaling system. If the error rate is low, it 
indicates that the supply voltage could be decreased. 
On the other hand, if the rate is high, it indicates that 
the supply voltage should be increased. The control 
system works to maintain a predefined error rate, Eref. 
At regular intervals the error rate, Esample, is computed 
and the rate differential, Ediff = Eref – Esample, is 
calculated. If the differential is positive, it indicates that 

supply voltage could be decreased. The otherwise 
indicates that the supply voltage should be increased. 
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Figure 2: Razor FF 
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Figure 3: Razor's Voltage Scaling System 
 

One of the difficulties on Razor is how it is 
guaranteed that the shadow FF could always latch 
correct values. The delayed clock has to be carefully 
designed considering so-called short path problem [5]. 

 
2.2. Canary Logic 
 

While Razor is a smart technique to eliminate 
design margins, its circuit implementation could be 
further improved. Each FF in the design is augmented 
with a delay buffer and a canary FF, as shown in 
Figure 4. The canary FF is used as a canary in a coal 
mine to help detect whether a timing error is about to 
occur. Timing errors are predicted by comparing the 
main FF value with that of the canary FF, which runs 
into the timing error a little bit before the main FF. 
Error signal triggers voltage or frequency control. 
Utilizing the canary FFs has the following two 
advantages. 

 
- Elimination of the delayed clock: Using single 

phase clock significantly simplifies clock tree design. 
It also eliminates the short path problem [5] in the 
Razor FF, and hence its minimum-path length 
constraint should not be considered.  Furthermore, 
the canary FF is variation resilient. The delay buffer 
always has a positive delay, even though parameter 



variations affect it. Hence, the canary FF encounters 
a timing error before the main FF. 

 
- Protection offered against timing errors: As 

explained above, the canary FF protects the main FF 
against timing errors. This freedom from timing 
errors eliminates any complex recovery mechanism. 
The MUX placed in front of the main FF is removed, 
leading that some timing pressure is relaxed. Instead, 
the signal generated by the comparator triggers 
voltage or frequency control. If the timing error is 
detected, the supply voltage stops falling or the 
clock frequency is felt down. 

 

clk

clk

comparator

logic
stage

logic
stage

trigger
delay

clk

clk

comparator

logic
stage

logic
stage

clk

clk

comparator

logic
stage

logic
stage

trigger
delay

 
 

Figure 4: Canary FF 
 

Figure 5 explains how Dynamic Voltage Frequency 
Scaling (DVFS) techniques utilize the canary FFs. The 
horizontal line presents time. The upper part of the 
figure presents supply voltage and the lower part 
presents clock frequency. There are two modes: initial 
mode and steady mode. In the initial mode (○1  in the 
figure), the delay of the delay buffer in the canary FF is 
considered and hence lower clock frequency is selected. 
However, the frequency can be increased by utilizing 
the fact that input signals activating the critical path are 
limited to a few variations. For example, it has been 
reported that nearly 80% of paths have delays of half 
the critical time [11]. Timing errors rarely occur even if 
the timing constraints on the critical path are not 
satisfied. By exploiting the dynamic variations in 
circuit delay, the delay of the buffer can be ignored and 
the clock frequency can be increased (○2  in the figure). 
Now the mode is in the steady. In the steady mode, the 
dynamic variations can be further exploited to decrease 
the supply voltage (○3 , ○4 , and … in the figure). 
Because the supply voltage is lower than that 
determined by the critical path delay, significant power 
reduction is achieved in the canary logic as in the 
Razor logic [4, 5]. 
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Figure 5: Dynamic Voltage Frequency Scaling 
 

The initial mode changes into the steady mode after 
the defined number of clock cycles. If there are not any 
timing errors in the canary FFs all through the cycles, 
the mode is changed. Similarly, if there are not any 
timing errors through regular intervals in the steady 
mode, the supply voltage is decreased into the next 
lower value. In contrast, every time a timing error is 
detected in a canary FF, the supply voltage is 
immediately increased into the next upper value. If the 
voltage is highest, the clock frequency is reduced. In 
other words, the steady mode changes into the initial 
mode. As mentioned above, even though timing errors 
are detected, any recovery action is not required. This 
is because the canary FFs cause timing errors before 
the main parts of the circuit causes timing errors. In 
other words, the timing errors detected in the canary 
FFs are predictions of those in the main FFs. 

On the other hand, utilizing the canary FF has the 
following demerits. First, as explained above, the delay 
of the delay buffer has to be considered to always 
satisfy timing constraints. Hence, in the initial state, 
possible power reduction can not be attained due to the 
conservative design choice. Second, power reduction is 
less aggressive in the canary logic than in the Razor 
logic. Since the main part never causes timing errors, 
there must be some margins in timing constraints, 
resulting in loss of the further reduce power 
consumption. 
 
3. Evaluations 
 

The usefulness of the canary logic is evaluated on a 
32b carry select adder (CSLA). Evaluating an entire 
processor is remained for the future study. A 32b 
CSLA shown in Figure 6 is designed using Verilog-



HDL. It consists of 13 ripple carry adders (RCAs) with 
four different bit widths. 
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Figure 6: Carry Select Adder 
 

The CSLA is logic-synthesized using SYNOPSIS 
DesignCompiler with Hitachi 0.18um standard cell 
libraries. DesignCompiler reports the critical path delay, 
and the clock frequency higher than that determined by 
the critical path delay is used. The clock frequency is 
increased by 20-200%. In order to detect timing errors, 
we simulate two CSLAs simultaneously using Cadence 
Verilog-XL simulator, as shown in Figure 7. One is the 
upper CSLA with delay considerations, and is a gate-
level circuit synthesized by DesignCompiler. The other 
is the lower CSLA without delay considerations, and is 
an RTL description that is implemented using Verilog-
HDL. As the clock frequency delivered to the registers 
is increased, the comparator signals there is a 
difference between two results. 
 

 
 

Figure 7: Evaluation Circuit 
 

Six programs, 164.gzip, 175.vpr, 176.gcc, 
197.parser, 255.vortex, and 256.bzip, from SPEC2000 
are used as workloads and generate test vectors for the 
gate-level simulations by using SimpleScalar's 
functional-level simulator [12].  

The gate-level simulation results are shown in 
Figure 8. It can be found that the error rate is less than 
40% even if the clock frequency is two times boosted 
(100% overclocking rate). This confirms Usami’s 
observations [11] explained in Section 2.1. 
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Figure 8: Error vs. Overclocking rate 

 
Instead of boosting the clock frequency, the supply 

voltage is decreased in order to reduce power 
consumption. In other words, design margin is 
dynamically decreased for power reduction. Since the 
canary in a coal mine is provided, correct operations 
are always guaranteed. In order to evaluate how power 
consumption can be reduced, the combinations of the 
clock frequency and the supply voltage of Intel 
Pentium M [13], which is shown in Table 1, is used. 
Based on the frequency and voltage specifications, the 
transformation from the overclocking rate shown in 
Figure 8 into the expected supply voltage is calculated 
as shown in Table 2. 
 

Table 1: Frequency - Voltage Specifications 
 

GHz Vdd 
2.1 1.340 
1.8 1.276 
1.6 1.228 
1.4 1.180 
1.2 1.132 
1.0 1.084 
0.8 1.036 
0.6 0.988 

 
 

Using Figure 8 and Table 2, power reduction can be 
estimated as shown in Figure 9. Only active power is 
considered in this estimate. For all programs selected in 
this study, almost 30% of power reduction is expected. 

Figure 10 presents which power supply voltages are 
selected during each program’s execution. It is 
observed that the supply voltage of less than 1.081V is 
selected for more than 50% of time. That of more than 
1.223V is required only for less than 10% of time. 
These characteristics enable power reduction presented 
in Figure 9. 

 



Table 2: Overclocking - Voltage Specifications 
 

%Overclocking Vdd 
0 1.340 

20 1.283 
40 1.233 
60 1.188 
80 1.148 
100 1.112 
120 1.081 
140 1.055 
160 1.033 
180 1.016 
200 1.003 
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Figure 9: Power Reduction 
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Figure 10: Breakdown of Supply Voltage 

 
 

4. Conclusions 
 

This paper proposed the canary logic as an 
alternative of the Razor logic, which is a smart 
technique to eliminate design margins. The canary 
logic eliminates the delayed clock required by the 
Razor logic, resulting in easy design. The canary FF 
relies on the delay buffer, which always has a positive 
delay, and hence they are variation resilient. The 

canary logic is adopted to power reduction in a CSLA 
design, and it is found that approximately 30% of 
power reduction is achieved. 

Future directions of this study include evaluating 
how the canary logic reduces power consumption of an 
entire processor. Comparisons between the Razor logic 
and the canary logic are also interesting. 
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