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Abstract— Prioritization of tasks is a common approach to
resolve conflicts in instantaneous control of redundant robots.
However, the idea of prioritization has not yet been satisfactorily
extended to model predictive control (MPC) to allow for real-
time robot control. The standard sequential approach for
prioritization is unsuitable because of the computational burden
involved in solving a nonlinear problem (NLP) at every priority
level. We introduce an alternate promising approach of using
weighted exact penalties for the MPC stage costs, where a
correctly tuned set of weights can introduce strict prioritization.
We prove the existence of a set of equivalent weights that
provides the same solution as the sequential approach for a
local convex approximation of the original NLP and use this
insight to design an algorithm to adaptively tune the weights.
The weighted method is validated on a dual arm robot task
in simulations and also implemented on a physical robot. We
report computational times that are fast enough for prioritized
MPC of robot manipulators for the first time, to the best of
our knowledge.

I. INTRODUCTION

Constraint-based task specification [1], [2] and solving the
resulting constrained optimization problem (COP) is a stan-
dard approach to control robots. Specifying multiple tasks
to be achieved simultaneously may lead to conflicts between
the tasks, which demands a conflict resolution strategy. Prior-
itization is a simple and well-established approach to resolve
conflicts when some objectives are known to be strictly more
important than the others and carefully tuning a trade-off is
difficult or unnecessary [3], [4]. For example, transporting
a glass of water at a desired velocity can be specified as
a lower priority task, to be achieved without affecting the
critical higher priority task of holding the glass upright, on a
redundant robot manipulator. Prioritization can also resolve
deadlocks at the continuous control level between multiple
robots. Additionally, the presence of disturbances may cause
violations of some constraints in a model predictive control
(MPC) scheme requiring the relaxation of constraints to
recover feasibility of the COP [5]. Prioritization then allows
us to retain or recover feasiblity of critical constraints at
the expense of less important constraints. There are mature
and efficient implementations of hierarchical solvers for
instantaneous robot control [6]. But instantaneous control
does not compute a control policy that is (at least locally)
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optimal and feasible over a time horizon. As there are no
guarantees, in general, on future constraint satisfaction, the
robots need to be operated slowly and conservatively while
using instantaneous control for reasons of safety. Therefore,
there is a growing interest in using optimal control and MPC
in robotics to generate fast dynamic behaviour. [7], [8].

Recently, there have been early attempts in the robotics
literature to introduce prioritization of objectives in optimal
control [9]–[12]. All these methods rely on the computa-
tionally expensive sequential method [13], where a non-
linear program (NLP) is solved at every priority level in
a decreasing order of priority. A lower priority task is
solved over the locally linearized nullspace of the higher
priority task at every level to introduce priorization in [9],
[11], [12] . The nullspace of only the cost-to-go function
(obtained during the Riccati recursion step of differential
dynamic programming (DDP)) is used in [11], [12] to obtain
improved computational performance in comparison with the
earlier work [9], which used the nullspace over the entire
horizon. Faster convergence was reported[12] when using
regularization which is known to improve conditioning of
the sequential method [13], though at the expense of strict
prioritization. However, all the above implementations of
robot control were coded in MATLAB, report computational
times in the order of minutes, were restricted to quadratic
objectives and only validated in simulation. Moreover, they
do not support specifying inequality constraints, also known
as unilateral constraints. Another recent attempt includes
[14] where they approximate the prioritized OCP (pOCP)
as a quadratically-constrained quadratic program (QCQP)
and solve a single QCQP per MPC iteration. But they
use a non-standard definition of prioritization, where they
enforce a higher priority objective to be smaller than a
lower priority objective in magnitude through a quadratic
constraint. This definition allows the lower priority objectives
to influence higher priority objectives depending on factors
like the choice of weights and units. Also, no computational
performance was reported for this formulation to indicate its
suitability for MPC.

The weighted method is promising compared to the pre-
vious approaches as only one NLP needs to be solved
unlike the sequential method. But it is known that the
weighted method is not applicable for quadratic penalties
because it requires extensive tuning [11] and also the higher
priority weights need to be infinitely higher than the lower
priority weights [15] to obtain strict prioritization, which is
numerically infeasible. However, for exact penalty functions,
such as the `1 norm, correctly chosen finite valued weights



are sufficient to enforce strict prioritization. The existence
of such equivalent weights was first proved in [16] for
lexicographic linear programs (LLP), where the existence
of equivalent weights. However, it does not provide an
algorithm to compute numerically reasonable weights. A
parametric programming algorithm was proposed in [17]
for computing optimally small equivalent weights for linear
MPC, but this computation can take several minutes and is
unsuitable for controlling nonlinear systems like a robot,
where the linearization of the system changes at every
control instance. Therefore, it is worth exploring whether it
is possible to tune weights such that they remain sufficiently
high for all the MPC control instances of a task, even if
the weights are not optimally small. It was found that a
simple combination of manual tuning and weight adaptation
worked well for prioritized task-space constraints[15] and
compared favourably against the sequential methods in terms
of computational performance. In this paper, we extend this
idea to control with a predictive horizon.

A. Approach and contributions

We propose to relax the task constraints in a prioritized
OCP (pOCP) using weighted exact penalty functions, such
as the `1 norm in constrast to the previous methods that use
quadratic penalties. We also support inequality constraints
in our formulation. Using exact penalty functions for robot
pOCP introduces other advantages of being able to generate
fast near time-optimal motions [18], [19].

Solving the multi-objective NLP above with strict pri-
oritization of objectives is also known as lexicographic
optimization [20]. While it would be ideal to obtain global
lexicographically optimal solutions for this pOCP, this is
generally a difficult and an intractable problem especially
for online or real-time control. We therefore follow the
commonly followed pragmatic approach in robot control to
use locally optimal solutions of the NLP. We prove for a local
convex approximation of the original prioritized NLP, that
there exist equivalent weights where a weighted formulation
and the sequential formulation are equivalent. The focus of
this paper is on the formulation of the problem, so readers
can use any mature state-of-the-art NLP solver to implement
the presented work and not on a specific lexicographic NLP
algorithm.

We propose an adaptive tuning step, based on the existence
proof, to verify and adapt the weights of the pOCP if
the computed solution is not lexicographically optimal. We
benchmark the weighted formulation using `1 norm with
the sequential method and traditional pOCP with quadratic
penalties. We validate the weighted method on a dual arm
robot task in both simulations and experiments. We report
a computational speedup of several times compared to the
sequential method because a single NLP is solved. Moreover,
the computation times obtained suggest that it is feasible to
implement prioritized MPC for robot control for the first
time, to the best of our knowledge.

B. Preliminaries

Let the lexicographic nonlinear problem be represented as
follows:

lex minimize
x

{l1(x), l2(x), ..., lp(x)} (1a)

subject to g(x) ≤ 0 (1b)

The lexicographic ordering of objectives above that leads
to a notion of lexicographic optimality that is defined as
follows.

Definition 1.1: [13] x∗ is lexicographically optimal if it
is feasible and no other feasible x exists such that li(x) <
li(x
∗) without worsening at least one higher priority objec-

tive objective j < i, lj(x) > lj(x
∗).

1) Sequential Method: The most common approach for
solving the problem in eq. (1) is the sequential method. This
involves solving a sequence of single objective NLPs for each
level in a decreasing order of priority and using additional
hard constraints to ensure the lexicographic optimality of
the higher priority objectives. The sequential method while
solving for the ith objective is formulated as follows:

minimize
x

li(x) (2a)

subject to lj(x) ≤ lj(x∗) j = 1, 2, ..., i− 1 (2b)
g(x) ≤ 0 (2c)

2) Weighted Method: The weighted method, also known
as scalarization, transforms the problem eq. (1) to a single
objective problem with the objective being weighted sum
of different objectives. The weighted problem is defined as
follows

minimize
x

ε1l1(x) + ε2l2(x) + ...+ εplp(x) (3a)

subject to g(x) ≤ 0 (3b)

ε =
[
ε1 ε2, ... εp

]T
, ε ∈ Rp+ is a vector of the

weights for each priority level. εp can be chosen to be 1
since only the relative magnitude of the weights matter.
The weighted formulation always returns a pareto-optimal
solution to the multi-objective problem [21]. But whether it
returns a lexicographically optimal solution depends on the
value of the weights as well as the objective functions.

We next mention some concepts from optimization theory
that will be relevant for the discussion later in the paper.
First order KKT (FO-KKT) conditions is a set of neces-
sary conditions that characterizes the optimal primal-dual
values of a constrained problem under certain regularity
assumptions over constraints. These constraint qualifications
are sufficient conditions that guarantee whether FO-KKT
conditions are satisfied at the optimum of a constrained
problem [22]. Linear independence constraint qualification
(LICQ) is the most well known constraints qualification and
requires all the equality constraints and the active constraints
of the problem to be linearly independent. The optimal dual



is unique when LICQ is satisfied. Mangasarian-Fromovitz
constraint qualification (MFCQ) is a generalization of LICQ
that requires only the equality constraints to be linearly
independent and that there exists a feasible point where all
the inequality constraints are strictly satisfied.

II. PROBLEM FORMULATION

The prioritized optimal control problem (pOCP) is for-
mulated below in the form of a lexicographic optimization
problem. We include only the inequality constraints in the
pOCP equations below for the sake of brevity and clarity of
notation.

lex minimize
x,u,s

{l1(s1), l2(s2), ..., lp(sp)}, (4a)

subject to x0 = xinit (4b)
xi+1 = f(xi, ui), i = 0, 1, .., N − 1

(4c)
g0(xi, ui) ≤ 0, i = 1, .., N (4d)
gk(xi, ui) ≤ sk,i, i = 1, .., N k = 1, .., p

(4e)

Where xi ∈ Rnx and ui ∈ Rnu represent the states
and controls of the dynamical system at the discrete-time
step i. eq. (4b) specifies the initial state constraint of the
OCP. f : Rnx×nu → Rnx is the function that models the
discrete-time forward dynamics of the system and eq. (4c)
enforces the system dynamics. and eq. (4d) specifies hard
and non-relaxable constraints in the pOCP. The function
g0 : Rnx×nu → Rm0 in eq. (4d) represents hard constraints
(highest priority) in the formulation. gk : Rnx×nu → Rmk

for k ≥ 1 models the relaxable constraints in eq. (4e). The
matrix variables sk ∈ Rmk×N introduce slackness in the
relaxable constraints and sk,i refers to the ith column of the
matrix sk.

Penalty functions lk : Rmk → R penalize the constraint
violations at kth priority level. mk is the number of con-
straints at the kth priority level. For quadratic penalties
lk(sk) =

∑N
i=0 ‖sk,i‖22. For the exact penalty functions

lk(sk) =
∑N
i=0 ‖sk,i‖c where c is the chosen norm.

A. Smooth reformulation

The function ‖sk,i‖c is not a smooth function and can lead
to numerical issues with NLP solvers and therefore a smooth
reformulation is performed depending on the chosen norm c
as follows.

1) `1 norm: To reformulate an `1 norm penalty, an
additional constraint s ≥ 0 is added to the OCP in eq. (4)
and the equivalent penalty function would be lk(sk) =∑N
i=0

∑mk

j=1 sk,j,i, where sk,j,i is the jth element of the
column vector sk,i.

2) `∞ norm: For the smooth reformulation of `∞ norm
penalty, further simplification is possible. sk,i ∈ Rmk can be
replaced by a single number sk ∈ R. The constraint eq. (4e),
then implies that every element of gk must be less than the
scalar sk. And the constraint s ≥ 0 needs to be added to the
OCP eq. (4).

3) `2 norm: The reformulation for `2 norm is trickier.
It requires specification of second order cone (SOC) con-
straints. Additional optimization variables s

′

k,i ∈ R, linear
inequality constraints s

′

k ≥ 0 and SOC constraints ‖sk,i‖2 ≤
s
′

k are introduced in the OCP eq. (4) for each level k. The
penalties lk in eq. (4a) are redefined as lk(s

′

k) = s
′

k. While
this is theoretically possible, we are not aware of existing
mature optimization software that can solve for such cone
constraints in an NLP.

4) Quadratic penalties: Quadratic penalties are already
smooth and lk(sk) =

∑N
i=0 ‖sk,i‖22 can be directly used as

the objective function. We note that for a combination of
equality constraints of the form gk(xi, ui) = sk (not included
in eq. (4) for the sake of brevity) and quadratic penalties,
further simplification in the OCP formulation is possible as
slack variables are not necessary for a smooth formulation.
One can directly redefine the lexicographic objectives as
lk(x, u) =

∑N
i=0 ‖gk(xi, ui)‖22. All the previous literature

[9]–[12] on prioritized OCP for robot control, that we are
aware of, are limited to such quadratic penalties on equality
constraints.

With quadratic penalties are used, the weight on the
higher priority penalty needs to be infinitely higher than the
weight on a lower priority penalty [15] for the weighted
method to obtain a lexicographically optimal solution. This is
practically infeasible, hence the existing approaches [9]–[12]
use only the sequential method. But when exact penalties
are used, the pOCP can also be solved using the weighted
method. The weighted method returns a lexicographically
optimal solution even with finite-valued weights provided
that weights are appropriately tuned. In the next section, we
discuss the existence of the equivalent weights for the pOCP
problem and also propose an adaptive tuning algorithm.

III. EXISTENCE OF EQUIVALENT WEIGHTS

Suppose that the `1 norm is chosen and the smooth
reformulation explained in section II-A.1 is performed, the
objective function is already linear in the decision variables.
The nonlinear constraints are linearized in the same fashion
as sequential quadratic programming (SQP) to obtain a local
convex approximation. We note that this convexified problem
results in a lexicographic linear program. It is known that
for such a problem [23], there exist finite weights such
that sequential and the weighted methods are equivalent. In
this section, we provide a different constructive proof that
constructs a set of valid weights based on the sequential
method and exact penalty functions. This proof is then used
to derive a lower bound on the weights as a function of the
number of constraints and the horizon size.

Theorem 1: If there exists a feasible set of solutions to
the locally linearized pOCP problem with `1 penalties solved
using the sequential method, there exist equivalent weights
for which the weighted formulation returns a solution that is
also a solution to the sequential formulation.

Proof: Let s∗k be the optimal violations at each level
computed by the sequential method. Since the sequential
method is feasible, there exists a finite-valued vector of



optimal Lagrange multipliers associated with the pth LP
(the last step) of the sequential method, that we call λ∗p−1.
According to the exact penalty method theory, [22, Theorem
17.3], any constraint in this LP can be relaxed with a non-
smooth penalty function with a sufficiently large penalty
weight ( εp−1 ≥ ||λp−1||∞). The solution to this relaxed
LP is also optimal for the LP from the sequential method.

We choose to relax only the constraint in eq. (2b) for the
(p − 1)th level with a penalty parameter εp−1 > ||λp−1||∞
as:

εp−1max{0, lp−1(sp−1)− lp−1(s∗p−1)}+ lp(sp) (5)

The relaxation penalizes the constraint violation at level
p− 1 when lp−1(sp−1) ≥ lp−1(s∗p−1). This objective can be
further simplified to:

εp−1lp−1(sp−1) + lp(sp) (6)

The simplification above is valid for any high εp−1 ≥
||λ∗p−1||∞. Solving the objective above can not compute a
solution where lp−1(sp−1) < lp−1(s

∗
p−1) without worsening

the constraint violation at higher priority levels, which is
prevented by the hard inequality constraints eq. (2b) for i <
p − 1. Otherwise, the p − 1th LP of the sequential method,
being an LP, would have found this solution.

Let us call this resulting LP the (p−1)th reverse sequential
LP, where we solve for the lowest two priority levels using
what is effectively the weighted method. The solution to
this LP has an associated optimal dual vector λ∗p−2. The
constraint in eq. (2b) for (p−2)th level can now be similarly
relaxed with penalty weight εp−2 > ||λ∗p−2||∞. This step can
be repeated till level 1 to recursively obtain an equivalent
weighted formulation of the convexified pOCP.

We now proceed to derive a sufficiently high lower bound,
for equivalent penalty weights at each priority level, as a
function of the sum of all lower priority penalty weights, the
horizon size and the number of constraints.

Proposition 1: There exists a finite real number Ci such
that, choosing a sufficiently high εi > Ci

∑p
k=i+1 εk.mk.N ,

results in selecting equivalent weights.
Proof: The objective function of the ith reverse sequen-

tial step is
p∑

k=i+1

εk.lk(sk) (7)

.
Let Ai be a subset of the linear inequalities of the

ith reverse sequential LP, that are strongly active set and
satisfy LICQ, that is all the constraints in Ai are linearly
independent. Active set algorithms successfully find such a
Ai prior to termination [22]. The stationarity condition of
the KKT conditions is obtained by taking the gradient of
the Lagrangian w.r.t the decision variables x and setting it
to zero. Since lk(sk) is the sum of all elements of sk, the
elements of ∇xlk(sk)would be equal to 1 at the locations
corresponding to sk in x and 0 otherwise. Let vk denote this
gradient, it would have mk.N number of non-zeros. The
stationarity condition results in the following equation:

ATi λi =
p∑

k=i+1

εk.vk (8)

Since, the rows in Ai are linearly independent, the equation
above permits a unique solution for λi, which can be
computed using the Moore-Penrose pseudo-inverse of ATi
denoted as AT+

i .

λi = AT+
i

p∑
k=i+1

εk.vk (9)

Taking the norm on either side of the equations and relax-
ing it using a combination of Cauchy-Schwarz inequality and
the properties of norms results in the following inequality:

||λi||∞ ≤ ||λi||2 ≤ ||AT+
i ||2.(

p∑
k=i+1

εk.mk.N) (10)

where ||AT+
i ||2 is the Frobenius norm of AT+

i . Since
εi > ||λi||∞ results in selecting the equivalent weights,
the following equation provides a lower bound for choosing
equivalent weights.

εi > ‖AT+
i ‖2.(

p∑
k=i+1

εk.mk.N) (11)

A. An adaptive algorithm to compute the weights

Let εi = γi.(
∑p
k=i+1 εk.mk.N), where γi are the relative

weights that need to be tuned and let γ ∈ R+
p−1 be the

vector of all the relative weights γi. We now present an
Algorithm 1 that checks if the lexicographic optimality of
the solution of the weighted method on pOCP is violated at
the level i by setting the absolute weights εk of the lower
priority constraints to zero. Therefore, by design the lower
priority constraints cannot affect the solution at the level
i and thus the optimal l∗i is obtained. If it is found to be
violated, relative weights at ith level are increased till the
weighted method returns a solution where l∗i is optimal.

We next present an outer algorithm 2 that calls algorithm 1
to return a solution that is lexicographically optimal.

Corollary 1: The outer algorithm 2 terminates in a
finite number of iterations to the lexicographically optimal
solution.

Proof: The outer algorithm calls the algorithm 1 for
every priority level in the decreasing order of priority. Within
the inner algorithm, the weight εi at ith level is updated
only if the lexicographic optimality is violated at that level
for the solution of the weighted method. From Proposition
1, there is a finite number Ci such that, when γi > Ci, the
violations at the ith level are lexicographically optimal. There
can only be a finite number of such updates upper-bounded
by
∑p−1
i=1 logρ

Ci

γinitial
i

+ 1.



Algorithm 1 Verify and rectify L-opt at level i

Require: γ, l∗k for i = 1,..,i-1, ρ > 1
1: Solve the weighted method using γ relative-weights to

obtain candidate l∗i .
2: Set εk = 0 for k = i+ 1, . . . , p
3: while True do
4: Solve weighted method with the modified ε to get lks
5: if ∃k such that lk > l∗k, k = 1, . . . , i− 1 then
6: γk = γk ∗ ρ; recompute εk, k = 1, . . . , i− 1
7: else
8: if li < l∗i then
9: l∗i = li

10: else
11: if li = l∗i then
12: return weighted method solution, γ
13: γi = γi ∗ ρ; recompute ε

Algorithm 2 Solve hierachical problem

Require: γ, weighted problem, ρ > 1
1: solution = solve weighted method for initial relative

weights γ
2: for (k=1,. . . , p-1) do
3: if lk > 0 then
4: solution, γ = Verify and rectify L-opt at level k (

γ, solution, ρ)
5: return solution, γ

IV. CONSTRAINT QUALIFICATIONS FOR POCP

Existence of finite-valued equivalent weights, such that
the weighted method solves the original nonlinear pOCP,
depends on whether KKT conditions are necessarily satisfied
for each NLP in the sequential method [22, Theorem 17.3].
A detailed mathematical treatment of this question is out
of the scope of this paper. Nevertheless, we present below
a brief illustrative example of a failure case. Consider a
prioritized optimization problem over only two decision
variables (x, y) ∈ R2 plane, with x = −1 as the constrain at
the priority level 1, two constraints at priority level 2: x ≥ 1
and y ≤ 0 and one constraint at the level 3: y = 1. The
set of minimizers of l1, l2 and l3 are plotted as the dashed
blue line, dashed yellow line and the dashed magenta lines
in fig. 1. The plots in fig. 1a and fig. 1b show these sets for
the quadratic and `1 penalties respectively. If the sequen-
tial method was used to solve this problem, the solutions
to the second sequential problem and the third sequential
problem are the green line and the magenta point at (0,−1)
respectively. Thus the sequential NLPs are feasible, but the
third sequential problem with quadratic (or `2) penalties in
fig. 1a is a textbook case where the Lagrange multipliers
satisfying the KKT conditions do not exist. Neither ∇l1
nor ∇l2 have a component in the y direction and solving
the linearized problem would return the lexicographically
suboptimal (−1.0, 1.0) at the intersection of the purple and
blue lines. The linearized nullspace projection approaches

in [9], [11], [12] also theoretically suffer from this issue.
Quadratic penalties are especially vulnerable to this issue
as the gradient often vanishes for these objectives at the
optimum. In this example, the solution to the third sequential
problem with `1 penalties can be shown to satisfy the KKT
conditions as l2 has a subgradient with a non-zero component
in y direction.

Prioritized optimization with quadratic penalties

(a) Quadratic penalty
1.5

1.0

Prioritized optimization with L1 penalties

0.5

0.0

-0.5

-1.0

(b) `1 penalty

Fig. 1: Existence of weights for prioritized optimization

The constraint qualifications such as LICQ and MFCQ,
that guarantee satisfaction of KKT conditions, are not sat-
isfied in general for the pOCP problems. To see why, for
LICQ, consider x∗, a lexicographically optimal minimizer.
x∗ being a solution to the first sequential problem must also
satisfy the condition that the gradient ∇xl1(x∗) is in the
columnspace of AT1 (x∗) according to constraint are linearly
dependent (the stationarity condition of FO-KKT of the first
sequential NLP). Because l1 is a part of the constraints in
the second step of the sequential method, it follows that the
constraint gradients are no longer linearly independent at x∗.
We have assumed here that the lexicographic objective is dif-
ferentiable for illustrative simplicity, but a similar argument
can also by made with subgradients.

The lack of constraint qualifications has an implication
on the solvers used for pOCP problems. The sequential
method requires reliable NLP solvers that with globalization
strategies that are robust to lack of constraint qualifications.
Other strategies for making solvers more robust are to
use regularization [12] (prevents the gradient of quadratic
objectives from vanishing) or to relax the priority constraints
in eq. (2b) by a small numerical value [13] (enforces MFCQ).



TABLE I: Constraints and their priorities in the dual arm
task.

Priority Constraints
0 Double sided inequality Joint pos, vel and acc limits.
0 Inequality constraint for Collision avoidance
1 Inequality constraint on end-effector (EE) orientation
2 Equality constraint left arm EE position
3 Equality constraint right arm EE position

Both of these approaches come at the expense of losing strict
prioritization even in those cases where it may have been
possible to achieve. In contrast, the MFCQ always holds
for the weighted formulation with exact penalties eq. (3),
assuming that there exists a feasible x for which g0(x) < 0,
and it is not necessary to use large regularization terms or
priority relaxation for solvers to compute a solution reliably.
But the issue of requiring infinitely large weights to approach
strict prioritization still remains for the weighted method if
KKT conditions are not satisfied for the sequential method.

V. EXPERIMENTS AND DISCUSSIONS

A. Dual Arm Pick and Place OCP

We consider a dual arm robot setup, where the arms need
to simultaneously pick up objects in the shared workspace
without colliding with each other or entering a deadlock.
The constraints involved in the task specification are task
are shown in table I in a decreasing order of priority,
with 0 implying a hard constraint. The pOCP problem
with a double integrator system model ( considering joint
accelerations as the control inputs) was constructed, with 1.5
seconds as the prediction horizon and the OCP sampling
time of 0.1 seconds. The optimization problems involved
were formulated using CasADi [24] and solved using IPOPT
[25] for 120 different test cases for different object locations.
One example is shown in fig. 2, where the robots arms are
reaching for the parts simultaneously in fig. 2a. This results
in activating the collision avoidance constraints and right arm
stops to allow left arm, which has a higher priority, to reach
its goal position as seen in fig. 2b. Without prioritization
between the arms, this situation may have resulted in a
deadlock.

We benchmark the performance of four different formu-
lations on this task, namely sequential `1 penalty (SLP),
weighted `1 penalty (WLP), sequential quadratic penalty
(SQP, not to be confused with sequential quadratic program)
and weighted quadratic penalty (WQP) for different weights
on these 120 different dual arm pick up scenarios. A system
with Intel i7-8850H CPU @ 2.60GHz running an Ubuntu
18.04 operating system was used for the benchmarking, all
the computations were done on a single core. The average
(and the standard deviation) of the results are tabulated in
table II. They are compared on the basis of computation time,
control effort, constraint violations at the three priority levels,
whether the higher priority arm reaches its goal location
within the OCP horizon and the amount of time it this motion
takes (if it reaches). As expected, the weighted methods are

(a) Both the arms start moving
towards their respective target
objects.

(b) Left arm reaches the goal
pose, while the right arm stops
early to avoid violating higher
priority constraints.

Fig. 2: Weighted method in action for dual arm robot control.

about 2 - 3 times faster than the sequential methods since
only a single NLP is solved in WLP instead of the three
NLPs in SLP.

The constraint violations at the highest priority level were
practically zero for `1 penalties with both the weighted
and the sequential methods. For quadratic penalties are
used, the constraint violation are nearly zero (not zero due
to regularization) only with the sequential method. The
weighted methods presented non-zero even for high values
of weights, thus providing numerical confirmation that it
is challenging to attain lexicographic optimality between
conflicting objectives using weighted quadratic penalties.

Using the `1 penalty appeared to result in faster motions
with the higher priority arm reaching its goal position within
the 0.67 seconds on average and succeeds in reaching the
goal position by the end of the OCP horizon in every test
case (please note that no hard terminal constraints were used
to enforce this goal reaching). In contrast, for the traditional
quadratic penalties, the left arm failed to reach the goal
position within the OCP horizon (1.5 seconds) in a even
single test case for the same numerical value of weights
ε1 = 20, ε2 = 10, ε1 = 2 as the `1 penalties. For a higher
value of weights ε1 = 100, ε2 = 25, ε1 = 2 on the quadratic
penalties WQP(2), the left arm reached the goal position
for 25.8% of the cases and took 1.23 seconds on average
to do so. The success rate of reaching the goal position
increases to 75.8% and takes 0.82 seconds on average for
large weights ε1 = 1000, ε2 = 100, ε1 = 2 . Increasing the
weights indefinitely is not an option however as it adversely
affects the numerical conditioning of the problem, which in
turn affects the convergence rate and computation times.

We report that it was remarkably easy to tune the WLP
weights, as one of the first choice of weights, ε1 = 20, ε2 =
10, ε1 = 2, provided results close to the lexicographic
optimum provided by the ground truth SLP method. It was
significantly more challenging to tune the weights for the
quadratic penalties, because strict lexicographic optimality
is not only impossible in general for finite weights, but also
a good choice of weights seemed sensitive to the location
of the target objects in different test cases. This is perhaps



TABLE II: Comparison of different methods for the object picking task on the dual arm setup. The results over different
metrics are averaged over 120 different test cases (the standard deviations are presented in the paratheses).

Metric SLP WLP (1) SQP WQP (1) WQP (2) WQP (3)
Comp time 0.315 (0.020) s 0.102 (0.047) s 0.272 (0.020) s 0.129 (0.077) s 0.117 (0.067) s 0.159 (0.171) s∫
‖s1‖1dt 3.54× 10−10 5.86× 10−10 9.5× 10−4(2× 10−4) 0.27 (0.078) 0.105 (0.042) 0.041 (0.02)∫
‖s2‖1dt 2.173 (0.81) 2.174 (0.81) 3.346 (1.02) 3.31 (1.01) 2.64 (0.88) 2.16 (0.78)∫
‖s3‖1dt 5.776(2.29) 5.775(2.29) 8.24 (1.88) 8.20 (1.85) 8.31 (1.97) 8.36 (2.05)

Motion time 0.670 (0.1) s 0.670 (0.1) s N/A N/A 1.23 (0.048) s 0.82 (0.154) s
Goal reached 1.0 1.0 0.0 0.0 0.258 0.758∫
‖q̇‖2dt 7.949 (1.22) 7.944 (1.22) 5.494 (1.19) 5.439 (1.17) 6.241 (1.39) 7.122 (1.65)

Fig. 3: Experimental deployment of pOCP for the Yumi robot

due to the gradient of a quadratic penalty also depending
on the magnitude of constraint violation, unlike the `1 norm
penalty. The pOCP was also experimentally deployed on the
Yumi robot fig. 3.

B. MPC for the Dual arm Picking Task

The above task was implemented in an MPC scheme with
the same frequency of 10 Hz and a prediction horizon of
1.5 seconds as the OCP, with IPOPT as the NLP solver.
IPOPT solver settings were adjusted to make it relatively
better suited for warm-starting. A lower level joint velocity
controller running at a frequency of 200 Hz interpolated the
MPC reference to control the robot arms in simulation in
a PyBullet environment. The mean, standard deviation and
the maximum of the MPC computation times for the 120
test cases are shown in table III. Most computations for
the WLP took less than 50 ms, except for 7 of the 120
cases. However, the maximum computation time of 88 ms
remains under the chosen MPC sampling time of 100 ms.
WLP is computationally more expensive than the traditional
WQP, mostly because WLP has a higher number of decision
variables and constraints (due slack variables introduced for
smooth reformulation). The sequential method SLP however
did not display a significant speed up due to warm-starting.
The best strategy to warmstart the sequential method is
also unclear as the optimization problem itself changes at
every priority level with the addition of new constraints and
slack variables. The current results suggest that the weighted
method is more effectively warmstarted and is nearly 10
times faster than the sequential method as a result. This
finding needs to be further investigated for other solvers and
tasks.

TABLE III: MPC Computation Times.

Time measure SLP WLP(1) WQP(1)
Mean time 0.300 0.031 s 0.020 s

Standard Deviation 0.0509 0.004 s 0.002 s
Maximum time 0.600 0.088 s 0.033 s

C. Adaptive Weight Tuning

Despite the effectiveness of manually tuned set of weights,
the adaptive weight tuning described in section III-A is a
promising and practical approach to automate this tuning. A
preliminary investigation of this was performed for the dual
arm task. The computation time required for adaptive tuning
is naturally higher than the weighted method as multiple
optimization problems need to be solved, but even for poor
initial guess of the weight tuning took under 1.5 s on average
for the 120 tasks and needed an average of 8.3 weight
updates. This suggests that online weight tuning is a feasible
approach. The idea is to first tune weights and use the same
weights during the entire MPC iterations. Of course, these
weights may not be suitable if the MPC motion deviates
significantly from the OCP trajectory which did not occur in
our simulations.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a new formulation for prioritized optimal
control of robots. Our main contribution is to show that strict
prioritization of constraints for robot pOCP can be achieved
using weighted exact penalty functions or conversely that
competing exact penalty functions can introduce the effect
of prioritization. Our formulation supports specification of
hard constraints and also inequality constraints unlike the
previous attempts in prioritized optimal control in robotics.
It was shown both theoretically (for a locally linearized
approximation) and experimentally that there exist finite
values of weights such that weighted method with exact
penalty functions and the sequential method are equivalent.
A lower bound was computed for the equivalent weights
that was found to be a linear function of the lower priority
weights and an algorithm, that is guaranteed to terminate for
a convexified pOCP, was proposed for automatic tuning of
the weights. The weighted method with exact penalties was
found to be easily tuned and returned the same solution as the
sequential method for a non-trivial dual arm task, while being
several times faster than the sequential method. Using exact



penalty functions appeared to result in faster near-time opti-
mal motions compared to the pOCP with traditional quadratic
objectives, which is desirable to improve the throughput of
industrial robot operations. A mean computation time of 30
ms was observed for pMPC with `1 penalties even with
a relatively slow solver IPOPT, which suggests that it is
computationally feasible to implement prioritzed MPC, for
the first time to the best of our knowledge.

In the future, we will investigate this algorithm for other
tasks and investigate different optimization solvers that are
more efficient than IPOPT to improve the control frequency
of the prioritized MPC. Smooth switching and sequencing
of prioritized MPC tasks will also form the focus of future
work.
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