
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Simple Flip-Flop Circuit for Typical-Case
Designs for DFM

Sato, Toshinori
System LSI Research Center, Kyushu University

Kunitake, Yuji
Graguate School of ComputerScience and System Engineering, Kyushu Institute of Technology

http://hdl.handle.net/2324/6366

出版情報：Proc. of 8th International Symposium on Quality Electronic Design, pp.539-545, 2007-
03-27. International Symposium on Computer Quality Electronic Design
バージョン：
権利関係：

A Simple Flip-Flop Circuit for Typical-Case Designs for DFM

Toshinori Sato

System LSI Research Center
Kyushu University

toshinori.sato@computer.org

Yuji Kunitake
Graduate School of Computer Science

and System Engineering
Kyushu Institute of Technology

y-kunitake@mickey.ai.kyutech.ac.jp

Abstract

The deep submicron (DSM) semiconductor
technologies will make the worst-case design
impossible, since they can not provide design margins
that it requires. Research directions should go to
typical-case design methodologies, where designers
are focusing on typical cases rather than worrying
about very rare worst cases. In this paper, canary logic
is proposed as a promising technique that enables the
typical-case design. It is easier to design than the
previously proposed Razor logic by eliminating
delayed clock. Estimates based on gate-level
simulations show that the canary logic achieves
average power reduction of 30% by exploiting dynamic
variations in circuit delay.

1. Introduction

As the complexity of the semiconductor
manufacturing process increases, it is likely that
process variations will be more difficult to control [1, 2,
3]. The demand for low power leads supply voltage
reduction and hence makes voltage variations a serious
problem. Higher and higher clock frequency increases
temperature variations in a chip. Under these situations,
the deep submicron (DSM) semiconductor
technologies will make the worst-case design
impossible, since they can not provide design margins
that it requires. In order to realize robust designs,
designers have to be aware of design for manufacturing
(DFM).

One of the promising solutions is typical-case
design methodology, where LSIs should be designed
with typical case considerations rather than with worst
case considerations. Recently, several typical-case
designs are investigated, such as Razor [4, 5],
approximation circuits [6, 7], algorithmic noise
tolerance (ANT) [8], TEAtime [9], and constructive
timing violation (CTV) [10]. This paper focuses on the
Razor logic and modifies it into canary logic in order to
simplify clock design.

This paper is organized as follows. Section 2
introduces a typical-case design methodology. The
Razor logic and the canary logic are described. Section
3 presents experimental results. Finally, Section 4
concludes.

2. Typical-Case Design Methodology

The DSM technologies increase variations, and
hence design margins that the traditional worst-case
design methodology requires, are reduced. The
conservative approach will not work. Considering this
situation, design methodology should be reconsidered
for DFM. Typical-case design methodology is one of
the promising ones. It exploits an observation that
worst cases are rare. Designers should focus on typical
cases rather than worst cases. Since they do not have to
consider worst cases, design constraints are relieved,
resulting in easy designs.

In the typical-case design methodology, designers
adopt two methods to a circuit design at a time. One is
performance-oriented design, where only typical cases
are under consideration. Since worst cases are not
considered, design constraints are relaxed, resulting in
easy designs. The other is function-guaranteed design.
While worst cases are considered, designers don’t have
to consider performance. They only have to guarantee
functions, and thus design must be simple, resulting in
easy verifications.

The concept of a typical-case design methodology is
as follows. Every critical function in an LSI chip is
designed by two methods. The design consists of two
components as shown in Figure 1. One is called main
part, and the other is called checker part. While two
parts shares the single function, their roles and
implementations are mutually different. On designing
the main part, performance is optimized to increase, but
correct function is ignored to guarantee. The main part
might cause errors. That is, it is implemented by the
performance-oriented design. The checker part is
provided as a safety net for the unreliable main part. It
detects errors that occur in the main part, and thus it
has to satisfy all design constrains in the chip. However,

on the checker part design, while designers have to
guarantee the function, they do not have to optimize
neither of performance and power. That is, it is
implemented by the function-guaranteed design. If an
error is detected by the checker part, the circuit state
has to be recovered to a safe point where the error is
detected by any means.

Figure 1: Typical-Case Design

Examples of the typical-case designs include Razor
[4, 5], approximation circuits [6, 7], ANT [8], TEAtime
[9], and CTV [10]. This paper focuses on Razor and the
following section describes its details.

2.1. Razor Logic

Razor [4, 5] permits to violate timing constraints to
improve energy efficiency. Razor works at higher clock
frequency than that determined by the critical path
delay. In order to detect timing errors, Razor flip-flop
(FF) shown in Figure 2 is proposed. Each timing-
critical FF (main FF) has its shadow FF, where a
delayed clock is delivered to meet timing constrains. In
other words, the shadow FFs are expected to always
hold correct values. If the values latched in the main
and shadow FFs do not match, a timing error is
detected. When the timing error is detected in
microprocessor pipelines, the processor state is
recovered to a safe point with the help of a mechanism
based on counterflow pipelining.

Razor removes voltage margin for power reduction.
The voltage control adapts the supply voltage based on
timing error rates. Figure 3 shows the Razor's dynamic
voltage scaling system. If the error rate is low, it
indicates that the supply voltage could be decreased.
On the other hand, if the rate is high, it indicates that
the supply voltage should be increased. The control
system works to maintain a predefined error rate, Eref.
At regular intervals the error rate, Esample, is computed
and the rate differential, Ediff = Eref – Esample, is
calculated. If the differential is positive, it indicates that

supply voltage could be decreased. The otherwise
indicates that the supply voltage should be increased.

delayed
clk

clk

comparator

logic
stage

logic
stage

error
delayed

clk

clk

comparator

logic
stage

logic
stage

error

Figure 2: Razor FF

Voltage
Control

Function

Voltage
Regulator

PipelinePipeline ∑

Ediff = Eref - Esample

EsampleEdiffEref error
signals

-
+

VddVoltage
Control

Function

Voltage
Regulator

PipelinePipeline ∑∑

Ediff = Eref - Esample

EsampleEdiffEref error
signals

-
+

Vdd

Figure 3: Razor's Voltage Scaling System

One of the difficulties on Razor is how it is
guaranteed that the shadow FF could always latch
correct values. The delayed clock has to be carefully
designed considering so-called short path problem [5].

2.2. Canary Logic

While Razor is a smart technique to eliminate
design margins, its circuit implementation could be
further improved. Each FF in the design is augmented
with a delay buffer and a canary FF, as shown in
Figure 4. The canary FF is used as a canary in a coal
mine to help detect whether a timing error is about to
occur. Timing errors are predicted by comparing the
main FF value with that of the canary FF, which runs
into the timing error a little bit before the main FF.
Error signal triggers voltage or frequency control.
Utilizing the canary FFs has the following two
advantages.

- Elimination of the delayed clock: Using single

phase clock significantly simplifies clock tree design.
It also eliminates the short path problem [5] in the
Razor FF, and hence its minimum-path length
constraint should not be considered. Furthermore,
the canary FF is variation resilient. The delay buffer
always has a positive delay, even though parameter

variations affect it. Hence, the canary FF encounters
a timing error before the main FF.

- Protection offered against timing errors: As

explained above, the canary FF protects the main FF
against timing errors. This freedom from timing
errors eliminates any complex recovery mechanism.
The MUX placed in front of the main FF is removed,
leading that some timing pressure is relaxed. Instead,
the signal generated by the comparator triggers
voltage or frequency control. If the timing error is
detected, the supply voltage stops falling or the
clock frequency is felt down.

clk

clk

comparator

logic
stage

logic
stage

trigger
delay

clk

clk

comparator

logic
stage

logic
stage

clk

clk

comparator

logic
stage

logic
stage

trigger
delay

Figure 4: Canary FF

Figure 5 explains how Dynamic Voltage Frequency
Scaling (DVFS) techniques utilize the canary FFs. The
horizontal line presents time. The upper part of the
figure presents supply voltage and the lower part
presents clock frequency. There are two modes: initial
mode and steady mode. In the initial mode (○1 in the
figure), the delay of the delay buffer in the canary FF is
considered and hence lower clock frequency is selected.
However, the frequency can be increased by utilizing
the fact that input signals activating the critical path are
limited to a few variations. For example, it has been
reported that nearly 80% of paths have delays of half
the critical time [11]. Timing errors rarely occur even if
the timing constraints on the critical path are not
satisfied. By exploiting the dynamic variations in
circuit delay, the delay of the buffer can be ignored and
the clock frequency can be increased (○2 in the figure).
Now the mode is in the steady. In the steady mode, the
dynamic variations can be further exploited to decrease
the supply voltage (○3 , ○4 , and … in the figure).
Because the supply voltage is lower than that
determined by the critical path delay, significant power
reduction is achieved in the canary logic as in the
Razor logic [4, 5].

V

f 1 2 3 4

V

f 1 2 3 4

Figure 5: Dynamic Voltage Frequency Scaling

The initial mode changes into the steady mode after
the defined number of clock cycles. If there are not any
timing errors in the canary FFs all through the cycles,
the mode is changed. Similarly, if there are not any
timing errors through regular intervals in the steady
mode, the supply voltage is decreased into the next
lower value. In contrast, every time a timing error is
detected in a canary FF, the supply voltage is
immediately increased into the next upper value. If the
voltage is highest, the clock frequency is reduced. In
other words, the steady mode changes into the initial
mode. As mentioned above, even though timing errors
are detected, any recovery action is not required. This
is because the canary FFs cause timing errors before
the main parts of the circuit causes timing errors. In
other words, the timing errors detected in the canary
FFs are predictions of those in the main FFs.

On the other hand, utilizing the canary FF has the
following demerits. First, as explained above, the delay
of the delay buffer has to be considered to always
satisfy timing constraints. Hence, in the initial state,
possible power reduction can not be attained due to the
conservative design choice. Second, power reduction is
less aggressive in the canary logic than in the Razor
logic. Since the main part never causes timing errors,
there must be some margins in timing constraints,
resulting in loss of the further reduce power
consumption.

3. Evaluations

The usefulness of the canary logic is evaluated on a
32b carry select adder (CSLA). Evaluating an entire
processor is remained for the future study. A 32b
CSLA shown in Figure 6 is designed using Verilog-

HDL. It consists of 13 ripple carry adders (RCAs) with
four different bit widths.

4b RCA4b RCA

4b RCA

0

1

5b RCA

5b RCA

0

1

6b RCA

6b RCA

0

1

6b RCA

6b RCA

0

1

7b RCA

7b RCA

0

1

S[3:0]S[7:4]S[12:8]S[18:13]S[24:19]S[32:25]

B[3:0]

A[3:0]

B[7:4]

A[7:4]

B[12:8]

A[12:8]

B[18:13]

A[18:13]

B[24:19]

A[24:19]

B[31:25]

A[31:25]

Cin4b RCA4b RCA4b RCA

4b RCA

0

1

4b RCA4b RCA

4b RCA4b RCA

0

1

5b RCA

5b RCA

0

1

5b RCA

5b RCA

0

1

5b RCA5b RCA

5b RCA5b RCA

0

1

6b RCA

6b RCA

0

1

6b RCA

6b RCA

0

1

6b RCA6b RCA

6b RCA6b RCA

0

1

6b RCA

6b RCA

0

1

6b RCA

6b RCA

0

1

6b RCA6b RCA

6b RCA6b RCA

0

1

7b RCA

7b RCA

0

1

7b RCA7b RCA

7b RCA7b RCA

0

1

S[3:0]S[7:4]S[12:8]S[18:13]S[24:19]S[32:25]

B[3:0]

A[3:0]

B[7:4]

A[7:4]

B[12:8]

A[12:8]

B[18:13]

A[18:13]

B[24:19]

A[24:19]

B[31:25]

A[31:25]

Cin

Figure 6: Carry Select Adder

The CSLA is logic-synthesized using SYNOPSIS
DesignCompiler with Hitachi 0.18um standard cell
libraries. DesignCompiler reports the critical path delay,
and the clock frequency higher than that determined by
the critical path delay is used. The clock frequency is
increased by 20-200%. In order to detect timing errors,
we simulate two CSLAs simultaneously using Cadence
Verilog-XL simulator, as shown in Figure 7. One is the
upper CSLA with delay considerations, and is a gate-
level circuit synthesized by DesignCompiler. The other
is the lower CSLA without delay considerations, and is
an RTL description that is implemented using Verilog-
HDL. As the clock frequency delivered to the registers
is increased, the comparator signals there is a
difference between two results.

Figure 7: Evaluation Circuit

Six programs, 164.gzip, 175.vpr, 176.gcc,
197.parser, 255.vortex, and 256.bzip, from SPEC2000
are used as workloads and generate test vectors for the
gate-level simulations by using SimpleScalar's
functional-level simulator [12].

The gate-level simulation results are shown in
Figure 8. It can be found that the error rate is less than
40% even if the clock frequency is two times boosted
(100% overclocking rate). This confirms Usami’s
observations [11] explained in Section 2.1.

0%

20%

40%

60%

80%

100%

0% 100% 200%

Overclocking rate

Er
ro

r r
at

e

gzip vpr gcc parser vortex bzip2

Figure 8: Error vs. Overclocking rate

Instead of boosting the clock frequency, the supply

voltage is decreased in order to reduce power
consumption. In other words, design margin is
dynamically decreased for power reduction. Since the
canary in a coal mine is provided, correct operations
are always guaranteed. In order to evaluate how power
consumption can be reduced, the combinations of the
clock frequency and the supply voltage of Intel
Pentium M [13], which is shown in Table 1, is used.
Based on the frequency and voltage specifications, the
transformation from the overclocking rate shown in
Figure 8 into the expected supply voltage is calculated
as shown in Table 2.

Table 1: Frequency - Voltage Specifications

GHz Vdd
2.1 1.340
1.8 1.276
1.6 1.228
1.4 1.180
1.2 1.132
1.0 1.084
0.8 1.036
0.6 0.988

Using Figure 8 and Table 2, power reduction can be
estimated as shown in Figure 9. Only active power is
considered in this estimate. For all programs selected in
this study, almost 30% of power reduction is expected.

Figure 10 presents which power supply voltages are
selected during each program’s execution. It is
observed that the supply voltage of less than 1.081V is
selected for more than 50% of time. That of more than
1.223V is required only for less than 10% of time.
These characteristics enable power reduction presented
in Figure 9.

Table 2: Overclocking - Voltage Specifications

%Overclocking Vdd
0 1.340

20 1.283
40 1.233
60 1.188
80 1.148
100 1.112
120 1.081
140 1.055
160 1.033
180 1.016
200 1.003

0%

10%

20%

30%

40%

gzip vpr gcc parser vortex bzip2

Figure 9: Power Reduction

0%

20%

40%

60%

80%

100%

gzip vpr gcc parser vortex bzip2

1.340 1.283 1.233 1.188 1.148 1.112 1.081
1.055 1.033 1.016 1.003

Figure 10: Breakdown of Supply Voltage

4. Conclusions

This paper proposed the canary logic as an
alternative of the Razor logic, which is a smart
technique to eliminate design margins. The canary
logic eliminates the delayed clock required by the
Razor logic, resulting in easy design. The canary FF
relies on the delay buffer, which always has a positive
delay, and hence they are variation resilient. The

canary logic is adopted to power reduction in a CSLA
design, and it is found that approximately 30% of
power reduction is achieved.

Future directions of this study include evaluating
how the canary logic reduces power consumption of an
entire processor. Comparisons between the Razor logic
and the canary logic are also interesting.

Acknowledgements

Hitachi 0.18um standard cell libraries are provided
by VDEC (VLSI Design and Education Center) in the
University of Tokyo. This work is partially supported
by the CREST (Core Research for Evolutional Science
and Technology) program of Japan Science and
Technology Agency.

References

[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A.

Keshavarzi, and V. De, “Parameter Variations and
Impact on Circuits and Microarchitecture”, 40th
Design Automation Conference, 2003.

[2] T. Karnik, S. Borkar, and V. De, “Sub-90nm
Technologies: Challenges and Opportunities for
CAD”, International Conference on Computer
Aided Design, 2002.

[3] X. Tang, V. K. De, and J. D. Meindl, “Intrinsic
MOSFET Parameter Fluctuations Due to Random
Dopant Placement”, IEEE Transactions on VLSI
Systems, Vol.5, No.4, 1997.

[4] S. Das, P. Sanjay, D. Roberts, L. Seokwoo Lee, D.
Blaauw, T. Austin, T. Mudge, and K. Flautner, “A
Self-Tuning DVS Processor Using Delay-Error
Detection and Correction”, Symposium on VLSI
Circuits, 2005.

[5] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T.
Pham, C. Ziesler, D. Blaauw, T. Austin, K.
Flautner, and T. Mudge, “Razor: A Low-Power
Pipeline Based on Circuit-Level Timing
Speculation”, 36th International Symposium on
Microarchitecture, 2003.

[6] T. Liu and S-L. Lu, “Performance Improvement
with Circuit-level Speculation”, 33rd International
Symposium on Microarchitecture, 2000.

[7] S-L. Lu, “Speeding up Processing with
Approximation Circuits”, IEEE Computer,
Vol.37, No.3, 2004.

[8] N. R. Shanbhag, “Reliable and Efficient System-
on-chip Design”, IEEE Computer, Vol.37, No.3,
2004.

[9] A. K. Uht, “Going beyond Worst-case Specs with
TEAtime”, IEEE Computer, Vol.37, No.3, 2004.

[10] T. Sato and I. Arita, “Constructive Timing
Violation for Improving Energy Efficiency”, in L.
Benini, M. Kandemir, and J. Ramanujam,
“Compilers and Operating Systems for Low
Power”, Kluwer Academic Publishers, 2003.

[11] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M.
Kanazawa, M. Ichida, and K. Nogami,
“Automated Low-Power Technique Exploiting
Multiple Supply Voltages Applied to a Media

Processor”, IEEE Journal of Solid-State Circuits,
Vol. 33, No. 3, 1998.

[12] D. Burger and T. M. Austin, “The SimpleScalar
Tool Set, Version 2.0”, ACM SIGARCH
Computer Architecture News, Vol. 25, No. 3,
1997.

[13] Intel Corporation, “Intel Pentium M Processor on
90nm Process with 2-MB L2 Cache”, Datasheet,
2006.

