
MANAGEMENT SCIENCE
Vol. 37, No. 8, August 1991

Prinited in U.S.A.

A SIMPLE FORWARD ALGORITHM TO SOLVE GENERAL
DYNAMIC LOT SIZING MODELS WITH n PERIODS

IN 0(n log n) OR 0(n) TIME*

AWI FEDERGRUEN AND MICHAL TZURt
Graduate School of Business, Columbia University, New York, New York 10027

This paper is concerned with the general dynamic lot size model, or (generalized) Wagner-
Whitin model. Let n denote the number of periods into which the planning horizon is divided.
We describe a simple forward algorithm which solves the general model in 0(n log n) time and
0(n) space, as opposed to the well-known shortest path algorithm advocated over the last 30 years
with 0 (n 2) time.

A linear, i.e., 0(n)-time and space algorithm is obtained for two important special cases: (a)
models without speculative motives for carrying stock, i.e., where in each interval of time the per
unit order cost increases by less than the cost of carrying a unit in stock; (b) models with non-
decreasing setup costs.

We also derive conditions for the existence of monotone optimal policies and relate these to
known (planning horizon and other) results from the literature.
(DYNAMIC LOT SIZING MODELS; DYNAMIC PROGRAMMING; COMPLEXITY)

This paper is concerned with the dynamic lot size model, one of the most frequently
employed deterministic single-item inventory planning models. This model was intro-
duced by Wagner and Whitin (1958) and is therefore often referred to as the Wagner-
Whitin model (W- W model): it specifies a horizon divided into finitely many (say n)
periods each with a known demand which must be satisfied. An unlimited amount may
be ordered (produced) in each period. The cost structure consists of fixed-plus-linear
order (or production) costs and holding costs assumed to be proportional with the end-
of-the-period inventory levels. All parameters, i.e., demands, setup costs, variable re-
plenishment and holding cost rates, may differ from period to period.

Two distinct rationales prevail for maintaining inventories in systems with deterministic
demands and unlimited replenishment opportunities:

(I) the cycle stock motive: economies of scale in the replenishment costs provide an
incentive for order quantities to cover more than a single period's demand;

(II) the speculative motive (see Chand and Morton 1986): even in the absence of
economies of scale, it may be advantageous to order some future period's demand in the
current period, if the future cost of ordering a unit exceeds the cost of ordering this unit
now and carrying it until the future period.

In this paper we describe a simple algorithm which solves the general dynamic lot size
model in 0(n log n) time and 0(n) space, as opposed to the well-known shortest path
algorithm advocated over the last 30 years with 0 (n2) time. A linear, i.e., 0 (n)-time and
space algorithm is obtained for two important special cases:

(a) models without speculative motives for carrying stock, i.e., instances in which in
each interval of time, the per unit order cost increases by less than the cost of carrying
a unit in stock over this interval (constant variable order cost rates represent a special
case of such models; Wagner and Whitin, for example, originally confined themselves
to this case);

(b) instances with nondecreasing setup costs.
Numerical experiments, reported in ?6, confirm that use of the above algorithms results

* Accepted by L. Joseph Thomas; received January 10, 1990. This paper has been with the authors 7 months
for 2 revisions.

t Also affiliated with The Wharton School, University of Pennsylvania, Philadelphia, PA 19104.

909
0025- 1909/9 1 /3708/0909$0 1.25

Copyright ?B 1991, The Institute of Management Sciences

910 AWI FEDERGRUEN AND MICHAL TZUR

in major savings in computational time. Indeed problems with 5000 time periods (n
- 5000) require no more than 1.5 CPU seconds (in average) when executed on an
IBM 4381. The algorithm outperforms efficient implementations of the Wagner-Whitin
method for n 2 20.

Our procedures consist of iterative updates of a list of candidate last order periods as
the planning horizon t is incremented to (t + 1) (t = 1, .. . , n - 1). The n log n
complexity term in the most general procedure is obtained from the effort to insert or
delete an element in this list which in the worst case may be of size n, but in practice is
very small indeed. In our numerical experience with problems with up to 5000 periods,
the list was never observed to contain more than five elements! (See ?6.) A bounded list
size and hence linear complexity can in fact rigorously be shown if the parameters are
bounded from above and below by positive constants. One can therefore argue that our
procedure is in practice of linear time even in those rare settings where the worst case
bound is 0(n log n).

These results show that exact solution of dynamic lot sizing models is computationally
attractive, even when used as a subroutine for material requirement planning systems
or systems with tens of thousands of items, see, e.g., Orlicky (1975, pp. 132-133), Smith
(1978) and Bitran et al. (1984). This conclusion contrasts prior perceptions based on the
exclusive availability of the Wagner-Whitin method. Indeed, considerable effort has been
devoted to the study of a variety of heuristic methods, all with significant optimality gaps
and with comparable complexity as the algorithms of this paper. See, e.g., the Least Unit
Cost heuristic, the Part-Period Balancing heuristic, the Economic Order Quantity heuristic,
as well as Silver and Meal (1973), Axsater (1982, 1985), Peterson and Silver (1979),
Bitran et al. (1984).

The proposed algorithms are all the more important when the dynamic lot sizing
model is used as an approximation of nonstationary generalizations of the continuous
time Economic Order Quantity model, in which cumulative demands are given by a
general nondecreasing function of time and cost parameters exhibit general time-depen-
dencies. See e.g. Barbosa and Friedman (1978), Donaldson (1977), Resh et al. (1976)
and Friedman and Winter (1980). A close approximation via the discrete-time dynamic
lot sizing model may require a fine time grid and thus result in a horizon with a large
number of periods.

Many hierarchical planning problems for multi-item multi-stage production systems
with explicit representation of setup costs are formulated as mixed integer programs and
solved via Lagrangean relaxation, see Graves (1982). These decompose into many W-
W models, each of which needs to be solved for numerous combinations of the Lagrange
multipliers. Bitran and Tirupati (1989) 's recent survey on hierarchical planning models
states that a comparison between the approaches with explicit representation of setup
costs and those without fixed costs, suggests that the former are more expensive but
"likely to provide more cost effective schedules." The new algorithms reduce the com-
plexity of the Lagrangean relaxation methods by a factor n and may all but eliminate
any comparative computational disadvantages. Other examples of planning models in
which the W-W model arises as a subproblem, include the multi-item capacitated lot-
size problem, see e.g. Bitran and Matsuo (1986), Eppen and Martin (1987), Martin
(1987), and the references therein.

It is well known (see Wagner and Whitin) that in the W-W model optimal order
strategies exist under which orders are placed if and only if inventory equals zero. A
zero-inventory ordering strategy is completely determined by the specification of the last
order period l(t) preceding any given horizon t (t = 1, ... , n). Thus, for any 1 I /-? t
? n, let F(l, t) = the minimum cost in the first t periods, if the final setup is performed
in period 1.

Our algorithms are basedd Ofn the key observation that for any pair of periods k < / the
difference function Z\k,/z(t) - F(k, t) -F(l, t) is monotone (in t _ 1). This difference

SIMPLE FORWARD ALGORITHM FOR GENERAL DYNAMIC LOT SIZING 911

function is in fact monotone decreasing (increasing) if (no) speculative motives exist for
carrying inventories from period k to period 1, i.e., if the variable cost of ordering a unit
in period k and carrying it till period I is less than (exceeds) the variable ordering cost
in period 1.

It is easily verified that the increasingness property of the difference functions Ak,l(*)

(I > k) in models without speculative motives for carrying inventories also implies that
a monotone optimal policy exists, i.e., a policy in which l(t), the last period with a setup
in a horizon of t periods, is nondecreasing in t. Topkis (1968, 1978) and Topkis and
Veinott (1972) present the first general existence conditions for monotone optimal policies
in dynamic programs, see also Chapter 8 in Heyman and Sobel (1984). See p. 511 of
the important paper by Whitney (1935) for an early antecedent.

The existence of a monotone optimal policy was in fact used for the derivation of
planning horizon theorems and procedures, see e.g. Wagner and Whitin (1958), Zabel
(1964), Eppen et al. (1969), Thomas (1970), Blackburn and Kunreuther (1974), Lundin
and Morton (1975), Bensoussan et al. (1983), Chand (1982), Chand, Sethi and Proth
(1990) and Chand, Sethi and Sorger (1989). A period L is called aforecast horizon if
the decisions for the first I > 1 periods in the optimal solution of a problem with horizon
length L are not affected by the model parameters (e.g. demands, costs) for periods
beyond the horizon L. Such a period I is called a planning horizon. Planning horizon
procedures allow saving the effort of forecasting unnecessary future data.

The above monotonicity properties have, to our knowledge, never been exploited for
the design of efficient solution methods. Several articles have recently appeared in the
Computer Science literature describing efficient algorithms for the solution of dynamic
programs in which all of the difference functions Ak,/(*) are increasing or in which all
are decreasing. See e.g. Hirshberg and Larmore (1987), Wilber (1988), Aggarwal et al.
(1987), Galil and Giancarlo (1989) and Miller and Myers (1988). The Computer Science
literature has been motivated by applications of sequence comparison in, for example,
molecular biology (e.g. Waterman 1984), geology (e.g. Smith and Waterman 1980) and
speech recognition (e.g. Kruskal and Sankoff 1983).

As pointed out above, our algorithm applies to a setting where some of the difference
functions may be increasing and others decreasing. Note that 0 (n2) operations are required
for the mere evaluation of the costs on the arcs in the network corresponding with the
W-W model. It is therefore all the more striking that an optimal policy may be determined
in at most 0(n log n) time.

After completion of this paper we have become aware of two alternative and inde-
pendently obtained 0(n log n) solution methods by Wagelmans et al. (1989) and Aggarwal
and Park (1990). The former is a backward algorithm whose derivation is based on
geometric arguments. The latter is a recursive procedure in which a problem with a given
horizon is solved by two recursive calls to subproblems of half the original size and a
third problem which is solvable in linear time via one of the above-mentioned algorithms
for increasing or decreasing difference functions. The constant factor in the time bound
is therefore quite large, see also Galil and Giancarlo (1989) commenting on a similar
recursive procedure in Wilber (1988). The worst case complexity of our algorithm is
3n log n + 0(n) and can be argued to be 0(n) in practice under the assumption of
parameters that are bounded from above or below by positive constants, see Proposition
1. No alternative linear time procedure appears to exist for the prevalent case where the
setup costs are nondecreasing over time.

We complete this introduction with an outline of the remainder of this paper. In ? 1
we introduce the notation and derive some preliminary results. Our 0(n log n) general
algorithm is derived in ?2. ?3 and ?4 are devoted to the two above-mentioned special
cases in which the complexity of the algorithm reduces to 0 (n): nondecreasing setup
costs (?3) and models without speculative inventory motives (?4). In ?5 we discuss
conditions for the existence of monotone policies. ?6 contains our numerical results.

912 AWI FEDERGRUEN AND MICHAL TZUR

1. Notation and Preliminaries

The dynamic lot size model with a horizon of ni periods, is specified by the following
parameters:

d, = demand in period i (i = 1, ,n);
Ki = setup cost in period i (i = 1, ..., n);
Ci= variable per unit order cost in period i (i = 1, .. ,);
hi - cost of carrying a unit of inventory at the enid of period i (i = 1, ... , n).

We assume, without loss of generality, that the starting inventory in period 1 and the
ending inventory in period n equal zero.

We use the following auxiliary notation:
D(i) = L, dk represents the cumulative demand in periods 1, . .. , i;
H(i) = hl hh denotes the cumulative cost of carrying a unit from period 1 through

period i (i = 1, . . ., n).
For all i < j, let
hij hi +hi+, + +@ +hj-,;
cij= ci + hij (the variable cost of ordering a unit in period i and cairying it till period

i);
C(i) = Cin- hi?, = ci- H(i - 1). (Thus, C(fi) - e(l) represents the differential in

variable costs between ordering a unit in period i, versus ordering and carrying it from
the very first period.)

S(i, j) = the total inventory carrying cost under zero-inventory ordering in periods i,
... , j when placing an order in period i to cover demands through period j

- l-iI hr EZk=r+? dk = Pj-1 hr(D(j) -D(r)),
S(i) = S(1, i).

The following identities are used below for i < k < j:

j-l j k-l j Ij- j

S(i, j) = hr dR=3hi I dR+ 3 hi I dR
r=i R=r+1 =i R=r+1 r=k R=r+1

k-I k k-I j

= hr I dR+ 3, hi' I dR+ S(k, j)
r=i R=r+1 =i R=k+ 1

k-I

- S(i, k) + 7 hr(D(j) - D(k)) + S(k,j)
r=i

- S(i, k) + S(k, j) + [D(j) - D(k)][IH(k 1)-H(i1 1)]; (la)
j-1 j k-i j j-1 I

S(i, j) = hr I dR = hr I dR+ >hr E dR
r=i R=r+ 1 r=i R=r+ 1 r=k R=r+ 1

k-I k k-I j j j-1 j

=, hr dR+ I hr I dR+ hk I dR+ I hr I dR
r=i R=r+ 1 r=i R=k+ 1 R=k+1 r=k+ 1 R=r+ 1

k-i j

S(i, k) + hr dR+ S(k + 1, j)
r=i R=k+ 1

=S(i, k) + S(k + 1, j) + [D(j)--D(k)][H(k)--H(i-1)]. (lb)

In particular choosing i = 1 and k = j - 1 in (la) we get

S(j) =Sj j- 1) + djH(j j-1), j _> 2; S 1) = ? (Ilc)

Likewise, choosing i = 1 in (1 a) we obtain for all 1 < k < i

S(k, j) = S(j)-S(k)- [D(j)-D(k)]H(k - 1). (ld)

SIMPLE FORWARD ALGORITHM FOR GENERAL DYNAMIC LOT SIZING 913

As pointed out in the Introduction, it is well known since Wagner and Whitin that
optimal policies exist under which orders are placed if and only if inventory equals zero,
and such zero-inventory ordering policies are completely determined by the specification
of the last order period l(t) preceding any given horizon t (t = 1, . .. , n). We give a
(short) proof for the optimality of zero-inventory ordering policies, so as to keep this
paper self-contained and because its perturbation argument is needed in the proof of
Lemma 3.

LEMMA 1 (Wagner and Whitin 1958). There exists an optimal zero-inventory ordering
policy.

PROOF. Consider a policy which orders in periods with positive starting inventory.
We construct a zero-inventory policy with lower or equal costs. Under the given policy,
let period I be the first period with positive starting inventory (II) in which an order is
placed, and let period i < I be the order period preceding period 1. (Period i is well-
defined since period 1 is an order period with zero starting inventory.) Let Xi (XI) denote
the order quantity in period i (1). Note that Xi >_ II since period i has starting inven-
tory zero.

It is clearly feasible to increase the order quantity in period i by XI units and to cancel
the order in period 1. Either this perturbation reduces total costs, or cil _ cl and a cost
reduction is achieved by reducing the order quantity in period i by I, units. (This alternative
perturbation is also feasible since Xi _> II.) In both cases we obtain a revised policy with
lower or equal costs, and with one less period in which an order is placed while its starting
inventory is positive. The desired zero-inventory ordering policy may thus be obtained
afterfinitely many of the above perturbations. L]

Let F(t) = minimum cost in the first t periods, t = 1, . .. , n and recall that F(l, t)
- minimum cost in the first t periods, if the final setup is performed in period I/ t (t

=1,...,n).
To determine whether for a given horizon t, some period I is a better choice to be the

last setup period than some other period k, we first derive some properties of the difference
function Ak,l(t) = F(k, t) - F(l, t).

Note that

F(l, t) = F(l - 1) + K1 + S(l, t) + cj[D(t) - D(l - 1)], (2)

F(k, t) = F(k - 1) + Kk + S(k, t) + Ck[D(t) - D(k - 1)]. (3)

Substitute S(k, t) = S(k, l- 1) + S(l, t) + [D(t) - D(l- l)][H(l- 1)- H(k- 1)],
(see (lb)) and [D(t) - D(k - 1)] = [D(t) - D(l - 1)] + [D(l - 1) - D(k - 1)] into
(3) and subtract (2) from the resulting equation to get

zk,l(t) = A(k, 1) + (Ck,l - cl)D(t)

where, using (Id):

A(k, 1) = F(k - 1) + Kk - F(l- 1)- K1 + S(k, I- 1)

+ Ck[D(l - 1) - D(k - 1)] + D(l - 1)(c, - ck,/)

= F(k-1) + Kk-F(l- 1)-K + S(l- l)-S(k)

-H(k- 1)[D(l- 1)-D(k)] + ck[D(l - 1)-D(k- 1)]

+ D(l- l)(C(l)-C(k))

= F(k-1) + Kk-F(l- l)-K1 + S(l- 1)-S(k)

+ C(k)[D(l- 1) -D(k- 1)] + dkH(k- 1)

+ D(l-1 l)(C(l) -C(k)). (4)

914 AWI FEDERGRUEN AND MICHAL TZUR

ck,Q >Q Ck,Q c

Q is better A is better

1 k,2G().) -D(t) |G(k) ,\ -D(t)

A(k,Q) i k is better

FIGURE 1. Comparative Performance of Periods / and k as Last Setup Periods.

We conclude that Ak,l(t) is a linear function of D(t) with coefficients that are independent
of t. (The final expression forA (k, 1) in (4) is given because it allows for efficient evaluation
of these quantities, as needed in the algorithms below.)

In view of its linearity in D(t), the difference function Ak,l(*) has at most one, easily
computable root G(k, 1) and the question whether period k is to be preferred to period
I as a last setup period may therefore be described by a simple comparison of the cu-
mulative demand D(t) with this root, see Figure 1.

A(k, I)/(C(l) - C(k)) if C(l) Ck),

G(k,)= +0 if C(l) =C(k) and A(k, 1) _ 0, k < 1,

t-00 if C(l) =C(k) and A(k, 1)> 0. (5)

(Note that Ck,l - c= ck + hk,l - C = Ck + H(l - 1) - H(k - 1) -c= C(k)-C(l).)
We conclude:

LEMMA 2. Fix k < I?< t:
(a) zXk,l(t) = A(k, 1) + (Ck,l - cl)D(t). Thus, Ak,l(t) is a linear function of D(t) with

coefficients that are independent of t!
(b) If Ck, > cl then Ak,l(*) is increasing; Ak,l(t) ? 0 if and only if D(t) _ G(k, 1).
(c) If Ck,1 < cl then Ak,l(*) is decreasing; Ak,l(t) ? 0 if and only if D(t) _ G(k, 1).
(d) If Ck,l< clthen Ak,l(*) is constant and Ak,l(t) ' 0 if and only if D(t) > G(k, 1).

It is useful to extend the definition of G(k, 1) to arbitrary pairs (k, 1) in the following
symmetric way:

G(l, k) = G(k, l); k< 1.

2. The General Algorithm

As pointed out above, solution of the W-W model reduces to determining a sequence
{ I(t): t = I, ... , n } with 1(t) an optimal period to perform the last setup when minimizing
the cost in the first t periods, i.e., F(I(t), t) = F(t) (t = 1,. . . , n). Our proposed algorithm
is, like the classical shortest path procedure, a forward algorithm with sequential deter-
mination of a pair (l(j), F(j)) for j = 1, ... , n.

Assume therefore that at the beginning ofthe jth iteration, {(l(k), F(k)): 1 k -j
-1 } are known. The proposed algorithm constructs a list containing all periods that,
among the first j periods, are optimal terminal order points for some horizon t 1 j. While
striving for the smallest such list, it is to be recognized that the future demands dj+1,
... ., dn have not been inspected at this point, and it is inefficient to do so. We therefore
treat all future demands dylj. , dn as unknown parameters so that all future cumulative

SIMPLE FORWARD ALGORITHM FOR GENERAL DYNAMIC LOT SIZING 915

D (t)

-I I 1 1- 1 1- 1
D(j)=g(1) g(2) g(3) g(k) g(k+l) g(r)

cumulative demand

FIGURE 2.

demands may adopt any potential value D ? D(j). Thus, let Q(j) = {1- I Ij: there
exists a horizon t > j with a potential cumulative demand D _ D(j) for which I is the
lowest index with F(l, t) = min1?i?j F(i, t) }.

In other words, Q(j) contains a period I only if for some horizon with potential cu-
mulative demand _ D (j) it is a better terminal order period than any of the periods 1,
.. ., j and a strictly better terminal order period than any of the lower indexed periods
1, ... , 1 - 1; Q(j) is a minimal set in this sense. Clearly, Q(j) contains a (globally)
optimal terminal order period for the horizon t = j. We refer to Q(j) as the jth Minimal
Optimal Predecessors list.

Our list specifies, in fact, a sequence of critical values g(1), . . , g(r) such that the
kth element of the list is the unique optimal last setup period for any horizon t ? j with
potential cumulative demand g(k) < D < g(k + 1), see Figure 2. It is conceivable that
none of the actual cumulative demands D (j + 1), . .. , D(n) is contained in the interval
(g(k), g(k + 1)) in which case the kth element of the list could, in principle, be eliminated.
It is this possibility which requires us to use potential cumulative demands in the definition
of Q(j). To identify whether this is the case or not requires however a significant additional
amount of work which is 0(n log n) itself. This is unnecessary and does not appear to
be justified in particular since the sets { Q(j) } tend to be extremely small, see the Intro-
duction and ?6.

Our proposed algorithm consists of efficient iterative updates of the sets Q(j) (j = 1,
... , n) and a simple identification of an optimal terminal order period 1(j) from among
the collection Q(j) by maintaining the periods in a sequence which guarantees that the
first element in Q(j) is an optimal last order period for the horizon t = j. Note that Q(1)

def
{1} and Q(j) c S* =(Q(j-1) U {j}).
We now exhibit a simple procedure to identify which, if any, of the elements of Q(j

-1) U { j} need to be eliminated to obtain Q(j).

THEOREM 1 (Main theorem: Characterization of the Minimal Optimal Predecessors
lists). Fix j E { 1, ... , n}. Let S c { 1, ... , j } be a collection of periods which con-
tains Q(j), i.e., Q(j) c S c{ 1, .. . , j}. Assume the elements of S are numbered in
nonascending order of their C-values, i.e. , S = {i1 .**, 4ir with C(il) > C(i2) > ...

_ C(ir). (Periods with equal C-values are ranked in ascending order of their period
indices, i.e., if C(ik) = C(ik+l) then ik < ik+1, k = 1, ... , r - 1.) Let g(1) = D(j) and
g(l) = G(iz, i11I)for I = 2, ... , r (so that il dominates i- I as a last order period when
the cumulative demand in periodj or later is bigger than g(l) and vice versa).

(a) S - Q(j) i.e., S is the jth Minimal Optimal Predecessor list if and only if

g(1) < g(2) < *.* < g(r) < oo. (6)

(b) If (6) holds, then il = (j).
(c) (i) If g(2) _ D(j) then il may be eliminated from the collection of optimal pre-

decessors S, i.e., (S\{ il }) - Q(j); (ii) For k = 2, ... , r - 1, if g(k + 1) ? g(k) then
(S\ { ik}) :D Q(j); (iii) If g(r) = oo then (S\ { ir}) D Q

PROOF. See Appendix.
Theorem 1(b) shows that if Q2(j) is available as a list with its elements ranked in

nonascending order of their C-values and ties broken according to the period index (see

916 AWI FEDERGRUEN AND MICHAL TZUR

Theorem 1), the first element in the list qualifies as an optimal last order period for a
horizon of length j. Moreover, Theorem 1 (c) suggests a simple procedure for updating
the ranked list Q(j + 1) from the ranked list Q((j). For ik-i (Uk?l) is to be preferred over
ik when the cumulative demand in period (j + 1) or later is less (bigger) than g(k) (g(k
+ 1)). Thus, if g(k + 1) - g(k), ik is always dominated by ik-I or ik+1 a

As mentioned above, Q(1) = {1} and Q(j + 1) c S = (Q(j) U {j + 1}) j_ 1. Let
Q(= {i, .. , r14. In view of Theorem 1, parts (a) and (c), the ranked list Q(j + 1)
may thus be obtained from the ranked list Q(j) by the following two steps: first delete
any period i from the beginning of the list if g(2) is less than or equal to the new cumulative
demand D (j + 1); next insert period (j + 1) in its proper place (according to its C-
value). Let Q '(j) denote the ranked list obtained after these two steps have been performed.

Assume period (j + 1) is inserted between periods ip and ip+l (1 ? p < r - 1), i.e.,
C(ip) > C(Qip+). (The case where period j + 1 is added at the beginning or the end of
the list, is analogous and, if anything, simpler.) Computing G(ip , j + 1) and G(j + 1,
ip+1) via (5) we encounter two cases:

Case I.

G(ip-15 ip) < G(ip, j + 1) < G(j + 1, ip+,) < G(ip+1) ip+2). (9)

Case II. At least one of the three inequalities in (9) fails to hold.
In Case I, period (j + 1) is an element of Q(j + 1) and the ranked list Q '(j) is the

ranked list Q(j + 1), see part (a) of Theorem 1.
In Case II, at least one of the elements in Q '(j) is to be eliminated. For example if the

left (right) most inequality in (9) is violated then period ip (ip+,) is to be eliminated and
if the middle inequality fails to hold, period (j + 1) is itself to be eliminated. In the latter
case, it is easily verified from the definition of Q(j) and Q(j + 1) that the update is
completed with the discarding of period (j + 1) from Q '(j). If ip or ip+1 are eliminated,
period (j + 1) gets a new neighbor in the ranked list requiring an additional evaluation
of the G(*,) function, with the potential of additional deletions until a ranked list
satisfying (6) is obtained. In view of Theorem 1 (a) that list represents Q(j + 1).

Before presenting the formal algorithm we derive an additional test on the basis of
which period (j + 1) may be eliminated in the process of constructing Q(j + 1) from
Q(j) (j ? 1). This test is based on a single comparison of Kj and Kip+, and is therefore
to be preferred to the above described elimination tests which require at least one eval-
uation of the G(*, *) function in addition to a comparison. It also provides the foundation
for the simplified algorithm in ?3 which applies when the setup costs are nondecreasing.

LEMMA 3. Let 1 -ji < j n. IfKj> K and C(j) C(i) then F(j, t) min {F(l,
t): 1 - I < j} for any horizon t > j with potential cumulative demand D such that D
_ D(j).

PROOF. Consider an inventory policy for periods 1, ... , t in which period j is the
last order period and with cost F(j, t). Under this policy, let Xj denote the order quantity
in period j. It is clearly feasible to increase the order quantity in period i by Xj units and
decrease the order quantity in period j to zero. This perturbation allows us to save the
order cost [Kj + cjXj] in periodj at the expense of an additional variable cost (ci + hij)Xj
for ordering Xj units in period i and carrying them till period j, as well as a possible
additional setup cost Ki in period i. Let F(t) be the cost of the revised policy. Thus

F(t)-F(j, t) = (Ki-Kj) + (ci + hij-cj)Xj

SIMPLE FORWARD ALGORITHM FOR GENERAL DYNAMIC LOT SIZING 917

N(-)Q C() g(X)

FIRST N(FIRST) C(N(FIRST)) g(1)
FIRST + 1 N(FIRST + 1) C(N(FIRST + 1)) g(2)

LAST N(LAST) C(N(LAST)) g(LAST - FIRST + 1)

FIGURE 3. A Minimal Optimal Predecessor List Q(*).

If the revised policy is a zero-inventory ordering policy it is one with one of the periods
{1, . .. , j - 1} as the last order period, i.e., F(j, t) _ F(t) _ min {F(l, t): 1 - I < j}.
If it is not, the perturbations of the proof of Lemma 1 may be applied to construct a
zero-inventory ordering policy with costs lower than or equal to F(t) ? F(j t) and a
last order period 1(t)< j - 1. D

COROLLARY 1. Fixj = 2, ... , n. Let Q(j - 1) = {I,, i} with g-values g(1),
... , g(r) and assume period j is potentially to be inserted between ip and ip,I (p < r)
(i.e., C(ip) _ C(j) > C(ip+1)). If Kj > Ki+, then Q(j) = Q'(j-1)\ { j }.

PROOF. Immediate from Lemma 3 and the definition of Q(j) and Q(j - 1). D
We are now ready for the formal description of the algorithm. We maintain at each

stage a ranked list Q = { N[FIRST], N[FIRST + 1], .. , N[LAST] } such that, for j
= 1, ... , n, Q = Q(j) at the end of the jth iteration. The records in this list are thus
numbered as FIRST, FIRST + 1. ... , LAST for appropriate values of FIRST and LAST.
The record labeled k (FIRST _ k LAST) contains three numbers, see Figure 3: the
period index N(k), C(N(k)) and g(k).

Recall that at any given stage of the update from Q(j - 1) to Q(j) (j = 2, ... , n) only
one of the following three elements of the ranked list may be deleted: (i) the first element,
with index FIRST; (ii) the period just prior to period j, whose index we refer to as index
p and (iii) the period just following period j (which therefore has index p + 1). (If j
belongs at the top (bottom) of the list we set p equal to (FIRST - 1) (LAST).) We
therefore distinguish between these three deletion procedures:

(i) DELTOP: this procedure deletes thefirst record of the list and sets FIRST: = FIRST
+ 1;

(ii) DEL UP (p) . this procedure deletes the record with index p, increments the record
indices { FIRST, ... , p - 1 } by one and sets FIRST: = FIRST + 1;

(iii) DELDOWN (p): this procedure deletes the record with index p + 1, decreases
the record indices {p + 2, .. . , LAST } by one and sets LAST: = LAST - 1.

Finally, we need the insertion procedure.
INSERT (j, p): this procedure reduces the record indices { FIRST, ... , p } by one,

sets FIRST: = FIRST - 1 and puts period j in a record with index p.
If the list Q were maintained as a simple array, then 0(n) fetch-and-store operations

would be required in every application of the DELUP, DELDOWN, and INSERT pro-
cedures. This would affect the asymptotic complexity even though in most computer
systems such fetch-and-store operations are considerably cheaper than additions, and
often two orders of magnitude cheaper than multiplications.

The problem may for example be overcome by maintaining the list Q as a balanced
binary tree see e.g. Tarjan (1983). This is a binary tree in which a balance condition is
imposed, forcing the depth of an n-node tree to be 0(log n). This requires rebalancing
the tree after (or during) each update operation. The access time in a balanced binary
tree is 0 (log n). We can also rebalance such a tree after an insertion or deletion in
0(1og n) time, see Lemma 4.1 in Tarjan (1983). A balanced binary tree is one kind of
binary search tree in which a set of items is totally ordered by a given key.

918 AWI FEDERGRUEN AND MICHAL TZUR

Algorithm
Step 0: (Initialization)

F(O): = 0; F(1): = K1 + cldl; N(1): = 1; S(1): = 0; C(1): = c,
D(1): = di; H(1): = hi; 1(1): = 1; FIRST: = LAST: = 1;

g(FIRST): = D(2);
forj = 2,n do
begin

D(j): D(j-1) + dj; -H(j): = H(j-1) + hj;
CU(): = cj-H(j-1); S(j): = S(j-1) + djH(j- 1)

end;
Step 1: (Iterative Step)

Forj: = 2,n do
begin

while g(FIRST+ 1) ? D(j) do DELTOP
g(FIRST): = D(J);
if C(j) > C(N(FIRST)) then begin p: = FIRST-1; gnew := D(j) end
else begin p := max{FIRST -I _ LAST: C(N(l)) > C(j)};

gnew : = G(j,N(p)) end;
if ((p = LAST or Kj < KN(p,1)) and gnew < oo) then
begin

if (p = FIRST and gnew - g(p)) then begin FIRST: = FIRST+ 1;
g(FIRST): = D(j) end
while (p > FIRST and gnew _ g(p)) do

begin DELUP(p); gnew = G(j,N(p)) end
if (p = LAST) then begin INSERT (j,p); g(p): = gnew end
else begin

x: = G(N(p+ 1),j);
if (x > gnew) then

begin
INSERT (j,p); g(p) = gnew; g(p+ 1): x;
while (p+ 1 < LAST and g(p+2) g(p+ 1)) do

begin DELDOWN(p); g(p+ 1): = G(N(p+1),j) end
end

end
end

F(j) := F(N(FIRST),j) (see (2))
1(j): = N(FIRST)

end

Complexity of the Algorithm

We now evaluate the complexity of the Algorithm. We first calculate all D(*), H(*),
C(*) and S(*) values in 0 (n) time. Once the ranked list Q(j + 1) has been updated from
the list Q(j), 1(j + 1) is determined as the first period in the list and F(j + 1) is obtained
from (2) in constant time. This part of the computation effort is therefore clearly linear
in n. Most of the work is therefore associated with successive updates of the Q-lists. Note,
however, that insertion of period j in the ranked list Q(j - 1) involves 0(log2 j) com-
parisons to obtain the proper place for period j and (at most) two evaluations of the
G(*, *) function.

The remainder of the work is associated with deletions. A deletion occurs after a single
comparison of a pair of K-values or a pair of G-values may necessitate the evaluation of
one additional G-value and invokes a certain amount of work associated with the deletion
of a record in a ranked list. The latter requires 0 (log]j) operations provided an appropriate

SIMPLE FORWARD ALGORITHM FOR GENERAL DYNAMIC LOT SIZING 919

data-structure is employed, see above. Each period 1, . .. , n is deleted at most once in
the course of the algorithm. We conclude that both the work associated with insertions
and that associated with deletions and hence the complexity of the entire algorithm is
0(n log n)!

THEOREM 2. The Algorithm solves the dynamic lot sizing problem, with O(n log n)
elementary operations and 0(n) space requirements.

PROOF. The proof is immediate from Theorem 1, Corollary 1, the discussion above
and the following observations:

Step 1 starts for any given value of j with the elimination of any record I in Q(j - 1)
with g(l + 1) D(j). The element which appears at the top of the list after this round
of eliminations, gets D(j) as its g-value in accordance with the convention of Theorem
1. Step 1 proceeds with determining period j's place in the list. If its place is before the
end of the list (p < LAST) and Kj ? KN(P+,1) it follows from Corollary 1 that no further
updates are needed. Otherwise, period j may be included in Q(j) and Step 1 proceeds
with the possible sequential deletion of records p, p - 1, * * * until the g(*)-value of the
record to be occupied by period j (gnew) is larger than the g-value of its predeces-
sor (g(p)).

If p = LAST, i.e., period j belongs at the end of the list, j needs to be inserted there,
we have a list satisfying (6), and the update is completed. If p < LAST, we compute the
value that record (p + 1) would get if period j were inserted (x = G(N(p + 1), j)). If x
< gnew, j ? Q(j) and the update is completed by the definition of Q(j) and Q(j - 1);
otherwise, we insert period j into record p with its last computed g(*)-value (gnew).
Clearly,

g(FIRST) < g(FIRST + 1) < ... < g(p). (10)

The update is completed with the possible sequential deletion of records p + 1, p + 2,
... until

g(p + 1) <g(p + 2) < ... < g(LAST). (11)

At the end of this last sequence of deletions, we must have g(p) < g(p + 1) and hence
full monotonicity of the g-values in the entire list, i.e., (6) in view of (10) and (1 1). For,
if g(p) > g(p + 1) we would eliminate period j as well as some period I E Q(j - 1),
which therefore has the property that F(l, t) < min { F(k, t): 1 ? k j-1 1} for some
horizon t with potential cumulative demand D _ D (j). But, since j ?E Q(j), this period
I must be included in Q(j), which leads to a contradiction. D

The above complexity analysis allows for arbitrary parameter combinations. It is how-
ever more realistic to assume that set-up costs are bounded from above and holding cost
rates and demands from below in which case the Algorithm is easily shown to have linear
time complexity. Assume all demands are rational, hence integer after appropriate scaling.

PROPOSITION 1. Assume there exists an integer M ? 1, and constants h*, K* such
that (di + * * * + di+M) >_ 1, h>h, ci _ c*, Ki K* and ci -' c* for all i = 1, . . ., n.

(a) the size of the lists Q is boundedfrom above by K*/h* + (c* - c*)/h* + M; (b)
the Algorithm requires 0(n) operations.

PROOF. (a) Consider a period j with dj _ 1, and let i < j.

F(j,j) < F(i,j) if c,dj > Kj+cjdj (12)

Under (12), cij > cj and by Lemma 2(b), Ai,j(*) is increasing so that F(j, t) < F(i, t)
for all t '-j and i ; ?Q(j). But, if

920 AWI FEDERGRUEN AND MICHAL TZUR

then

[(C*) +K*]

L h* +h* dj

which implies that (c* + (j - i)h)dj> K* + c*dj, and hence (12) and i - Q (j). This
implies that

(c* - c*) + K*
IQ)I h* h*

Now let j] and j2 be consecutive periods with strictly positive demands. By the assumptions
ch ' 1, di2 _ 1 andj2 - ? M. By the analysis above

K* (c* c*) 1Q(j2)1
* + (c* c*)

h*i~I + h* h

and hence

KQ(t)I
< K* + (c* c*) + M for all t =j, + 1, . . ., J2-1.

(b) Since the list Q is of bounded size, the effort to delete or insert elements in that
list is 0(1), and the overall complexity of the Algorithm is linear, see the proof of
Theorem 2. DH

3. Nondecreasing Setup Costs

In this section we consider the special but frequently prevalent case where the setup
costs are nondecreasing, i.e., K1-< ? < _ K_ The proposed simplification of the general
Algorithm results immediately from the following corollary of Lemma 3:

COROLLARY 2. Assume K1 - K2 * *. * Kn. Fix 1 <j j n. Let Q(j - 1) = {i1,

4 irl with g-values g(1), . . , g(r).
(a) If C(j) _ C(N(LAST)), Q(j) = Q '(j -)\{ j}.
(b) If Cj) < C(N(LAST)), Q(j) c Q '(j-1) (i.e., j E Q(j)) and periodj is inserted

by the Algorithm at the end of its list.

We thus obtain the following simplified version of Step 1 of the Algorithm.

Step 1 for Nondecreasing Setup Costs.
Forj = 2,n do

begin
while (g(FIRST+ 1) - D(j)) do DELTOP;
g(FIRST): = D(j);
if (C(j) < C(N(LAST)) do begin

while (G(j,N(LAST)) - g(LAST)) do DELUP(LAST);
INSERT(j,LAST); g(LAST): = G(j,N(LAST));
end

F():= F(N(FIRST),j)
l(j): = N(FIRST)
end

In view of Corollary 2 (b) no effort needs to be expended to determine at what position
in the list any new period should be inserted. Recall that this part requires 0(log n)
operations in the general algorithm. Moreover records are deleted only from the top or
the bottom of the list and inserted only at the bottom of the list. Such deletion and

SIMPLE FORWARD ALGORITHM FOR GENERAL DYNAMIC LOT SIZING 921

insertions may all be performed in constant time, maintaining the list as an ordinary
array. We conclude that the complexity of the modified algorithm (with Step 1 for Non-
decreasing Setup Costs) is 0(n) only!

In addition to allowing for a simplified solution method, Corollary 2 also shows that
an optimal strategy exists in which the last order period l(t) in a horizon of t periods, is
nondecreasing in t.

COROLLARY 3. Assume K1 - K2- ... ? K . The Algorithm determines a monotone
optimal policy, i.e., a policy with 1(j) - 1(j + 1)for 1 - j < n.

PROOF. Since new periods get inserted at the bottom of the list (if at all), it follows
that the period index which is stored in the first record of this list (N(FIRST)) can never
decrease in the process of the Algorithm. Recall from Step 1 that an optimal last order
period 1(j) (for the first j periods) is determined by setting 1(j) = N(FIRST) at the end
of Step 1. Dl

Corollary 3 was first observed in Eppen et al. (1969).

4. Problems without Speculative Inventory Motives

In this section we consider problems with no speculative motive for carrying inventories,
i.e., cij > Cj or C(i) > Ce(j) for all 1- i < j _ n. The following corollary is immediate.

COROLLARY 4. Assume C(1) '- C(2) _ ... >? C(en). Period j is inserted by the
Algorithm at the end of its list.

We thus obtain the following simplified version of Step 1 of the Algorithm which is
identical to "Step 1 for Nondecreasing Setup Costs" except that the test (C(j)
< C(N(LAST)) can be omitted:

Step 1 for Models Without Speculative Inventory Motive.
Forj = 2, n do

begin
while (g(FIRST + 1) ? D(j)) do DELTOP;
g(FIRST): = D(j);
while (G(j, N(LAST)) - g(LAST)) do DELUP(LAST);

INSERT(j, LAST); g(LAST): = G(j, N(LAST));
F j):= F(N(FIRST),j);
l(j): = N(FIRST);
end

We conclude that the modified algorithm has complexity 0(n) as in the case of non-
decreasing setup costs!

We also obtain the existence of a monotone optimal policy in complete analogy to
Corollary 3.

COROLLARY 5. Assume C(1) ' C(2) >- * * C(n). The Algorithm determines a
monotone optimal policy, i.e., a policy with 1(j) - 1(j + 1)for all 1 -< j < n.

It follows from Lemma 2 that all difference functions are nondecreasing in this case;
the algorithms by Wilber (1988), Galil and Giancarlo (1989) and Miller and Myers
(1989) may thus be used as alternatives to the above procedure.

5. Monotone Optimal Policies, Related Work

Wagner and Whitin's classical solution method for the dynamic lot sizing problem,
consists of determining a shortest path in a network (N, A) with N ={ i: 1-?i-?n }, A
- {(i, j): 1-?i-j-~n} and arc lengths {^y(i, j): i-j} given by

922 AWI FEDERGRUEN AND MICHAL TZUR

-y(i, j) = the total cost under zero-inventory ordering in the interval of periods { i, i,
i + 1, . .. , j } when placing an order in period i to cover the demand in this
interval; (i i- j).

An arc-cost function is called submodular if

y(i, k) + y(j, 1) y (i, 1) + y(j, k), i.e.,

,y(i, k)- y(j, k)?y(i, l) - y(j, l) for all i-j < k -/ 1.

Submodularity of the arc-cost function is clearly equivalent to the difference functions
Ak,l(*) (k < 1) being monotone increasing. It is immediate from Lemma 2(a) that the
absence of speculative motives for carrying inventories, i.e., C(1) _ C(2) > * * * _ C(n)
implies that the difference functions Ak,l(*) (k < 1) are monotone increasing and hence
that the arc-cost function y is submodular.

Topkis (1968), Topkis and Veinott (1972) and Topkis (1978) developed a general
framework for the existence of monotone optimal policies; for deterministic dynamic
programs which can be formulated as shortest path problems their general sufficient
condition reduces to submodularity of the arc cost function. (See also Anily and Fed-
ergruen (1991) for a simple self-contained proof of the existence of monotone optimal
policies under submodular arc cost functions.) The existence of monotone optimal policies
was first shown (by implicit use of the submodularity property) in Wagner and Whitin
(1958) for the case of constant variable order costs, and in Eppen et al. (1969) for the
more general case where cij > cj (i < j), i.e., C(1) > C(2) > ? * >_ QC(n).

Finally the treatments in Topkis (1968), Topkis and Veinott (1972), Topkis (1978)
and Heyman and Sobel (1984) may give the impression that submodularity of the arc-
cost function is the only general sufficient condition under which the existence of mono-
tone optimal policies can be established. In ?3 we have exhibited another class of dynamic
lot sizing models (with nondecreasing setup costs and otherwise general parameters)
under which monotone optimal policies exist. The following example shows however
that submodularity may fail to hold for that class of problems.

EXAMPLE. Let n = 4; di = d2 = d3 = 1 and d4 = 10; hi = 0.1 (i = 1, . . ., 4); cl = K,
- 1; c2 = K2 = 10 and C3, c4, K3, K4 arbitrary. One can easily verify that y(1, 2) = 3.1;
y(2, 4)= 132.1; y(1, 4) = 17.3 and y(2, 2) = 20. Therefore y(1, 2) + y(2, 4) > y(1,
4) + y(2, 2) contradicting submodularity.

See also Anily and Federgruen (1991) for another general class of dynamic programs
corresponding with so-called extremal partitioning problems, in which monotone optimal
policies exist while submodularity of the corresponding arc cost functions may be violated.

6. Numerical Results

In this section we provide a numerical evaluation of the efficiency of the Algorithm.
Table 1 exhibits the performance of the Algorithm on a sample of 20 test problems, with
n varying from 500 to 5000 as indicated in the first column of the table. In all 20 problems,
one period demand, holding and variable order cost rates and setup costs are all generated
as uniform random variables on the integers of a given interval. The minimum and
maximum values of these intervals are specified in Table 1. Column 6 specifies the CPU
time of the Algorithm when executed on an IBM 4381 in Fortran, and measured in
seconds.

We report (as a benchmark) in column 7 the CPU times required by Evans' (1985)
efficient implementation of the classical (Wagner-Whitin) dynamic programming
algorithm.

For the smallest of our test problems (with n = 500), the new algorithm is approximately
3 times faster. For n = 5000, it is two orders of magnitude cheaper.

SIMPLE FORWARD ALGORITHM FOR GENERAL DYNAMIC LOT SIZING 923

TABLE 1

0(n log n)- 0(n2)-

n c d h k algorithm algorithm

500 (1, 20) (1, 5) (1, 10) (1, 200) 0.47 1.49
500 (1, 50) (1, 5) (1, 10) (1,200) 0.46 1.47
500 (1, 50) (1, 10) (1, 10) (1, 200) 0.47 1.48
500 (1, 20) (1, 10) (1, 5) (1, 200) 0.49 1.52
500 (1, 10) (1, 20) (1,5) (1, 100) 0.47 1.57

1000 (1, 20) (1, 5) (1, 10) (1, 100) 0.59 4.92
1000 (1, 50) (1, 5) (1, 20) (1, 100) 0.59 4.72
1000 (1, 50) (1, 10) (1, 20) (1, 100) 0.59 4.71
1000 (1, 20) (1, 10) (1, 20) (1, 200) 0.59 4.92
1000 (1, 10) (1, 20) (1, 20) (1, 200) 0.61 5.01
2000 (1, 20) (1, 5) (1, 10) (1, 100) 0.82 18.31
2000 (1, 50) (1, 5) (1, 20) (1, 100) 0.79 18.00
2000 (1, 50) (1, 10) (1, 20) (1, 100) 0.80 17.56
2000 (1, 20) (1, 10) (1, 20) (1, 200) 0.84 18.41
2000 (1, 10) (1, 20) (1, 20) (1, 200) 0.83 18.70
5000 (1, 20) (1, 5) (1, 10) (1, 100) 1.51 109.84
5000 (1, 50) (1, 5) (1, 20) (1, 100) 1.50 108.69
5000 (1, 50) (1, 10) (1, 20) (1, 100) 1.46 108.04
5000 (1, 20) (1, 10) (1, 20) (1, 200) 1.53 112.81
5000 (1, 10) (1,20) (1,20) (1,200) 1.53 114.61

(1) (2) (3) (4) (5) (6) (7)

As pointed out in the introduction, the list Q has five or less elements in all of the
above problem instances and at any stage of the algorithm.

Appendix. Proof of Theorem 1

Note first that if i2 < il and C(i2) ? C(i1) then Ci2J i Ci.

Assume first that (6) holds. The minimality of the set S is established by showing that (i) F(i1, t) < F(l, t)
for all ! E S\ { il} when D(t) < g(2); (ii) for k = 2, . . ., r-1: F(ik, t) < F(l, t) for all ! E S\ { ik} when g(k)
< D(t) < g(k + 1) and (iii) F(ir, t) < F(l, t) for all I E S\ { ir} when D(t) > g(r). We verify (ii). (Verification
of (i) and (iii) is analogous.) Fix k, with 2 - k _ r - 1 and g(k) < D(t) < g(k + 1), see Figure 2. Apply
Lemma 2 sequentially to the pairs { ik-1, ik }, { ik-2, ik-I } . . ,{ il, i2 } to conclude that:

F(ik, t) < F(ik- I t) < F(ik-2, t) < . . . < F(ij, t) (7)

Similarly, applying Lemma 2 sequentially to the pairs { ik, ik+1 } {, . . ., ir{ , ir } one obtains:

F(ik, t) < F(ik+l, t) < * < F(ir, t). (8)

The inequalities (7) and (8) together establish (ii) and (i)-(iii) establish the minimnality of the set S. (i) also
establishes part (b), since D(j) < G(i1, i2) = g(2) and since only periods 1, . j may be used as last order
periods for a horizon of length j.

Assume now that (6) fails to hold. To show that S fails to be minimal and hence to complete the proof of
part (a), it suffices to prove part (c).

(c)(i): It follows from Lemma 2 that F(i2, t) - F(i1, t) for all t, with D(t) ? g(2).
(c)(ii): Apply Lemma 2 to conclude that F(ik+l1 t) -< F(ik, t) for all horizons t with D(t) g(k + 1) and

F(ik-1, t) - F(ik, t) for all horizons t with D(t) - g(k) and hence for all horizons with D(t) g(k + 1).
(c)(iii). If g(r) = G(ir1, ir) = +00 then C(Mr) = C(Mr-1) by (5) and hence, by the numbering convention

for the elements of S, ir > ir-_ Moreover, A(ir-1, ir) - 0 so that F(ir1, t) _ F(ir, t) for all horizons t. O

References

AGGARWAL, A., M. M. KLAWE, S. MORAN, P. SHOR AND R. E. WILBER, "Geometric Applications of a Matrix-
Searching Algorithm," Algorithmica, 2 (1987), 209-233.

AND J. K. PARK, "Improved Algorithms for Economic Lot-Size Problems, "Working paper, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY, (1990).

ANILY, S. AND A. FEDERGRUEN, "Structured Partitioning Problems," Oper. Res., 31 (1991), 130-149.

924 AWI FEDERGRUEN AND MICHAL TZUR

AXSATER, S., "Worst Case Performance for Lot Sizing Heuristics," Eutropean J. Oper. Res., 9 (1982), 339-
343.

"Performance Bounds for Lot Sizing Heuristics," Management Sci., 31 (1985), 634-640.
BARBOSA, L. C. AND M. FRIEDMAN, "Deterministic Inventory Lot Size Models-A General Root Law, Man-

agement Sci., 24 (1978), 819-826.
BENSOUSSAN, A., J. CROUHY AND J. M. PROTH, Mathemnatical Theory of Production Planning, Advanced

Series in Management, North-Holland, Amsterdam, 1983.
BITRAN, G., T. L. MAGNANTI AND H. H. YANASSE, "Approximation Methods for the Uncapacitated Dynamic

Lot Size Problem," Management Sci., 30 (1984), 1121-1140.
AND H. MATSUO, "The Multi-Item Capacitated Lot Size Problem: Error Bounds of Manne's Formu-

lations," Management Sci., 32 (1986), 350-359.
AND D. TIRUPATI, "Hierarchical Production Planning," MIT Sloan School Working Paper #3017-89-

MS, MIT, Cambridge, MA 02139,1989.
BLACKBURN, J. D. AND H. KUNREUTHER, "Planning Horizons for the Dynamic Lot Size Model with Back-

logging," Management Sci., 21 (1974), 251-255.
CHAND, S., "Lot Sizing for Products with Finite Demand Horizon and Periodic Review Policy," European J.

Oper. Res., 11 (1982), 145-148.
AND T. E. MORTON, "Minimal Forecast Horizon Procedures for Dynamic Lot Size Models," Naval

Res. Logist. Quart., 33 (1986), 111-122.
S. SETHI AND J. M. PROTH, "Existence of Forecast Horizons in Undiscounted Discrete-Time Lot Size

Models," Oper. Res., 38 (1990), 884-892.
1 AND G. SORGER, "Forecast Horizons in the Discounted Dynamic Lot Size Model," University
of Toronto Working Paper, Toronto, Canada, 1989.

DONALDSON, W. A., "Inventory Replenishment Policy for a Linear Trend in Demand-An Analytical Solution,"
Oper. Res. Quart., 28 (1977), 663-670.

EPPEN, G. D., F. J. GOULD AND B. P. PASHIGIAN, "Extensions of Planning Horizon Theorem in the Dynamic
Lot Size Model," Management Sci., 15 (1969), 268-277.
AND R. K. MARTIN, "Solving Multi-Item Capacitated Lot Sizing Problems Using Variable Redefinitions,"

Oper. Res., 35 (1987), 832-848.
EVANS, J. R., "An Efficient Implementation of the Wagner-Whitin Algorithm for Dynamic Lot-Sizing," J.

Oper. Management, 5 (1985), 229-235.
FRIEDMAN, M. AND J. WINTER, "An Asymptotic Solution of Inventory Lot Size Models with Homogeneous

Time-Dependent Demand Functions," SIAM J. AIg. Discr. Meth., 1 (1980), 300-314.
GALIL, Z. AND R. GIANCARLO, "Speeding Up Dynamic Programming with Applications to Molecular Biology,"

Theoret. Computer Sci., 64 (1989), 107-118.
GRAVES, S., "Using Lagrangian Techniques to Solve Hierarchical Production Planning Problems," Management

Sci., 28 (1982), 260-275.
HEYMAN, D. AND M. SOBEL, Stochastic Models in Operations Research Vol. II, McGraw-Hill, New York,

1984.
HIRSHBERG, D. S. AND L. L. LARMORE, "The Least Weight Subsequence Problem," SIAM J. Complut., 16

(1987),628-638.
KRUSKAL, J. B. AND D. SANKOFF (Eds.), Time Warps, String Edits, and Macromoleciules: The Theory and

Practice of Sequence Comparison, Addison-Wesley, New York, 1983.
LUNDIN, R. A. AND T. E. MORTON, "Planning Horizons for the Dynamic Lot Size Model: Zabel vs. Protective

Procedures and Computational Results," Oper. Res., 23 (1975), 711-734.
MARTIN, R. K., "Generating Alternative Mixed-Integer Programming Models Using Variable Redefinitions,"

Oper. Res., 35 (1987),820-831.
MILLER, W. AND E. W. MYERS, "Sequence Comparison with Concave Weighting Functions," Bulletin Math.

Biology, 50 (1988), 97-120.
ORLICKY, J., Material Requirements Planning, McGraw-Hill, New York, 1975.
PETERSON, R. AND E. SILVER, Decision Systems for Inventory Management and Production Planning, John

Wiley, New York, 1979.
RESH, M., M. FRIEDMAN AND L. C. BARBOSA, "On a General Solution of the Deterministic Lot Size Problem

with Time Proportional Demand," Oper. Res., 24 (1976), 718-725.
SILVER, E. A., "A Simple Inventory Replenishment Decision Rule for a Linear Trend in Demand," J. Oper.

Res. Soc., 30 (1979), 71-75.
AND H. C. MEAL, "A Heuristic for Selecting Lot-Size Quantities for the Case of a Deterministic Time-

Varying Demand Rate and Discrete Opportunities for Replenishment," Prodluction and Inventory Man-
agement, 14 (1973), 64-74.

SMITH, D., "Material Requirements Planning," in Studies in Operations Management, A. Hax (Ed.), North-
Holland, Amsterdam (1978).

SMITH, T. F. AND M. S. WATERMAN, "New Stratigraphic Correlation Techniques," J. Geology, 88 (1980),
45 1-457.

SIMPLE FORWARD ALGORITHM FOR GENERAL DYNAMIC LOT SIZING 925

TARJAN, R., Data Structures and Network Algorithms, CBMS-NSF Regional Conf. Ser. Appl. Math., Vol. 44,
(1983).

THOMAS, L. J., "Price-Production Decisions with Deterministic Demand," Management Sci., 16 (1970), 747-
750.

ToPKIs, D. T., "Ordered Optimal Solutions," Ph.D. dissertation, Stanford University, Stanford, CA, 1968.
,"Minimizing a Submodular Function on a Lattice," Oper. Res., 26(1978), 305-321.

"Applications of Minimizing a Subadditive Function on a Lattice, unpublished manuscript, 1978.
AND A. F. VEINOTT, JR., "Isotone Solutions of Extremal Problems on a Lattice," unpublished manuscript,
1972.

WAGELMANS, A., S. VAN HOESEL AND A. KOLEN, "Economic Lot-Sizing: An 0(n log n)-Algorithm That
Runs in Linear Time in the Wagner-Whitin Case," CORE Discussion Paper no. 8922, Universit6 Cath-
olique de Louvain, Louvain-la-Neuve, Belgium, (1989).

WAGNER, H. M. AND T. M. WHITIN, "Dynamic Version of the Economic Lot Size Model," Management Sci.,
5 (1958), 89-96.

WATERMAN, M. S., "General Methods of Sequence Comparison," Bulletin Math. Biology, 46 (1984), 473-
501.

WHITNEY, H., "On the Abstract Properties of Linear Dependence," Amer. J. Math., 57 (1935), 509-533.
WILBER, R. E., "The Concave Least Weight Subsequence Problem Revisited," J. Algorithms, 9 (1988), 418-

425.
ZABEL, E., "Some Generalization of Inventory Planning Horizon Theorem," Management Sci., 10 (1964),

465-471.

	p. 909
	p. 910
	p. 911
	p. 912
	p. 913
	p. 914
	p. 915
	p. 916
	p. 917
	p. 918
	p. 919
	p. 920
	p. 921
	p. 922
	p. 923
	p. 924
	p. 925

