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Abstract
Photoacoustic computed tomography (PACT), also known as optoacoustic tomography, is an
emerging imaging modality that has great potential for a wide range of biomedical imaging
applications. In this Note, we derive a hybrid reconstruction formula that is mathematically exact
and operates on a data function that is expressed in the temporal frequency and spatial domains.
This formula explicitly reveals new insights into how the spatial frequency components of the
sought-after object function are determined by the temporal frequency components of the data
function measured with a circular or spherical measurement geometry in two- and three-
dimensional implementations of PACT, respectively. The structure of the reconstruction formula
is surprisingly simple compared with existing Fourier-domain reconstruction formulae. It also
yields a straightforward numerical implementation that is robust and two orders of magnitude
more computationally efficient than filtered backprojection algorithms.

Photoacoustic computed tomography (PACT) is an emerging imaging modality that has
great potential for a wide range of biomedical imaging applications (Oraevsky & Karabutov,
2003; Wang, 2008; Kruger, et al., 1999). In PACT, biological tissues of interest are
illuminated by use of short laser pulses, which results in the generation of internal acoustic
wavefields via the thermoacoustic effect (Xu & Wang, 2006; Xu, et al., 2010). The initial
amplitudes of the induced acoustic wavefields are proportional to the spatially variant
absorbed optical energy density within the tissues. The propagated acoustic wavefields are
subsequently detected by use of a collection of ultrasonic transducers that are located outside
the object. An image reconstruction algorithm is employed to estimate the absorbed optical
energy density within the tissue from these data.

A variety of image reconstruction algorithms have been proposed for PACT (Xu, et al.,
2002; Finch, et al., 2004; Xu & Wang, 2005; Finch, et al., 2007; Kunyansky, 2007;
Hristova, et al., 2008; Kunyansky, 2012; Salehin & Abhayapala, 2012; Treeby & Cox,
2010). While iterative image reconstruction methods hold great value due to their ability to
incorporate accurate models of the imaging physics and the instrument response (Paltauf, et
al., 2002; Yuan & Jiang, 2007; Zhang, et al., 2009; Provost & Lesage, 2009; Wang, et al.,
2011; Guo, et al., 2010; Huang, et al., 2010; Xu, et al., 2011; Buehler, et al., 2011; Bu, et al.,
2012; Wang, et al., 2012), they can lead to long reconstruction times, even when accelerated
by use of modern computing hardware such as graphics processing units (Wang et al.,
2012). This is especially problematic in three-dimensional (3D) implementations of PACT,
in which reconstruction times can be excessively long. Almost all experimental studies of
PACT to date have employed analytic image reconstruction algorithms. Even if an iterative
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image reconstruction algorithm is to be employed, it is often useful to employ an analytic
reconstruction algorithm to obtain a preliminary image that can initialize the iterative
algorithm and thereby accelerate its convergence.

Most analytic reconstruction algorithms for PACT with a spherical measurement aperture
and point-like transducers have been formulated in the form of filtered backprojection (FBP)
algorithms. These algorithms possess a large computational burden, requiring O(N5) floating
point operations to reconstruct a 3D image of dimension N3. Image reconstruction
algorithms based on the time-reversal principle and finite-difference schemes require O(N4)
operations (Burgholzer, et al., 2007). Fast reconstruction algorithms for spherical
measurement apertures that require only O(N3logN) operations have been proposed
(Kunyansky, 2012; Salehin & Abhayapala, 2012). However, numerical implementations of
these formulas require computation of special functions and multidimensional interpolation
operations in Fourier space, which require special care to avoid degradation in reconstructed
image accuracy. It is well-known that the temporal frequency components of the pressure
data recorded on a spherical surface are related to the Fourier components of the sought-
after object function (Anastasio, et al., 2007). However, to date, a simple reconstruction
algorithm based on this relationship, i.e., one that does not require series expansions
involving special functions or multi-dimensional interpolations, has yet to be developed.

In this Note, we derive a novel reconstruction formula for two-dimensional (2D) and 3D
PACT employing circular and spherical measurement geometries, respectively. The
mathematical forms of the reconstruction formulae are the same in both dimensions and are
surprisingly simple compared with existing Fourier-domain reconstruction formulae for
spherical and circular measurement geometries. The reconstruction formulae are
mathematically exact and describe explicitly how the spatial frequency components of the
sought-after object function are determined by the temporal frequency components of the
measured pressure data. Their discrete implementations require only discrete Fourier
transform, one-dimensional interpolation, and summation operations. A preliminary
computer-simulation study is conducted to corroborate the validity of the reconstruction
formula.

We consider the canonical PACT imaging model in which the object and surrounding
medium are assumed to possess homogeneous and lossless acoustic properties and the object
is illuminated by a laser pulse with negligible temporal width. Point-like, unfocused,
ultrasonic transducers are assumed. We also assume that the effects of the acousto-electric
impulse responses of the transducers have been deconvolved from the measured voltage
signals so that the measured data can be interpreted as pressure signals. The 3D problem is
addressed where p(r, t) denotes the photoacoustically-induced pressure wavefield at location
r ∈ ℝ3 and time t ≥ 0. However, the analysis and reconstruction formula that follows
remains valid for the 2D case. The imaging physics is described by the photoacoustic wave
equation (Oraevsky & Karabutov, 2003; Wang, 2008; Kruger et al., 1999):

(1)

subject to the initial conditions:

(2)

where ∇2 denotes the 3D Laplacian operator and A(r) is the object function to be
reconstructed that is contained within the volume V. Physically, A(r) represents the
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distribution of absorbed optical energy density. The constant quantities β, c, and Cp denote
the thermal coefficient of volume expansion, speed-of-sound, and the specific heat capacity
of the medium at constant pressure, respectively.

Let p(rs, t) denote the pressure data recorded at location rs ∈ S on a spherical surface S of
radius RS that encloses V. The continuous form of the imaging model that relates the
measurement data to object function can be expressed as (Cox & Beard, 2005):

(3)

where k ∈ ℝ3 is the spatial frequency vector conjugate to r, k ≡ |k|, and Â(k) is the 3D
Fourier transform of A(r). We adopt the Fourier transform convention

(4a)

(4b)

The imaging model in Eqn. (3) can be interpreted as a mapping : O → D between infinite
dimensional vector spaces that contain the object and data functions. We will define O as the
vector space of bounded and smooth functions that are compactly supported within the
volume V.

Let the infinite set of functions {γμ(r)}, indexed by μ, represent an orthonormal basis for O.
The object function A(r) can be represented as

(5)

where the inner product in O is defined as

(6)

γ̂μ(k) = γμ(r), and the quantity on the right-hand side of Eqn. (6) follows from fact that
the Fourier transform is an isometry. A trace identity (see Eqn. (1.7) in reference (Finch et
al., 2004) for the 3D case and Eqn. (1.16) in (Finch et al., 2007) for the 2D case) can be
employed to relate the inner products in the spaces O and D as:

(7)

where

(8)

and the right-hand side of Eqn. (7) defines a scaled version of the inner product in D.
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On substitution from Eqn. (8) into Eqn. (7), one obtains

(9)

where

(10)

Comparison of Eqns. (6) and (9) reveals that Â(k) = ŷ(k). By evaluating the Fourier cosine
transform that is present in the right-hand side of Eqn. (10), a reconstruction formula for
determining Â(k) can therefore be expressed as

(11)

where  denotes the one-dimensional (1D) Fourier transform with respect to time t and ‘Re’
denotes the operation that takes the real part of quantity in the brackets. Subsequently, A(r)

is determined as .

Equation (11) represents a novel reconstruction for PACT and is the key result of this Note.
Unlike previously proposed Fourier-domain reconstruction formulae (Norton, 1980;
Kunyansky, 2012; Salehin & Abhayapala, 2012), Eqn. (11) has a simple form and does not
involve series expansions utilizing special functions. The reconstruction formula reveals that
the measured data p(rs, t) determine the 3D Fourier components of the A(r) via a simple
process that involves the following four steps: (1) Compute the 1D temporal Fourier
transform of the modified data function tp(rs, t); (2) Isolate the real-valued component of
this quantity corresponding to temporal frequency ω = ck; (3) Weight this value by the
plane-wave eîk·rs; and (4) Sum the contributions, formed in this way, corresponding to every
measurement location rs ∈ S. This reveals the components of Â(k) residing on a sphere of
radius  are determined by the 1D Fourier transform of tp(rs, t) corresponding to temporal
frequency ω. In this sense, Eqn. (11) can be interpreted as an implementation of the Fourier
Shell Identity (Anastasio et al., 2007). Finally, the form of Eqn. (11) remains unchanged in
the 2D case, where rs, k ∈ ℝ2 and S is a circle that encloses the object.

A discrete implementation of Eqn. (11) possesses low computational complexity and
desirable numerical properties. The 1D fast Fourier transform (FFT) can be employed to
approximate the action of  and only a 1D interpolation is required to determine the value
of the Fourier transformed data function corresponding to temporal frequency ω = ck, where
k corresponds to the magnitude of vectors k that specify a 3D Cartesian grid. From the
values of Â(k) determined on this grid, the 3D FFT algorithm can be employed to estimate
values of A(r). If the object is represented on a N × N × N grid and the number of transducer
locations and time samples are both (N), the computational complexity is limited by the
3D FFT algorithm, i.e., (N2log N) in 2D and (N3log N) in 3D.

A preliminary computer-simulation study for the 2D case was conducted to corroborate the
correctness of the reconstruction formula. The object function A(r) was taken to be the
numerical phantom shown in Fig. 1-(a), which was comprised of a collection of uniform
disks that were blurred by a 2D Gaussian kernel whose full-width-at-half-maximum was 0.3
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mm. The phantom was discretized by use of pixel expansion functions with a pitch of 0.025
mm. The measurement geometry consisted of 256 point-like transducers that were uniformly
distributed over a circle of radius 12.8 mm that enclosed the object. The k-wave toolbox
(Treeby & Cox, 2010) was employed to numerically solve the photoacoustic wave equation
and generate simulated pressure signals at each transducer location at a temporal sampling
rate of 30 MHz. The simulated pressure data set generated in this way contained 256 × 2048

data samples. The speed-of-sound and  were assigned values of 1.5-mm/μs and 1000
(arbitrary units), respectively. A noisy data set was produced by addition of 5% uncorrelated
Gaussian noise to the noiseless pressure data.

Images were reconstructed on a uniform 2D grid of spacing 0.1 mm by use of a discretized
form of Eqn. (11) coupled with the 2D inverse FFT algorithm. In order to reconstruct images
of dimension 256 × 256, samples of Â(k) were determined on a uniform 2D grid of
dimension 512 × 512 with a sampling interval of (0.1 × 256)−1 mm−1. The samples of the
data function tp(rs, t) were zero-padded by a factor of 8 prior to estimating its 1D Fourier
transform by use of the FFT algorithm. From these data, nearest neighbor 1D interpolation
was employed to determine the values of the term in brackets in Eqn. (11) corresponding to
ω = ck for the sampled locations k.

The images reconstructed from the noiseless and noisy data sets are shown in Fig. 1-(b) and
(c). Profiles corresponding to the central rows of these images are shown in Fig. 2. These
results confirm that the proposed reconstruction algorithm can reconstruct images with high
fidelity from noise-free measurement data. Although, a systematic investigation of the noise
propagation properties of the proposed algorithm is beyond the scope of this Note, Figs. 1-
(c) and 2-(b) suggest that its performance is robust in the presence of noise. This is to be
expected, since all operations involved in the implementation of Eqn. (11) are numerically
stable.

In summary, we have derived a Fourier-based reconstruction formula for PACT employing
circular and spherical measurement apertures. The formula is mathematically exact and
possesses a surprisingly simple form compared with existing Fourier-domain reconstruction
formulae. The formula yields a straightforward numerical implementation that is stable and
is two orders of magnitude more computationally efficient than 3D filtered backprojection
algorithms. The proposed formula serves as an alternative to existing fast Fourier-based
reconstruction formulae. A systematic comparison of the proposed reconstruction formula
with existing formulae by use of experimental data remains an important topic for future
studies.
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Figure 1.
The numerical phantom is shown in subfigure (a). Images reconstructed by use of the
proposed reconstruction algorithm from noiseless and noisy data are shown in subfigures (b)
and (c), respectively. The greyscale window is [−0.2, 1.2].
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Figure 2.
Profiles corresponding to the central rows of the images shown in Fig. 1-(b) (subfigure(a))
and Fig. 1-(c) (subfigure(b)). The solid line in subfigure (a), which corresponds to the image
reconstructed from noiseless data, almost completely overlaps with the profile through the
numerical phantom.
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