
A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen 1 Simon Kornblith 1 Mohammad Norouzi 1 Geoffrey Hinton 1

Abstract

This paper presents SimCLR: a simple framework

for contrastive learning of visual representations.

We simplify recently proposed contrastive self-

supervised learning algorithms without requiring

specialized architectures or a memory bank. In

order to understand what enables the contrastive

prediction tasks to learn useful representations,

we systematically study the major components of

our framework. We show that (1) composition of

data augmentations plays a critical role in defining

effective predictive tasks, (2) introducing a learn-

able nonlinear transformation between the repre-

sentation and the contrastive loss substantially im-

proves the quality of the learned representations,

and (3) contrastive learning benefits from larger

batch sizes and more training steps compared to

supervised learning. By combining these findings,

we are able to considerably outperform previous

methods for self-supervised and semi-supervised

learning on ImageNet. A linear classifier trained

on self-supervised representations learned by Sim-

CLR achieves 76.5% top-1 accuracy, which is a

7% relative improvement over previous state-of-

the-art, matching the performance of a supervised

ResNet-50. When fine-tuned on only 1% of the

labels, we achieve 85.8% top-5 accuracy, outper-

forming AlexNet with 100× fewer labels. 1

1. Introduction

Learning effective visual representations without human

supervision is a long-standing problem. Most mainstream

approaches fall into one of two classes: generative or dis-

criminative. Generative approaches learn to generate or

otherwise model pixels in the input space (Hinton et al.,

2006; Kingma & Welling, 2013; Goodfellow et al., 2014).
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Figure 1. ImageNet Top-1 accuracy of linear classifiers trained

on representations learned with different self-supervised meth-

ods (pretrained on ImageNet). Gray cross indicates supervised

ResNet-50. Our method, SimCLR, is shown in bold.

However, pixel-level generation is computationally expen-

sive and may not be necessary for representation learning.

Discriminative approaches learn representations using objec-

tive functions similar to those used for supervised learning,

but train networks to perform pretext tasks where both the in-

puts and labels are derived from an unlabeled dataset. Many

such approaches have relied on heuristics to design pretext

tasks (Doersch et al., 2015; Zhang et al., 2016; Noroozi &

Favaro, 2016; Gidaris et al., 2018), which could limit the

generality of the learned representations. Discriminative

approaches based on contrastive learning in the latent space

have recently shown great promise, achieving state-of-the-

art results (Hadsell et al., 2006; Dosovitskiy et al., 2014;

Oord et al., 2018; Bachman et al., 2019).

In this work, we introduce a simple framework for con-

trastive learning of visual representations, which we call

SimCLR. Not only does SimCLR outperform previous work

(Figure 1), but it is also simpler, requiring neither special-

ized architectures (Bachman et al., 2019; Hénaff et al., 2019)

nor a memory bank (Wu et al., 2018; Tian et al., 2019; He

et al., 2019; Misra & van der Maaten, 2019).

In order to understand what enables good contrastive repre-

sentation learning, we systematically study the major com-

ponents of our framework and show that:
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• Composition of multiple data augmentation operations

is crucial in defining the contrastive prediction tasks that

yield effective representations. In addition, unsupervised

contrastive learning benefits from stronger data augmen-

tation than supervised learning.

• Introducing a learnable nonlinear transformation be-

tween the representation and the contrastive loss substan-

tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy

loss benefits from normalized embeddings and an appro-

priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and

longer training compared to its supervised counterpart.

Like supervised learning, contrastive learning benefits

from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art

in self-supervised and semi-supervised learning on Ima-

geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the

linear evaluation protocol, SimCLR achieves 76.5% top-1

accuracy, which is a 7% relative improvement over previous

state-of-the-art (Hénaff et al., 2019). When fine-tuned with

only 1% of the ImageNet labels, SimCLR achieves 85.8%

top-5 accuracy, a relative improvement of 10% (Hénaff et al.,

2019). When fine-tuned on other natural image classifica-

tion datasets, SimCLR performs on par with or better than

a strong supervised baseline (Kornblith et al., 2019) on 10

out of 12 datasets.

2. Method

2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-

tion 7 for an overview), SimCLR learns representations

by maximizing agreement between differently augmented

views of the same data example via a contrastive loss in

the latent space. As illustrated in Figure 2, this framework

comprises the following four major components.

• A stochastic data augmentation module that transforms

any given data example randomly resulting in two cor-

related views of the same example, denoted x̃i and x̃j ,

which we consider as a positive pair. In this work, we

sequentially apply three simple augmentations: random

cropping followed by resize back to the original size, ran-

dom color distortions, and random Gaussian blur. As

shown in Section 3, the combination of random crop and

color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-

sentation vectors from augmented data examples. Our

framework allows various choices of the network archi-

tecture without any constraints. We opt for simplicity

and adopt the commonly used ResNet (He et al., 2016)

←−Representation−→

x

x̃i x̃j

hi hj

zi zj

t ∼ T
t
′ ∼ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2. A simple framework for contrastive learning of visual

representations. Two separate data augmentation operators are

sampled from the same family of augmentations (t ∼ T and

t′ ∼ T ) and applied to each data example to obtain two correlated

views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After

training is completed, we throw away the projection head g(·) and

use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi ∈ R
d is

the output after the average pooling layer.

• A small neural network projection head g(·) that maps

representations to the space where contrastive loss is

applied. We use a MLP with one hidden layer to obtain

zi = g(hi) = W (2)σ(W (1)
hi) where σ is a ReLU non-

linearity. As shown in section 4, we find it beneficial to

define the contrastive loss on zi’s rather than hi’s.

• A contrastive loss function defined for a contrastive pre-

diction task. Given a set {x̃k} including a positive pair

of examples x̃i and x̃j , the contrastive prediction task

aims to identify x̃j in {x̃k}k 6=i for a given x̃i.

We randomly sample a minibatch of N examples and define

the contrastive prediction task on pairs of augmented exam-

ples derived from the minibatch, resulting in 2N data points.

We do not sample negative examples explicitly. Instead,

given a positive pair, similar to (Chen et al., 2017), we treat

the other 2(N − 1) augmented examples within a minibatch

as negative examples. Let sim(u,v) = u
⊤
v/‖u‖‖v‖ de-

note the dot product between ℓ2 normalized u and v (i.e.

cosine similarity). Then the loss function for a positive pair

of examples (i, j) is defined as

ℓi,j = − log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k 6=i] exp(sim(zi, zk)/τ)

, (1)

where 1[k 6=i] ∈ {0, 1} is an indicator function evaluating to

1 iff k 6= i and τ denotes a temperature parameter. The fi-

nal loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch. This loss has been used in

previous work (Sohn, 2016; Wu et al., 2018; Oord et al.,

2018); for convenience, we term it NT-Xent (the normalized

temperature-scaled cross entropy loss).



A Simple Framework for Contrastive Learning of Visual Representations

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N , constant τ , structure of f , g, T .

for sampled minibatch {xk}
N
k=1 do

for all k ∈ {1, . . . , N} do

draw two augmentation functions t∼T , t′∼T
# the first augmentation

x̃2k−1 = t(xk)
h2k−1 = f(x̃2k−1) # representation

z2k−1 = g(h2k−1) # projection

# the second augmentation

x̃2k = t′(xk)
h2k = f(x̃2k) # representation

z2k = g(h2k) # projection

end for

for all i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do

si,j = z
⊤
i zj/(‖zi‖‖zj‖) # pairwise similarity

end for

define ℓ(i, j) as ℓ(i, j)=− log
exp(si,j/τ)∑2N

k=1 1[k 6=i] exp(si,k/τ)

L = 1
2N

∑N
k=1 [ℓ(2k−1, 2k) + ℓ(2k, 2k−1)]

update networks f and g to minimize L
end for

return encoder network f(·), and throw away g(·)

Algorithm 1 summarizes the proposed method.

2.2. Training with Large Batch Size

To keep it simple, we do not train the model with a memory

bank (Wu et al., 2018; He et al., 2019). Instead, we vary

the training batch size N from 256 to 8192. A batch size

of 8192 gives us 16382 negative examples per positive pair

from both augmentation views. Training with large batch

size may be unstable when using standard SGD/Momentum

with linear learning rate scaling (Goyal et al., 2017). To

stabilize the training, we use the LARS optimizer (You et al.,

2017) for all batch sizes. We train our model with Cloud

TPUs, using 32 to 128 cores depending on the batch size.2

Global BN. Standard ResNets use batch normaliza-

tion (Ioffe & Szegedy, 2015). In distributed training with

data parallelism, the BN mean and variance are typically

aggregated locally per device. In our contrastive learning,

as positive pairs are computed in the same device, the model

can exploit the local information leakage to improve pre-

diction accuracy without improving representations. We ad-

dress this issue by aggregating BN mean and variance over

all devices during the training. Other approaches include

shuffling data examples across devices (He et al., 2019), or

replacing BN with layer norm (Hénaff et al., 2019).

2With 128 TPU v3 cores, it takes ∼1.5 hours to train our
ResNet-50 with a batch size of 4096 for 100 epochs.

A B

(a) Global and local views.

C

D

(b) Adjacent views.

Figure 3. Solid rectangles are images, dashed rectangles are ran-

dom crops. By randomly cropping images, we sample contrastive

prediction tasks that include global to local view (B → A) or

adjacent view (D → C) prediction.

2.3. Evaluation Protocol

Here we lay out the protocol for our empirical studies, which

aim to understand different design choices in our framework.

Dataset and Metrics. Most of our study for unsupervised

pretraining (learning encoder network f without labels)

is done using the ImageNet ILSVRC-2012 dataset (Rus-

sakovsky et al., 2015). Some additional pretraining experi-

ments on CIFAR-10 (Krizhevsky & Hinton, 2009) can be

found in Appendix B.9. We also test the pretrained results

on a wide range of datasets for transfer learning. To evalu-

ate the learned representations, we follow the widely used

linear evaluation protocol (Zhang et al., 2016; Oord et al.,

2018; Bachman et al., 2019; Kolesnikov et al., 2019), where

a linear classifier is trained on top of the frozen base net-

work, and test accuracy is used as a proxy for representation

quality. Beyond linear evaluation, we also compare against

state-of-the-art on semi-supervised and transfer learning.

Default setting. Unless otherwise specified, for data aug-

mentation we use random crop and resize (with random

flip), color distortions, and Gaussian blur (for details, see

Appendix A). We use ResNet-50 as the base encoder net-

work, and a 2-layer MLP projection head to project the

representation to a 128-dimensional latent space. As the

loss, we use NT-Xent, optimized using LARS with learning

rate of 4.8 (= 0.3× BatchSize/256) and weight decay of

10−6. We train at batch size 4096 for 100 epochs.3 Fur-

thermore, we use linear warmup for the first 10 epochs,

and decay the learning rate with the cosine decay schedule

without restarts (Loshchilov & Hutter, 2016).

3. Data Augmentation for Contrastive

Representation Learning

Data augmentation defines predictive tasks. While data

augmentation has been widely used in both supervised and

unsupervised representation learning (Krizhevsky et al.,

3Although max performance is not reached in 100 epochs, rea-
sonable results are achieved, allowing fair and efficient ablations.
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(a) Original (b) Crop and resize (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90◦, 180◦, 270◦} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal

parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our

models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

2012; Hénaff et al., 2019; Bachman et al., 2019), it has

not been considered as a systematic way to define the con-

trastive prediction task. Many existing approaches define

contrastive prediction tasks by changing the architecture.

For example, Hjelm et al. (2018); Bachman et al. (2019)

achieve global-to-local view prediction via constraining the

receptive field in the network architecture, whereas Oord

et al. (2018); Hénaff et al. (2019) achieve neighboring view

prediction via a fixed image splitting procedure and a con-

text aggregation network. We show that this complexity can

be avoided by performing simple random cropping (with

resizing) of target images, which creates a family of predic-

tive tasks subsuming the above mentioned two, as shown in

Figure 3. This simple design choice conveniently decouples

the predictive task from other components such as the neural

network architecture. Broader contrastive prediction tasks

can be defined by extending the family of augmentations

and composing them stochastically.

3.1. Composition of data augmentation operations is

crucial for learning good representations

To systematically study the impact of data augmentation,

we consider several common augmentations here. One type

of augmentation involves spatial/geometric transformation

of data, such as cropping and resizing (with horizontal

flipping), rotation (Gidaris et al., 2018) and cutout (De-

Vries & Taylor, 2017). The other type of augmentation

involves appearance transformation, such as color distortion

(including color dropping, brightness, contrast, saturation,

hue) (Howard, 2013; Szegedy et al., 2015), Gaussian blur,

and Sobel filtering. Figure 4 visualizes the augmentations

that we study in this work.
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Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-

dividual or composition of data augmentations, applied only to

one branch. For all columns but the last, diagonal entries corre-

spond to single transformation, and off-diagonals correspond to

composition of two transformations (applied sequentially). The

last column reflects the average over the row.

To understand the effects of individual data augmentations

and the importance of augmentation composition, we in-

vestigate the performance of our framework when applying

augmentations individually or in pairs. Since ImageNet

images are of different sizes, we always apply crop and re-

size images (Krizhevsky et al., 2012; Szegedy et al., 2015),

which makes it difficult to study other augmentations in

the absence of cropping. To eliminate this confound, we

consider an asymmetric data transformation setting for this

ablation. Specifically, we always first randomly crop im-

ages and resize them to the same resolution, and we then

apply the targeted transformation(s) only to one branch of

the framework in Figure 2, while leaving the other branch

as the identity (i.e. t(xi) = xi). Note that this asymmet-
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(a) Without color distortion. (b) With color distortion.

Figure 6. Histograms of pixel intensities (over all channels) for

different crops of two different images (i.e. two rows). The image

for the first row is from Figure 4. All axes have the same range.

Color distortion strength
Methods 1/8 1/4 1/2 1 1 (+Blur) AutoAug

SimCLR 59.6 61.0 62.6 63.2 64.5 61.1
Supervised 77.0 76.7 76.5 75.7 75.4 77.1

Table 1. Top-1 accuracy of unsupervised ResNet-50 using linear

evaluation and supervised ResNet-505, under varied color distor-

tion strength (see Appendix A) and other data transformations.

Strength 1 (+Blur) is our default data augmentation policy.

ric data augmentation hurts the performance. Nonetheless,

this setup should not substantively change the impact of

individual data augmentations or their compositions.

Figure 5 shows linear evaluation results under individual

and composition of transformations. We observe that no

single transformation suffices to learn good representations,

even though the model can almost perfectly identify the

positive pairs in the contrastive task. When composing aug-

mentations, the contrastive prediction task becomes harder,

but the quality of representation improves dramatically. Ap-

pendix B.2 provides a further study on composing broader

set of augmentations.

One composition of augmentations stands out: random crop-

ping and random color distortion. We conjecture that one

serious issue when using only random cropping as data

augmentation is that most patches from an image share a

similar color distribution. Figure 6 shows that color his-

tograms alone suffice to distinguish images. Neural nets

may exploit this shortcut to solve the predictive task. There-

fore, it is critical to compose cropping with color distortion

in order to learn generalizable features.

3.2. Contrastive learning needs stronger data

augmentation than supervised learning

To further demonstrate the importance of the color aug-

mentation, we adjust the strength of color augmentation as

5Supervised models are trained for 90 epochs; longer training
improves performance of stronger augmentation by ∼ 0.5%.
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Figure 7. Linear evaluation of models with varied depth and width.

Models in blue dots are ours trained for 100 epochs, models in red

stars are ours trained for 1000 epochs, and models in green crosses

are supervised ResNets trained for 90 epochs7 (He et al., 2016).

shown in Table 1. Stronger color augmentation substan-

tially improves the linear evaluation of the learned unsuper-

vised models. In this context, AutoAugment (Cubuk et al.,

2019), a sophisticated augmentation policy found using su-

pervised learning, does not work better than simple cropping

+ (stronger) color distortion. When training supervised mod-

els with the same set of augmentations, we observe that

stronger color augmentation does not improve or even hurts

their performance. Thus, our experiments show that unsu-

pervised contrastive learning benefits from stronger (color)

data augmentation than supervised learning. Although pre-

vious work has reported that data augmentation is useful

for self-supervised learning (Doersch et al., 2015; Bachman

et al., 2019; Hénaff et al., 2019; Asano et al., 2019), we

show that data augmentation that does not yield accuracy

benefits for supervised learning can still help considerably

with contrastive learning.

4. Architectures for Encoder and Head

4.1. Unsupervised contrastive learning benefits (more)

from bigger models

Figure 7 shows, perhaps unsurprisingly, that increasing

depth and width both improve performance. While similar

findings hold for supervised learning (He et al., 2016), we

find the gap between supervised models and linear classifiers

trained on unsupervised models shrinks as the model size

increases, suggesting that unsupervised learning benefits

more from bigger models than its supervised counterpart.

7Training longer does not improve supervised ResNets (see
Appendix B.3).
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Name Negative loss function Gradient w.r.t. u

NT-Xent u
T
v
+/τ − log

∑
v∈{v+,v−} exp(u

T
v/τ) (1− exp(uT

v
+/τ)

Z(u)
)/τv+ −

∑
v
−

exp(uT
v
−/τ)

Z(u)
/τv−

NT-Logistic log σ(uT
v
+/τ) + log σ(−uT

v
−/τ) (σ(−uT

v
+/τ))/τv+ − σ(uT

v
−/τ)/τv−

Margin Triplet −max(uT
v
− − u

T
v
+ +m, 0) v

+ − v
− if uT

v
+ − u

T
v
− < m else 0

Table 2. Negative loss functions and their gradients. All input vectors, i.e. u,v+,v−, are ℓ2 normalized. NT-Xent is an abbreviation for

“Normalized Temperature-scaled Cross Entropy”. Different loss functions impose different weightings of positive and negative examples.
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Figure 8. Linear evaluation of representations with different pro-

jection heads g(·) and various dimensions of z = g(h). The

representation h (before projection) is 2048-dimensional here.

4.2. A nonlinear projection head improves the

representation quality of the layer before it

We then study the importance of including a projection

head, i.e. g(h). Figure 8 shows linear evaluation results

using three different architecture for the head: (1) identity

mapping; (2) linear projection, as used by several previous

approaches (Wu et al., 2018); and (3) the default nonlinear

projection with one additional hidden layer (and ReLU acti-

vation), similar to Bachman et al. (2019). We observe that a

nonlinear projection is better than a linear projection (+3%),

and much better than no projection (>10%). When a pro-

jection head is used, similar results are observed regardless

of output dimension. Furthermore, even when nonlinear

projection is used, the layer before the projection head, h,

is still much better (>10%) than the layer after, z = g(h),
which shows that the hidden layer before the projection

head is a better representation than the layer after.

We conjecture that the importance of using the representa-

tion before the nonlinear projection is due to loss of informa-

tion induced by the contrastive loss. In particular, z = g(h)
is trained to be invariant to data transformation. Thus, g can

remove information that may be useful for the downstream

task, such as the color or orientation of objects. By leverag-

ing the nonlinear transformation g(·), more information can

be formed and maintained in h. To verify this hypothesis,

we conduct experiments that use either h or g(h) to learn

to predict the transformation applied during the pretraining.

Here we set g(h) = W (2)σ(W (1)h), with the same input

and output dimensionality (i.e. 2048). Table 3 shows h

contains much more information about the transformation

applied, while g(h) loses information. Further analysis can

What to predict? Random guess
Representation
h g(h)

Color vs grayscale 80 99.3 97.4
Rotation 25 67.6 25.6
Orig. vs corrupted 50 99.5 59.6
Orig. vs Sobel filtered 50 96.6 56.3

Table 3. Accuracy of training additional MLPs on different repre-

sentations to predict the transformation applied. Other than crop

and color augmentation, we additionally and independently add

rotation (one of {0◦, 90◦, 180◦, 270◦}), Gaussian noise, and So-

bel filtering transformation during the pretraining for the last three

rows. Both h and g(h) are of the same dimensionality, i.e. 2048.

be found in Appendix B.4.

5. Loss Functions and Batch Size

5.1. Normalized cross entropy loss with adjustable

temperature works better than alternatives

We compare the NT-Xent loss against other commonly used

contrastive loss functions, such as logistic loss (Mikolov

et al., 2013), and margin loss (Schroff et al., 2015). Table

2 shows the objective function as well as the gradient to

the input of the loss function. Looking at the gradient, we

observe 1) ℓ2 normalization (i.e. cosine similarity) along

with temperature effectively weights different examples, and

an appropriate temperature can help the model learn from

hard negatives; and 2) unlike cross-entropy, other objec-

tive functions do not weigh the negatives by their relative

hardness. As a result, one must apply semi-hard negative

mining (Schroff et al., 2015) for these loss functions: in-

stead of computing the gradient over all loss terms, one can

compute the gradient using semi-hard negative terms (i.e.,

those that are within the loss margin and closest in distance,

but farther than positive examples).

To make the comparisons fair, we use the same ℓ2 normaliza-

tion for all loss functions, and we tune the hyperparameters,

and report their best results.8 Table 4 shows that, while

(semi-hard) negative mining helps, the best result is still

much worse than our default NT-Xent loss.

8Details can be found in Appendix B.10. For simplicity, we
only consider the negatives from one augmentation view.
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Margin NT-Logi. Margin (sh) NT-Logi.(sh) NT-Xent

50.9 51.6 57.5 57.9 63.9

Table 4. Linear evaluation (top-1) for models trained with different

loss functions. “sh” means using semi-hard negative mining.

ℓ2 norm? τ Entropy Contrastive acc. Top 1

Yes

0.05 1.0 90.5 59.7
0.1 4.5 87.8 64.4
0.5 8.2 68.2 60.7
1 8.3 59.1 58.0

No
10 0.5 91.7 57.2
100 0.5 92.1 57.0

Table 5. Linear evaluation for models trained with different choices

of ℓ2 norm and temperature τ for NT-Xent loss. The contrastive

distribution is over 4096 examples.
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Figure 9. Linear evaluation models (ResNet-50) trained with differ-

ent batch size and epochs. Each bar is a single run from scratch.10

We next test the importance of the ℓ2 normalization (i.e.

cosine similarity vs dot product) and temperature τ in our

default NT-Xent loss. Table 5 shows that without normal-

ization and proper temperature scaling, performance is sig-

nificantly worse. Without ℓ2 normalization, the contrastive

task accuracy is higher, but the resulting representation is

worse under linear evaluation.

5.2. Contrastive learning benefits (more) from larger

batch sizes and longer training

Figure 9 shows the impact of batch size when models are

trained for different numbers of epochs. We find that, when

the number of training epochs is small (e.g. 100 epochs),

larger batch sizes have a significant advantage over the

smaller ones. With more training steps/epochs, the gaps

between different batch sizes decrease or disappear, pro-

vided the batches are randomly resampled. In contrast to

10A linear learning rate scaling is used here. Figure B.1 shows
using a square root learning rate scaling can improve performance
of ones with small batch sizes.

Method Architecture Param (M) Top 1 Top 5

Methods using ResNet-50:
Local Agg. ResNet-50 24 60.2 -
MoCo ResNet-50 24 60.6 -
PIRL ResNet-50 24 63.6 -
CPC v2 ResNet-50 24 63.8 85.3
SimCLR (ours) ResNet-50 24 69.3 89.0

Methods using other architectures:
Rotation RevNet-50 (4×) 86 55.4 -
BigBiGAN RevNet-50 (4×) 86 61.3 81.9
AMDIM Custom-ResNet 626 68.1 -
CMC ResNet-50 (2×) 188 68.4 88.2
MoCo ResNet-50 (4×) 375 68.6 -
CPC v2 ResNet-161 (∗) 305 71.5 90.1
SimCLR (ours) ResNet-50 (2×) 94 74.2 92.0
SimCLR (ours) ResNet-50 (4×) 375 76.5 93.2

Table 6. ImageNet accuracies of linear classifiers trained on repre-

sentations learned with different self-supervised methods.

Method Architecture
Label fraction
1% 10%

Top 5

Supervised baseline ResNet-50 48.4 80.4

Methods using other label-propagation:
Pseudo-label ResNet-50 51.6 82.4
VAT+Entropy Min. ResNet-50 47.0 83.4
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4×) - 91.2

Methods using representation learning only:
InstDisc ResNet-50 39.2 77.4
BigBiGAN RevNet-50 (4×) 55.2 78.8
PIRL ResNet-50 57.2 83.8
CPC v2 ResNet-161(∗) 77.9 91.2
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2×) 83.0 91.2
SimCLR (ours) ResNet-50 (4×) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.

supervised learning (Goyal et al., 2017), in contrastive learn-

ing, larger batch sizes provide more negative examples,

facilitating convergence (i.e. taking fewer epochs and steps

for a given accuracy). Training longer also provides more

negative examples, improving the results. In Appendix B.1,

results with even longer training steps are provided.

6. Comparison with State-of-the-art

In this subsection, similar to Kolesnikov et al. (2019); He

et al. (2019), we use ResNet-50 in 3 different hidden layer

widths (width multipliers of 1×, 2×, and 4×). For better

convergence, our models here are trained for 1000 epochs.

Linear evaluation. Table 6 compares our results with previ-

ous approaches (Zhuang et al., 2019; He et al., 2019; Misra

& van der Maaten, 2019; Hénaff et al., 2019; Kolesnikov

et al., 2019; Donahue & Simonyan, 2019; Bachman et al.,
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Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:
SimCLR (ours) 76.9 95.3 80.2 48.4 65.9 60.0 61.2 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 64.9 68.8 63.8 83.8 78.7 92.3 94.1 94.2

Fine-tuned:
SimCLR (ours) 89.4 98.6 89.0 78.2 68.1 92.1 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 91.4 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 53.7 91.3 84.8 69.4 64.1 82.7 72.5 92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image

classification datasets, for ResNet-50 (4×) models pretrained on ImageNet. Results not significantly worse than the best (p > 0.05,

permutation test) are shown in bold. See Appendix B.8 for experimental details and results with standard ResNet-50.

2019; Tian et al., 2019) in the linear evaluation setting (see

Appendix B.6). Table 1 shows more numerical compar-

isons among different methods. We are able to use standard

networks to obtain substantially better results compared to

previous methods that require specifically designed archi-

tectures. The best result obtained with our ResNet-50 (4×)

can match the supervised pretrained ResNet-50.

Semi-supervised learning. We follow Zhai et al. (2019)

and sample 1% or 10% of the labeled ILSVRC-12 training

datasets in a class-balanced way (∼12.8 and ∼128 images

per class respectively). 11 We simply fine-tune the whole

base network on the labeled data without regularization

(see Appendix B.5). Table 7 shows the comparisons of

our results against recent methods (Zhai et al., 2019; Xie

et al., 2019; Sohn et al., 2020; Wu et al., 2018; Donahue &

Simonyan, 2019; Misra & van der Maaten, 2019; Hénaff

et al., 2019). The supervised baseline from (Zhai et al.,

2019) is strong due to intensive search of hyper-parameters

(including augmentation). Again, our approach significantly

improves over state-of-the-art with both 1% and 10% of the

labels. Interestingly, fine-tuning our pretrained ResNet-50

(2×, 4×) on full ImageNet are also significantly better then

training from scratch (up to 2%, see Appendix B.2).

Transfer learning. We evaluate transfer learning perfor-

mance across 12 natural image datasets in both linear evalu-

ation (fixed feature extractor) and fine-tuning settings. Fol-

lowing Kornblith et al. (2019), we perform hyperparameter

tuning for each model-dataset combination and select the

best hyperparameters on a validation set. Table 8 shows

results with the ResNet-50 (4×) model. When fine-tuned,

our self-supervised model significantly outperforms the su-

pervised baseline on 5 datasets, whereas the supervised

baseline is superior on only 2 (i.e. Pets and Flowers). On

the remaining 5 datasets, the models are statistically tied.

Full experimental details as well as results with the standard

ResNet-50 architecture are provided in Appendix B.8.

11The details of sampling and exact subsets can be found in
https://www.tensorflow.org/datasets/catalog/imagenet2012_subset.

7. Related Work

The idea of making representations of an image agree with

each other under small transformations dates back to Becker

& Hinton (1992). We extend it by leveraging recent ad-

vances in data augmentation, network architecture and con-

trastive loss. A similar consistency idea, but for class label

prediction, has been explored in other contexts such as semi-

supervised learning (Xie et al., 2019; Berthelot et al., 2019).

Handcrafted pretext tasks. The recent renaissance of self-

supervised learning began with artificially designed pretext

tasks, such as relative patch prediction (Doersch et al., 2015),

solving jigsaw puzzles (Noroozi & Favaro, 2016), coloriza-

tion (Zhang et al., 2016) and rotation prediction (Gidaris

et al., 2018; Chen et al., 2019). Although good results

can be obtained with bigger networks and longer train-

ing (Kolesnikov et al., 2019), these pretext tasks rely on

somewhat ad-hoc heuristics, which limits the generality of

learned representations.

Contrastive visual representation learning. Dating back

to Hadsell et al. (2006), these approaches learn represen-

tations by contrasting positive pairs against negative pairs.

Along these lines, Dosovitskiy et al. (2014) proposes to

treat each instance as a class represented by a feature vector

(in a parametric form). Wu et al. (2018) proposes to use

a memory bank to store the instance class representation

vector, an approach adopted and extended in several recent

papers (Zhuang et al., 2019; Tian et al., 2019; He et al.,

2019; Misra & van der Maaten, 2019). Other work explores

the use of in-batch samples for negative sampling instead

of a memory bank (Doersch & Zisserman, 2017; Ye et al.,

2019; Ji et al., 2019).

Recent literature has attempted to relate the success of their

methods to maximization of mutual information between

latent representations (Oord et al., 2018; Hénaff et al., 2019;

Hjelm et al., 2018; Bachman et al., 2019). However, it is not

clear if the success of contrastive approaches is determined

by the mutual information, or by the specific form of the

contrastive loss (Tschannen et al., 2019).
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We note that almost all individual components of our frame-

work have appeared in previous work, although the specific

instantiations may be different. The superiority of our frame-

work relative to previous work is not explained by any single

design choice, but by their composition. We provide a com-

prehensive comparison of our design choices with those of

previous work in Appendix C.

8. Conclusion

In this work, we present a simple framework and its in-

stantiation for contrastive visual representation learning.

We carefully study its components, and show the effects

of different design choices. By combining our findings,

we improve considerably over previous methods for self-

supervised, semi-supervised, and transfer learning.

Our approach differs from standard supervised learning on

ImageNet only in the choice of data augmentation, the use of

a nonlinear head at the end of the network, and the loss func-

tion. The strength of this simple framework suggests that,

despite a recent surge in interest, self-supervised learning

remains undervalued.
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